378 research outputs found

    Approximate Path-Tracking Control of Snake Robot Joints With Switching Constraints

    Get PDF
    This paper presents an approximate path-tracking control method for all joints of a snake robot, along with the verification of this method by simulations and experiments. We consider a wheeled snake robot that has passive wheels and active joints. The robot can switch the wheels that touch the ground by lifting the required parts of its body. The model of the robot becomes a kinematically redundant system if certain wheels are lifted. Using this kinematic redundancy, and selecting the appropriate lifted parts, we design a controller for approximate path tracking. Simulations and experimental results show that the proposed controller effectively reduces the path-tracking error for all joints of the snake robot

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Perception-Action Coupling Target Tracking Control for a Snake Robot via Reinforcement Learning

    Get PDF
    Visual-guided locomotion for snake-like robots is a challenging task, since it involves not only the complex body undulation with many joints, but also a joint pipeline that connects the vision and the locomotion. Meanwhile, it is usually difficult to jointly coordinate these two separate sub-tasks as this requires time-consuming and trial-and-error tuning. In this paper, we introduce a novel approach for solving target tracking tasks for a snake-like robot as a whole using a model-free reinforcement learning (RL) algorithm. This RL-based controller directly maps the visual observations to the joint positions of the snake-like robot in an end-to-end fashion instead of dividing the process into a series of sub-tasks. With a novel customized reward function, our RL controller is trained in a dynamically changing track scenario. The controller is evaluated in four different tracking scenarios and the results show excellent adaptive locomotion ability to the unpredictable behavior of the target. Meanwhile, the results also prove that the RL-based controller outperforms the traditional model-based controller in terms of tracking accuracy

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Diseño y construcción de un robot tipo serpiente que implementa movimientos de marcha rectilínea y sidewinding

    Get PDF
    Bio-inspired robots offer locomotion versatility in a wide variety of terrains that conventional robots cannot access.  One such bio-inspired platform is snake-like robots, which are mechanisms designed to move like biological snakes. The aim of this paper was to implement and validate, through comparison in real and simulation tests on flat terrain, the design of a snake robot that allows movements in two perpendicular planes, by the application of three-dimensional locomotion modes. The prototype robot had a modular and sequential architecture composed of eight 3D printed segments. The necessary torques for each motor are found by means of a simulation in Matlab – Simulink and the SimScape tool. The Webots mobile robotics simulator was used to create a parameterized virtual model of the robot, where two types of gaits were programmed: sidewinding and rectilinear. Results showed that the robot undertakes lower than 1 second in execution time to reach the total distance in each of the proposed marches when comparted to the simulation. In addition, mean differences of 6 cm for the distances during the sidewinding mode experiment and 1.2 cm in the deviation in the rectilinear mode on flat terrain were obtained. In conclusion, there is a great similarity between the simulation tests and those performed with the actual robot, and it was also possible to verify that the behavior of the prototype robot is satisfactory over short distances.Los robots bioinspirados ofrecen versatilidad de locomoción en una amplia variedad de terrenos a los que los robots convencionales no pueden acceder. Una de esas plataformas bioinspiradas son los robots con forma de serpiente, que son mecanismos diseñados para moverse como serpientes biológicas. El objetivo de este artículo fue implementar y validar, mediante la comparación en pruebas reales y de simulación sobre un terreno llano, el diseño de un robot serpiente que permite movimientos en dos planos perpendiculares mediante la aplicación de modos tridimensionales de locomoción. El prototipo del robot contó con una arquitectura modular y secuencial compuesto por ocho segmentos impresos en 3D. Los pares necesarios para cada motor se encuentran mediante una simulación en Matlab – Simulink y la herramienta SimScape. El simulador de robótica móvil Webots se utilizó para crear un modelo virtual parametrizado del robot, donde se programaron dos tipos de marcha: sidewinding y rectilínea. Los resultados mostraron que el comportamiento del robot evidencia valores menores a 1 segundo en el tiempo de ejecución para alcanzar la distancia total en cada una de las marchas propuestas en comparación con la simulación. Además, se obtuvieron diferencias en promedio de 6 cm para las distancias durante el experimento del modo sidewinding y de 1.2 cm en el desvió rectilíneo sobre un terreno plano. En conclusión, existe una gran similitud entre las pruebas de simulación y las realizadas al robot real; igualmente se pudo verificar que el comportamiento del prototipo del robot es satisfactorio en recorridos cortos

    Task-Space Control of Articulated Mobile Robots With a Soft Gripper for Operations

    Get PDF
    A task-space method is presented for the control of a head-raising articulated mobile robot, allowing the trajectory tracking of a tip of a gripper located on the head of the robot in various operations, e.g., picking up an object and rotating a valve. If the robot cannot continue moving because it reaches a joint angle limit, the robot moves away from the joint limit and changes posture by switching the allocation of lifted/grounded wheels. An articulated mobile robot with a gripper that can grasp objects using jamming transition was developed, and experiments were conducted to demonstrate the effectiveness of the proposed controller in operations

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    corecore