64,661 research outputs found

    Recurrence networks - A novel paradigm for nonlinear time series analysis

    Get PDF
    This paper presents a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. It is demonstrated that there are fundamental relationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis

    Spin Network States in Gauge Theory

    Get PDF
    Given a real-analytic manifold M, a compact connected Lie group G and a principal G-bundle P -> M, there is a canonical `generalized measure' on the space A/G of smooth connections on P modulo gauge transformations. This allows one to define a Hilbert space L^2(A/G). Here we construct a set of vectors spanning L^2(A/G). These vectors are described in terms of `spin networks': graphs phi embedded in M, with oriented edges labelled by irreducible unitary representations of G, and with vertices labelled by intertwining operators from the tensor product of representations labelling the incoming edges to the tensor product of representations labelling the outgoing edges. We also describe an orthonormal basis of spin networks associated to any fixed graph phi. We conclude with a discussion of spin networks in the loop representation of quantum gravity, and give a category-theoretic interpretation of the spin network states.Comment: 19 pages, LaTe

    Bifurcation analysis in an associative memory model

    Full text link
    We previously reported the chaos induced by the frustration of interaction in a non-monotonic sequential associative memory model, and showed the chaotic behaviors at absolute zero. We have now analyzed bifurcation in a stochastic system, namely a finite-temperature model of the non-monotonic sequential associative memory model. We derived order-parameter equations from the stochastic microscopic equations. Two-parameter bifurcation diagrams obtained from those equations show the coexistence of attractors, which do not appear at absolute zero, and the disappearance of chaos due to the temperature effect.Comment: 19 page

    Integrable cluster dynamics of directed networks and pentagram maps

    Full text link
    The pentagram map was introduced by R. Schwartz more than 20 years ago. In 2009, V. Ovsienko, R. Schwartz and S. Tabachnikov established Liouville complete integrability of this discrete dynamical system. In 2011, M. Glick interpreted the pentagram map as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of discrete integrable maps and we give these maps geometric interpretations. This paper expands on our research announcement arXiv:1110.0472Comment: 46 pages, 22 figure
    corecore