6 research outputs found

    Path-Contractions, Edge Deletions and Connectivity Preservation

    Get PDF
    We study several problems related to graph modification problems under connectivity constraints from the perspective of parameterized complexity: {\sc (Weighted) Biconnectivity Deletion}, where we are tasked with deleting~kk edges while preserving biconnectivity in an undirected graph, {\sc Vertex-deletion Preserving Strong Connectivity}, where we want to maintain strong connectivity of a digraph while deleting exactly~kk vertices, and {\sc Path-contraction Preserving Strong Connectivity}, in which the operation of path contraction on arcs is used instead. The parameterized tractability of this last problem was posed by Bang-Jensen and Yeo [DAM 2008] as an open question and we answer it here in the negative: both variants of preserving strong connectivity are W[1]\sf W[1]-hard. Preserving biconnectivity, on the other hand, turns out to be fixed parameter tractable and we provide a 2O(klogk)nO(1)2^{O(k\log k)} n^{O(1)}-algorithm that solves {\sc Weighted Biconnectivity Deletion}. Further, we show that the unweighted case even admits a randomized polynomial kernel. All our results provide further interesting data points for the systematic study of connectivity-preservation constraints in the parameterized setting

    On the fixed-parameter tractability of the maximum connectivity improvement problem

    Full text link
    In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G=(V,E)G=(V,E) and an integer BB and we are asked to find BB new edges to be added to GG in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]W[2]-hard for parameter BB and it is FPT for parameters VB|V| - B and ν\nu, the matching number of GG. We further characterize the MCI problem with respect to other complementary parameters.Comment: 15 pages, 1 figur

    A Parameterized Algorithm for Vertex Connectivity Survivable Network Design Problem with Uniform Demands

    Get PDF

    A survey of parameterized algorithms and the complexity of edge modification

    Get PDF
    The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.publishedVersio

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore