1,768 research outputs found

    Path Guiding with Vertex Triplet Distributions

    Get PDF
    Good importance sampling strategies are decisive for the quality and robustness of photorealistic image synthesis with Monte Carlo integration. Path guiding approaches use transport paths sampled by an existing base sampler to build and refine a guiding distribution. This distribution then guides subsequent paths in regions that are otherwise hard to sample. We observe that all terms in the measurement contribution function sampled during path construction depend on at most three consecutive path vertices. We thus propose to build a 9D guiding distribution over vertex triplets that adapts to the full measurement contribution with a 9D Gaussian mixture model (GMM). For incremental path sampling, we query the model for the last two vertices of a path prefix, resulting in a 3D conditional distribution with which we sample the next vertex along the path. To make this approach scalable, we partition the scene with an octree and learn a local GMM for each leaf separately. In a learning phase, we sample paths using the current guiding distribution and collect triplets of path vertices. We resample these triplets online and keep only a fixed-size subset in reservoirs. After each progression, we obtain new GMMs from triplet samples by an initial hard clustering followed by expectation maximization. Since we model 3D vertex positions, our guiding distribution naturally extends to participating media. In addition, the symmetry in the GMM allows us to query it for paths constructed by a light tracer. Therefore our method can guide both a path tracer and light tracer from a jointly learned guiding distribution

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation

    Neural-PBIR Reconstruction of Shape, Material, and Illumination

    Full text link
    Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce a robust object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Specifically, our pipeline firstly leverages a neural stage to produce high-quality but potentially imperfect predictions of object shape, reflectance, and illumination. Then, in the later stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction. Experimental results demonstrate our pipeline significantly outperforms existing reconstruction methods quality-wise and performance-wise

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop
    corecore