134 research outputs found

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks

    A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications

    Get PDF
    Citation: Niknam, S., Nasir, A. A., Mehrpouyan, H., & Natarajan, B. (2016). A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications. Ieee Access, 4, 5640-5648. doi:10.1109/access.2016.2604364Emerging fifth generation (5G) wireless networks require massive bandwidth in higher frequency bands, extreme network densities, and flexibility of supporting multiple wireless technologies in order to provide higher data rates and seamless coverage. It is expected that the utilization of the large bandwidth in the millimeter-wave (mmWave) band and deployment of heterogeneous networks (HetNets) will help address the data rate requirements of 5G networks. However, high pathloss and shadowing in the mmWave frequency band, strong interference in the HetNets due to massive network densification, and coordination of various air interfaces are challenges that must be addressed. In this paper, we consider a relay based multiband orthogonal frequency division multiple access HetNet in which mmWave small cells are deployed within the service area of macro cells. In particular, we attempt to exploit the distinct propagation characteristics of mmWave bands (i.e., 60 GHz-the V-band and 70-80 GHz the E-band) and the long term evolution band to maximize overall data rate of the network via efficient resource allocation. The problem is solved using a modified dual decomposition approach and then a low complexity greedy solution based on the iterative activity selection algorithm is presented. Simulation results show that the proposed approach outperforms conventional schemes

    Performance evaluation of next generation wireless UAV relay with millimeter-wave in access and backhaul

    Get PDF
    Future wireless communication, particularly densified 5G networks, will bring numerous innovations to the telecommunication industry and will support 100-fold gain in throughput rates, 100-fold in capacity (for at least 100 billion devices), individual user data rate of up-to 10 Gb/s, extremely low latency and response times. In such a scenario, the use of Unmanned Aerial Vehicle (UAV) as a Base Station (gNB) becomes a viable option for providing 5G services, both on-demand and on a regular basis. Recent development of UAVs have made its deployment faster and reliable, resulting in a shift in its usage from traditional military to more commercial and corporate industries. On the other hand, due to the abundant availability of bandwidth in the millimeter-wave band (mmWave), there is an immense potential to utilize this band for next generation radio systems. In this case, smart integration of UAVs in 5G network provides immense potential, however, such network require efficient placement mechanism for providing blazingly fast wireless cellular network services. In this study, we analyze and describe the distinctive characteristics of mmWave propagation. The main goal is to investigate and evaluate the use of mmWave in Access and Back-haul communication links simultaneously for Amplify-and-Forward relays deployed on UAVs. We formulate the required mathematical framework for calculating the UE received power for direct path (gNB-UE) and relay path (gNB-UAV-UE) based on two cases; (i) Friis Transmission Equation and (ii) Log-Distance Path loss Model. We conduct simulations using ray-tracing simulator in different scenarios while comparing and verifying the simulation results vs mathematical equations. For the proposed system architecture, International Telecommunication Union (ITU) recommendation city model is used to calculate the probability for Line of Sight (LoS) and Non Line of Sight (NLoS) paths in different urban environments. Furthermore, we study and identify different parameters i.e., UAV location, and amplification factor to maximize the performance of an Amplify-and-Forward UAV based relay for providing enhanced coverage to the users. Similarly, the optimum UAV-gNB height is evaluated in different urban environments while providing coverage to the users via an Amplify-and-Forward relay. The study concludes with the Signal to Noise Ratio (SNR) analysis for the relay path compared with the direct path where we identify the constraints for effective relaying
    • …
    corecore