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Abstract

Future wireless communication, particularly densified 5G networks, will bring numer-

ous innovations to the telecommunication industry and will support 100-fold gain in

throughput rates, 100-fold in capacity (for at least 100 billion devices), individual

user data rate of up-to 10 Gb/s, extremely low latency and response times. In such

a scenario, the use of Unmanned Aerial Vehicle (UAV) as a Base Station (gNB) be-

comes a viable option for providing 5G services, both on-demand and on a regular

basis. Recent development of UAVs have made its deployment faster and reliable,

resulting in a shift in its usage from traditional military to more commercial and cor-

porate industries. On the other hand, due to the abundant availability of bandwidth

in the millimeter-wave band (mmWave), there is an immense potential to utilize this

band for next generation radio systems. In this case, smart integration of UAVs

in 5G network provides immense potential, however, such network require efficient

placement mechanism for providing blazingly fast wireless cellular network services.

In this study, we analyze and describe the distinctive characteristics of mmWave prop-

agation. The main goal is to investigate and evaluate the use of mmWave in Access

and Back-haul communication links simultaneously for Amplify-and-Forward relays

deployed on UAVs. We formulate the required mathematical framework for calculat-

ing the UE received power for direct path (gNB-UE) and relay path (gNB-UAV-UE)

based on two cases; (i) Friis Transmission Equation and (ii) Log-Distance Path loss

Model. We conduct simulations using ray-tracing simulator in different scenarios

while comparing and verifying the simulation results vs mathematical equations. For

the proposed system architecture, International Telecommunication Union (ITU) rec-

ommendation city model is used to calculate the probability for Line of Sight (LoS)

and Non Line of Sight (NLoS) paths in different urban environments. Furthermore,

we study and identify different parameters i.e., UAV location, and amplification fac-

tor to maximize the performance of an Amplify-and-Forward UAV based relay for

providing enhanced coverage to the users. Similarly, the optimum UAV-gNB height

is evaluated in different urban environments while providing coverage to the users via

an Amplify-and-Forward relay. The study concludes with the Signal to Noise Ratio

(SNR) analysis for the relay path compared with the direct path where we identify

the constraints for effective relaying.
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Chapter 1

Introduction

This chapter provides the motivation and main objectives of this study. We start with describing

next generation wireless networks focusing particularly on 5G telecommunication networks, and

study the effectiveness of UAV-gNB in cellular networks and the potential of mmWave band

in future telecommunication networks. Then, we continue by describing the research problem,

stating the research objectives and the main research questions. Later on, we explain the research

methodology, summarize the steps required to accomplish the aims of this study. At the end of

this chapter, the organization of the thesis is described, providing highlights on the subsequent

chapters.

1.1 Motivations and Challenges

Radio communication has undergone several generational evolutions in the last 40 years. Each

generation of cellular technology roughly lasted a decade or so, before being rendered obsolete

through innovations in communication technologies. The first generation of telecommunication

networks (1G) commonly known as the voice era provided telephone services to masses. Mostly

based on wired architecture, this was the longest reigning generation of telecommunication net-

works. The proliferation of telephony services in everyday life led to the development of the

second generation of communication systems (2G), which introduced the concept of digital mo-

bile telecommunication through wireless networks and portable devices. The 2G technology went

through continuous enhancements ushering in the data/Internet era mostly known as 2.5/3G/4G-

LTE generations. These generations continues to be in operation until the first decade of the

new millennium. The advancement in information technology has led to the development of

revolutionizing technologies such as Internet of Things (IoT) which envisions inter-connectivity

of everyday devices such as cars, mobile phones, and home appliances etc. This has created the

ever expanding need for scalable, resilience and ubiquitous telecommunication networks capa-

1



1.1 Motivations and Challenges

ble of supporting extremely high data rates with low latency. The latest generation of radio

communication has been referred to as 5G [6]. It is envisioned that 5G will transform existing

service architecture and will provide a singular network slice (instead of differentiating between

voice and data services) to the users. 5G services, Release-16 expected to be standardized by

2020 [7], however, 3GPP Release 15-the first full set of 5G standards is released in 2019 [6]. 5G

Services will be capable of providing Cellular Access part to support traffic up-to 10 Gbps with

sub-millisecond latency. The super connected era of 5G systems is anticipated to provide wireless

services for evolving applications such as augmented reality, virtual reality traffic, and streaming

of millions of minutes of video content per second. Cisco, a leading telecom systems company,

predicts that in 2021 the demand for mobile data rate will be twice as much as the demand

for fixed line data services [8]. 5G networks are based on much wider spectrum allocations in

the yet untapped mmWave frequency band, allowing for higher data rates and highly efficient

(pencil beam forming) antennas at both the mobile devices and base stations [9].

The two most promising benefits of mmWave are: (i) wider bandwidth availability between

30 and 300 GHz which is 200 times larger spectrum when compared with the current cellular

networks [9; 10], (ii) can generate beam-forming with very high gain due to multiple antenna sys-

tems, which can offer a transmission range that exceeds 130m [11] and in some specific scenarios

coverage can be reached up-to 200m [12]. Nevertheless, the critical challenges of using mmWave

in wireless cellular networks are propagation loss and sensitivity to blockage as highlighted in

Fig 1.1.

(a) Benefits and challenges in mmWave band (b) mmWave frequency band

Figure 1.1: Benefits and challenges in mmWave.

The potential of utilizing UAVs as a relay gNB in cellular communication is a topic of interest

for academia and telcos alike [13; 14]. Modernization and innovation in UAV research and appli-

cations have resulted unwrapping of new avenues of utilization, especially its unparalleled scali-

bility and resilience in deployment of on the go and pseudo permanent cellular communication

systems. The main reasons are; the reliable LoS aerial-to-ground links, and the maneuverability

in three-dimensional (3D) space. UAVs are getting recognition in the two main scenarios: (i) re-

establishing communications shortly after a disaster and (ii) enhancing network capacity during

2



1.1 Motivations and Challenges

high demand scenarios (sports events, concerts and political/social activities) [15; 16; 17]. The

use of UAVs in telecommunication networks is governed by supervision in two areas: (i) aviation

regulations regarding the operation of UAVs and (ii) technological issues regarding UAV based

telecom networks. In both of these domains, there are some major aspects which require in-

depth study; these include UAV channel modelling, UAV deployment, cellular network planning

for UAVs based networks, radio resource management, energy efficiency and UAV trajectory

optimization [18; 19; 20; 21]. This study focuses on using UAV-gNB as an Amplify-and-Forward

relay.

The main applications of UAV based gNB includes:

• To provide UE’s signals for acceptable network, especially in shadowed zones,

• To increase data rates or densifying an existing network.

The promising benefits of UAV supported gNB are:

• LoS aerial-to-ground link, and

• Controllable movement in three-dimensional (3D) space.

However, the main challenges associated with mmWave band are:

• UAV channel modelling,

• Resource management algorithms,

• Energy efficiency,

• Trajectory optimization

• Optimum placement of UAV-gNB for enhancing cellular coverage.

The above points are depicted in Fig. 1.2

Figure 1.2: UAV based gNB application and challenges.

3



1.2 Research Problem and Objectives

1.2 Research Problem and Objectives

The mmWave band is capable of overcoming the scarcity of bandwidth in future wireless com-

munications systems [22]. The mmWave has been implemented in many scenarios for Access

or Backhaul communication, but its capability in using it simultaneously for both Access and

Backhaul link is an open research area and still needs to be explored [20; 23]. Moreover, the

other challenges which are not yet studied include the practical evaluation of scenarios focusing

on fulfilling user demand of high data rates and cellular mobile industry standards. The main

challenge in the uptake of mmWave is its intrinsically high path loss with regards to the growing

distance from transmitter to receiver, the second challenge is its sensitivity to blockages. This

band can only be utilized if these technical issues are overcome, therefore, an in-depth study and

analysis is required to develop additional architectures that overcome these constraints. In this

study, we present the results of our evaluation of a 5G-network architecture which uses UAVs as

an Amplify-and-Forward relay as shown in Fig 1.3.

Figure 1.3: Network model of UAV relay network in the context of 5G.

The main objectives of this study are:

• To provide an end-to-end channel model which is capable of supporting the dynamics of

5G networks based on Amplify-and-Forward UAV relays in the mmWawe band.

• To determine the optimum Amplify-and-Forward UAV relay height for coverage maximiza-

tion in randomly distributed users scenarios.

• To compare the performance of the direct path (between the gNB and UE) with respect

to the relay path (between the gNB and UE via UAV).

4
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1.3 Research Questions

Based on the previous discussion, especially the research objectives, we formulate the research

questions as below.

• RQ1: What are the fundamental parameters for the development of a mathe-

matical framework capturing the link performance of an Amplify-and-Forward

UAV relay using mmWave at the Backhaul and the Access link?

(Discussed in Chapter 3)

Mathematical modelling is the key to understand wireless signal propagation characteris-

tics. This model is instrumental to the identification of important parameters that need

to be optimized for improving service quality. The following objectives address RQ1:

– To formulate a mathematical framework for calculating UE received power for the

direct path (gNB-UE) and the relay path (gNB-UAV-UE). The proposed framework

is to be based on the Friis Transmission Equation and Log-Distance Path loss Model.

– To utilize the probability for LoS and NLoS paths in different urban environments

for the proposed system architecture using ITU recommended city model,

– To perform SNR analysis of the relay path in comparison with the direct path,

– To identify the constraint i.e., value of amplification factor that influence the effec-

tiveness of relay path over direct path.

• RQ2: What is the expected performance of an Amplify-and-Forward UAV

relay for providing coverage to the UEs? What is impact on the UAV-gNB

optimum height, while providing coverage to the UEs in different urban envi-

ronments?

(Explained in Chapter 4)

We evaluate the mathematical framework against simulated results. Ray-tracing simula-

tion is a method for studying simulation propagation and having significant capability in

evaluating channel characteristics. This method is very useful for evaluating novel radio

technologies. The following objectives address RQ2:

– To implement the mathematical framework in a simulator using ray-tracing method,

– To compare and verify the simulation results versus the mathematical framework,

– Evaluation of UAV-gNB optimum height, while providing coverage to the UEs in

different urban environments,

– To perform numerical analysis of the SNR for the relay path in comparison with the

direct path,

5



1.4 Methodology

– Evaluation of the received power in relay paths in comparison with the direct path,

while keeping variant amplification factor.

1.4 Methodology

This section describes the steps and the processes needed to address the research questions and to

achieve the objectives presented in the previous section. Fig. 1.4 provides a graphical illustration

of the steps and methods undertaken to conduct this study:

Figure 1.4: Research methodology for achieving research objectives.

Below is the brief explanation of the steps highlighted in Fig. 1.4.

1. Literature Review: Literature Review provides a consolidated summary of an in-depth

analysis of works published by prominent researchers. The two main areas study and

explored in literature review are; (i) study of various mmWave propagation characteristics,

path loss models models, and (ii) the use of UAVs as an Amplify-and-Forward relay base

stations as well as suitable architectures. The review identifies relevant gaps in this domain

and provides a critical analysis which form the foundations of research questions and

objectives of this study.

2. Problem Formulation and Mathematical Modelling: Mathematical framework is

formulated using the proposed Amplify-and-Forward UAV relay architecture. We used

(i) Friis Transmission Equations, and (ii) mmWave path loss models for formulating the

end-to-end equation of an Amplify-and-Forward UAV relay network.

3. Ray-Tracing Simulations: In this phase, Wireless InSite ray-tracing simulator is used for

6



1.5 Thesis Organization

ray-tracing simulation and analysis of the proposed scenarios. We also evaluate, analyze

and explain direct path and relay paths using LoS and NLoS scenarios. We use ITU

recommended city model based on LoS and NLoS rays segregation to simulate statistical

parameters of the received power i.e. median and standard deviation in various urban

environments.

4. Models Evaluation and Comparison: We perform analysis of the results obtained

from the simulation results and the mathematical framework. In addition to this, numer-

ical analysis of the SNR is performed for relay path in comparison with the direct path.

Furthermore, we identify different parameters i.e. UAV location, and amplification factor

to maximize the performance of an Amplify-and-Forward UAV based relay for providing

enhanced coverage to the UEs. It is important to note that in this phase several iterations

with previous two phases are conducted.

1.5 Thesis Organization

The remaining portion of this thesis is organized as follows:

• Chapter 2 - Literature Review on 5G-UAV Relays Networks: This chapter pro-

vides a consolidated summary of current research in 5G-UAV relay networks. The review

focuses on UAV relay architectures, identifies the relevant gaps and challenges in deploy-

ment of 5G-UAV relay networks. It also sheds light on mmWave propagation characteristics

and its path loss models.

• Chapter 3 - Link-Level Performance Modelling 5G-UAV Relay Networks: This

chapter presents the technical contribution of this study to achieve objectives addressed

by RQ1. We propose and describe the system architecture and link-level performance

modelling of UAV use as an Amplify-and-Forward relay. We formulate mathematical

framework for calculating UE received power for the direct path (between the gNB and

UE) and the relay path (between the gNB and UE via UAV) based on two cases; (i)

Friis Transmission Equation, and (ii) Log-Distance Path loss Model. For the proposed

system architecture, we utilize ITU recommended city model to obtain the probability for

LoS and NLoS paths in different urban environments. In addition to this, we study and

analyze different parameters i.e., UAV location and amplification factor to maximize the

performance of an Amplify-and-Forward UAV based relay for providing enhanced coverage

to the UEs. This chapter concludes with the SNR analysis for the relay path compared

with the direct path where we identify the constraints for effective relaying.

• Chapter 4 - Simulations Results, and Discussions: This chapter starts with illustrat-

ing simulations using ray-tracing simulator in different scenarios. We present comparison

7



1.5 Thesis Organization

and verification of the simulation results vs mathematical equations (which were derived

in chapter 3) i.e., using both analytical approach and ray tracing simulator results. Fur-

thermore, we evaluate, analyze and explain direct path and relay path using LoS and

NLoS scenarios. Using ITU recommended city model and based on LoS and NLoS modes

segregation, we simulate statistical parameters of received power i.e. median and stan-

dard deviation in various urban environments. This chapter concludes with the numerical

analysis of SNR for the relay path in comparison with the direct path.

• Chapter 5 - Conclusions and Future Work: We conclude the thesis by summarizing

major contributions of this study and possible future directions.

8



Chapter 2

Literature Review in 5G-UAV

Relay

This chapter provides a consolidated summary of current research in 5G-UAV relay networks.

The review focuses on UAV relay architectures, identifies the relevant gaps and challenges in the

deployment of 5G-UAV relay networks. There is discussion on optimum placement of the UAVs

as relaying and use of UAVs in mmWave band. It also sheds light on mmWave propagation

characteristics and its path loss models.

2.1 UAV as Base Station Network Architectures

Use of UAV in cellular network is one of the key area of study, both in academia and industry

in terms of its future attractiveness in wireless communication. In this section, a review of

the most relevant related work on the network architectures involving UAVs are presented and

summarised in Table 2.1.

In [24], the authors describe the opportunities and challenges of UAVs in wireless communi-

cation technologies. Firstly, an overview of UAV-aided wireless communications is presented as

summarising the basic networking architecture for three practical scenarios: i) UAV-aided ubiq-

uitous coverage under the overloaded base station (BS) or malfunctioning BS, ii) UAV-aided

relaying, and iii) UAV-aided information dissemination and data collection. The paper also pro-

vides an overview of the UAV’s main channel characteristics and design considerations taking

into account both UAV-ground and UAV-UAV channels models. Finally, a key performance

enhancing techniques that exploit the UAV’s mobility is also discussed. Results are presented

based on simulation under specific system parameter for path loss with static and mobile relaying.

Results demonstrate that with mobile relaying, the UAV flies continuously between the source

and destination aiming to reduce the link distances during both UAV information reception and
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2.1 UAV as Base Station Network Architectures

Table 2.1: Relevant summary on UAVs architecture for providing radio coverage.

Ref.
Research

Direction/Main Idea
Evaluated

KPIs
Main Conclusion Challenges/Critical Analysis

Paper [24]

Channel characteristics
and network

architectures for three
scenarios: i) UAV-aided
ubiquitous coverage, ii)

UAV-aided relaying,
and iii) UAV-aided

information
dissemination and data

collection

Path loss with
static/mobile

relaying

UAVs provides
cost-effective wireless

connectivity for devices
without infrastructure

coverage

Effective resource management
and security mechanisms,
constraints of UAVs and

evaluation using mmWave
frequency band.

Paper [23]

UAV-Mounted FSO
Front-haul and

Back-haul while using
Edge Computing at
RAN (EC-RANs)

End-to-end
throughput

UAV mounted link is
scalable and having low

CAPEX/OPEX
Trajectory plan for UAV

Paper [25]

Bandwidth requirement
for future UAVs as a

function of UAV growth
projections

Numbers of
UAVs

Commercial UAVs will
outnumber public

agency UAVs especially
small and micro UAVs

Careful infrastructure planning,
replication of control elements,
dedicated control links, UAVs

route planning

Paper [26]

Resource allocation
problem in UAVs

networks with focus
between reward and the

power consumption

Optimal
throughput of

each small
UAVs based

based on
payment ability

and demand

Power and payment
ability/demand

Coordination with the existing
heterogeneous network.

Evaluation of command center
capabilities

Paper [27]
Effectiveness of UAV as
relay in improvement of

link reliability

Optimal path
for UAVs

UAVs utility. Link
availability and optimal
paths can be planned
for UAVs in order to

maximize the network
reliability

Path planning for solar-powered
UAVs is required with energy

constraints.

Paper [28]
RAN functionality

splitting

Latency and
data rate for
split function

options in
C-RAN with
the different
front-haul

media options

Convergence of
front-haul and

back-haul is beneficial

Precise and novel algorithm.
Case study to assess QoS

requirements.

Paper [29]
Functional split

between centralized unit
and distributed Unit

Data rate and
latency

Higher splits and low
data rate

Transport layer unification of
current and new

front-haul/back-haul traffic into
a common-haul with SDN/NFV.

Network planning and traffic
management.

Paper [30]
mmWave BS

incorporation with
current cellular network

Coverage and
data rate

Splitting user and data
plan result in activating
small cells (mmWave)
only when needed. On
demand data coverage

Coordinated centralised
resource management and

adaptive beam forming/beam
tracking. Business

continuity/service continuation
evaluation. Optimal location for

small (mmWave) cells in
integration with HetNet.

Paper [31]

Spectrum
pooling/sharing

mechanisms using
mmWave

Spectrum
pooling

performance

Spectrum pooling is
advantageous

Cost efficiency evaluation and
impact of real-world factors

Paper [32]
UAVs significance in

multi-tier heterogeneous
network

Coverage and
capacity

UAVs deployment is
productive

UAVs trajectory assessment

Paper [33]
Modeling Air-to-Ground

path loss for low
altitude platforms

Path loss

Path loss is dependent
on elevation angle

between between the
terminal and the

platform

Analysis with actual 3D-model
and mmWave
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relaying phases (data ferrying or load-carry-and-delivery). The authors conclude that: i) on-

demand UAV systems are more cost-effective and can be much more swiftly deployed; suitable for

unexpected or limited-duration missions, ii) short Range Light of Sing (LOS) potentially leads

to significant performance improvement over direct communication between source and desti-

nation (if possible), and iii) manoeuvrability of UAVs offers new opportunities for performance

enhancement. Finally , the authors point put that effective resource management and security

mechanisms specifically designed for UAV communication systems are still needed. Additionally,

high relative velocity between UAVs coupled with the higher frequency in the mmWave band

could lead to excessive Doppler shift which is an area of study. Even if the paper has a good cover

of the challenges that UAVs communication faced, there is some missing points of this paper,

for example, using the specific frequency bands of mmWave for UAV-UAV links to be used is not

discussed.

In [23], the authors discussed UAV-Mounted FSO Front-haul and back-haul while using Edge

Computing at RAN (EC-RAN). At the beginning, a novel EC-RAN architecture is presented

having two key considerations: i) where cache storage and light base band units (BBUs) are

mounted on the UAVs to supplement the terrestrial infrastructure via UAV-mounted FSO-FnB

links, ii) focus on the issues related to networking technologies and Communication Resource

Management (CRM) in the EC-RAN with UAV-mounted FSO-FnB links. Outcomes were pre-

sented based on simulation which were performed under specific System parameter setting to

show end-to-end throughput. Results suggest that throughput achieved by the UAV mounted

FSO-FnB links outperforms that of the UAV-mounted RF-FnB links, and when the weather

attenuation is larger than 57 dBm/km, the UAV is required to perform as a relay to compensate

for the weather attenuation. The authors summarised that UAV mounted Front-haul and back-

haul link using FSO with edge computing is scalable and having low CAPEX/OPEX. At the

end, the authors underline some challenges i.e. requirements of practical algorithm for CRM to

assist network dynamic metrics. However, some areas which required further study and missed

in the paper are i) using FSO in back-haul and access network while considering its limitations of

physical obstructions, and ii) trajectory plan for UAV in terms Longitude, latitude and altitude

for optimal service.

In [25], the author describe bandwidth requirement for future Unmanned Aerial System

(UAS) as a function of UAV growth projections. There is also an overview about new predic-

tive models, and suitability of emerging spectrum sharing technologies for UAS. Initially, the

authors highlighted that a UAS communications cell takes a 3D shape, such as a cone, sphere or

cylinder, and may overlay with other cells. Moreover, different types of cells can be defined for

different flight parameters (height, speed, etc.) and services (type of data and communications

patterns) to ensure that critical communications services receive the highest protection. Math-

ematical equations were used to predict numbers of UAVs-in order to determine RF spectrum
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2.1 UAV as Base Station Network Architectures

requirements. Results indicate that commercial UAVs will outnumber public agency UAVs espe-

cially the small and micro UAVs (SUAV/MAV) which are low-altitude UAV alternatives:suitable

for dense urban scenarios. The authors conclude that: i) UAV growth and RF spectrum are

intertwined i.e. huge spectrum is required for growing number of UAVs, ii) an appropriate

OFDM sub-carrier frequency spacing is suitable options to minimise inter-carrier interference

(ICI) caused, among others, by the Doppler shift and carrier frequency offsets, iii)Spectrum

allocations can be done on the basis of priorities, fairness, or more complex policies and rules.

Finally, the authors emphasise the need for careful infrastructure planning, replication of control

elements (databases, SASs), dedicated control links. However, the missing point in the paper

which required in depth study is algorithm for spectrum management with UAVs route planning.

In [26], the author outline resource allocation problem in UAVs networks with focus between

reward and the power consumption. Firstly, the authors presents a demand aware resource

allocation mechanism for the information transmitting problem in UAV networks where a large

UAV acts as a relay for small UAVs team. The relay UAV will act as cluster head, and is

responsible mainly for: i) Resource allocation, and ii) centralised management. For results,

stackelberg optimisation and Lagrange multiplier method have been used to find an optimal

throughput of each small UAV under a given constraint power. Results indicate that system can

transmit the total throughput decided by the upper hierarchy (Command Center), for allocating

transmission rate to the lower hierarchy i.e. from relay UAVs to small UAVs) based on payment

ability and demand. To Sum up, the authors conclude that: i) Command center assess the total

performance of the system and has priority to make a decision firstly, and then the small UAVs

team and the relay UAV according to the decision of the command center take actions, ii) Reward

of each small UAV is influenced by the individual (UAV) demand and payment ability, iii) The

stackelberg optimisation solution is feasible option for making a trade-off between information

reward and the cost of total system. Furthermore, one-step glance back algorithm is shortlisted

for finding the high level maximal utility convergence i.e. faster and precisely. Nevertheless,

the missing points in the paper, which need further study are: i) co-ordination of the current

scenario with the existing heterogeneous Cellular network, and ii) evaluation of Command Center

capabilities.

In [27], the authors discussed back-haul links reliability problems in wireless balloon net-

works, and effectiveness of UAV as relay improvement of link reliability (or connectivity). In

the beginning, the authors showed that using a few UAVs as relays can enhance connectivity

among Wireless Balloon Networks by using an optimal paths that UAVs must follow to max-

imise the network reliability. Mathematical equations has been used to find out the optimal

path for UAVs, which ll cover link outages. Simulations have been used for UAV utility vs. link

availability by using three methods: i) optimal algorithm, ii) greedy algorithm, and iii) random

selection. Results indicate that utility of UAV becomes less as the links become more available
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i.e. an unreliable network could better utilise a UAV. Lastly, the main conclusions in the paper

are: i) UAVs are used as relays to improve the reliability of wireless back-haul networks consist-

ing of balloons, ii) given the link availability prediction, optimal paths can be planned for UAVs

in order to maximise the network reliability (connectivity).Further area for research highlighted

in the paper is path planning for solar-powered UAVs while keeping in consideration energy

constraints. However, analysis of Key Point Indicators (KPIs) for Customer Quality Experience

(CQE) need further research too which is missing in the paper.

In [28], the author describe different functional split options in C-RAN, available front-haul

technologies, and the convergence of front-haul and back-haul technologies. Firstly, the authors

propose a novel concept to split the RAN functionality into two parts i) One executed locally

at the BS, ii) One executed at a central processing unit. As per authors, there are many factors

that determine the required data rate for each split, and there are numerous options to split

the RAN processing. However, only four major and representative options that show how the

required FH capacity scales with the chosen functional split has been discussed. For results,

existing available data (from the industry), latency and data rate were evaluated for the four

split function options in C-RAN with the different front-haul media options. Key outcome is that

convergence of FH and BH becomes necessary to avoid the need to deploy two separate transport

networks. Conclusions deduced from split options in C-RAN are: i) for Layer-1, optimal media

options are fibre, mmWave, and FSO respectively, ii) for layer-2, unified data plane need to design

despite the diversity of exchanged information, iii) for Layer-3, future packet switches may need

to support a more deterministic model, that is, guarantees on upper bounds for latency, jitter

and packet loss rate, iv) Control and management planes need to enable joint optimisation of

traffic steering in the transport network and RAN function placement across cloud nodes (i.e.

using SDN, Network Functions Virtualisation). Finally, as per author, by adapting the functional

split to the availability of the converged FH/BH network as well as actual user requirements,

multiplexing gains can be exploited that further reduce the overall requirements. However, there

is a need for precise and novel algorithm to be used/studied for supporting converged FH/BH

network while using split functions.

In [29], the authors gives an overview on front-haul and back-haul wireless transport over

mmWave for 5G with discussion on data rate and latency for front-haul interfaces. In the

beginning, functional split between CU (Centralised Unit) and DU (Distributed Unit) in C-

RAN is proposed in three splits: i) PHY-RF split, ii) Intra-PHY split, and iii) PDCP-RLC split.

The authors make comparison for data rate and latency requirements for each of the above split

options, based on some assumptions, such as number of antennas, number of ports. Results

demonstrate that higher functional splits required low data rate and reasonably high latency

,and vice-versa. Moreover, the authors conclude that mmWave-based wireless back-haul/front-

haul solutions are good alternatives in contrast to optical fibre with two possible situations: i)
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Capped at the frequency 100 GHz including V and E bands where prototypes/commercial-grade

products have appeared, ii) Bands above 100 GHz (W and D) are less intense despite their

great potentials and needs further exploration for real deployment. At the end, the authors pin

down the need for in depth study and analysis of using W-Band and D-Band which offer total

channel bandwidth of 17.85 GHz and 31.8 GHz respectively. Nonetheless, the missing point in

the paper is to analyse the area of unifying the transport network of existing and new front-

haul/back-haul traffic into a common-haul SDN/NFV (Software-defined networks and network

function virtualisation) based packet switching network.

In [30], the author discussed the use of mmWave in back-haul and access link in the current

cellular network. At the beginning, the author propose a concept of a mmWave overlay in heavily

populated heterogeneous networks (HetNet), where small cell base stations using mmWave are

incorporated into traditional cellular networks, and there is logical split between control and user

plane. A logical Network Access Entity (NAE) which can be implemented as a network virtual

function for facilitating; resource assignment with a larger view on several parameters, at both

user and network side. Based on wireless communication concepts and referencing from research

papers authors figure out that, logical splitting control and user plane for UE will results in full

coverage for very high data rates in the coverage area of mm-wave small cells. The authors main

conclusions are:

• Splitting user and data plan will result in activating small cells only when needed, on

demand data coverage, which means energy saving too,

• License free 60 GHz band having 9 GHz of unbroken spectrum having high propagation loss

in free space due to oxygen absorption which comforts interference between neighbourhood

connections,

• RMS delay spread of mmWave outdoor channels are almost same order for indoor and

in-cabin propagation.

At the end, the authors highlight the necessity for further study on coordinated centralised re-

source management and adaptive beam forming /beam tracking. However, primary area missing

in the paper was to evaluate business continuity (i.e. service continuation) in case of outage in

Small (mmWave) cells.

In [31], the authors describe spectrum sharing between multiple operators, also referred to

as spectrum pooling while taking considerations of mmWave. Firstly, authors gives an overview

on different pooling mechanisms which are: i) interface at the RAN (BS), ii) interface at the

CN, iii) RAN sharing, iv) CN sharing, v) via a spectrum broker, and vi) Uncoordinated. For

results, predefined parameters i.e. number of operators, BS, UEs, bandwidth and frequency

were considered using mmWave. Outcome indicates that under ideal assumptions, spectrum

pooling is advantageous, and it delivers better performance to the 5th, 50th, and 95th percentile
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users. Moreover, the authors conclude that mmWave communications have recently emerged

as a solution to the spectrum scarcity in bands traditionally used for cellular communications

and spectrum pooling at mmWave could allow more efficient use, and coordination among the

networks of different operator can enhance spectrum pooling. Finally, the author underpin the

need for further work to better understand impact of real-world factors, including; imperfect

CSI, realistic antennas, back-haul latency, BS synchronisation, and distributed coordination.

Nevertheless, the cost efficiency in terms of OPEX, and CAPEX is an area of further study and

exploration ( in this scenario) which is missing in the paper.

In [32], the authors discussed significance of drones in multi-tier heterogeneous network for

improvement of network capacity, and coverage. Firstly, the authors investigated downlink (DL)

transmission scheme having a high-power BS and UAVs (operating in the microwave band),

alongside low-power small BSs (SBSs) operating in mmWave frequency band. Based on the user

associations, the users can be classified into three different type: i) microwave BS and the SBSs

operating at 28 GHz attempting to capitalise attainable energy efficiency of their associated

users, ii) 73 GHz SBSs attempting to capitalise the attainable data rate of their associated

users, and iii) UAVs functioning at the minimum power level to upkeep the minimum QoS

requirements of their associated users. Results indicates that i) Optimal altitude of a UAV is

directly proportional to cosθ where θ is the UAV’s beam width angle, and inversely proportional

to the cumulative additional losses (for both LOS and NLOS communication links), ii) achievable

system Energy Efficiency (EE) is approx. two times more than the witnessed performance in the

cellular networks without UAVs for all three considered power allocation methods. Furthermore,

the authors concluded that UAV deployment is suitable for achieving high data rates, while

sustaining the power consumed by the wireless infrastructure at a tolerable level. However,

trajectory of UAV has not been considered in investigation, and the same observations needed

to be evaluated while using mmWave at UAVs BS.

In [33], the authors discussed importance of airborne wireless BSs in cellular network, pre-

diction of Path loss for air-ground channel (at low altitude), and its dependency on primary

factor. At the beginning, the authors proposed statistical propagation model for foreseeing the

air-to-ground path loss between a Low Altitude Platform (LAP) and a terrestrial User Element.

Outcomes were presented based on mathematical equation and simulations in Wireless in suite

for three different frequencies (700 MHz, 2000 MHz and 5800 MHz), and four virtual-cities (gen-

erated using a script writing in MATLAB) with reference to International Telecommunication

Union (ITU-R) document recommendations, and taking into consideration of reflection, scat-

tering, and diffraction. The authors summarised that in an urban environment, path loss for

Air-Ground Channel (at low altitude) is dependent on elevation angle between the terminal and

the Serving BS. However, same observations need to be evaluated while extracting the actual

3D-model rather than readily available urban parameters, and QoS parameters conformance as
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well for terrestrial terminals.

2.1.1 Gaps and Open Challenges

As discussed in the literature review, there are still many open challenges of using UAV-relays

for radio communications may face. In the following, the main gaps identified from the literature

review are listed as follow:

• Finding suitable transmission medium for the Back-haul and Access communication links

(simultaneously). Network planning and traffic management in this scenario is another

thought-provoking area.

• The development of effective interference mitigating techniques specifically designed for

the UAV-aided cellular coverage.

• Appropriate evaluation mechanisms are required to assess QoS requirements from user/ap-

plication perspective and identifying relevant Key Performance Indicators (KPI).

• Achieving Transmitter(Tx)/Receiver(Rx) beam alignment for directional mmWave com-

munications is a challenge to cover as well.

• Another main challenge stems from the size, weight, and power (SWAP) constraints of

UAVs, which could limit their communication, computation and endurance capabilities.

• Energy-aware deployment and energy-efficient operation of the UAVs for mobility and

communications needs to be address.

• Optimal location (co-ordinates) for small (mmWave) cells in integration with HetNet net-

work require an in-depth study.

2.2 Relay in Cellular Communication

Relaying is a promising aspect of future wireless networks. 3GPP Release 10/11 (LTE-A) and

IEEE 802.16j visualised the application cases scenarios, illustrated in Fig. 2.1:

Figure 2.1: Relaying in cellular networks.
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• Capacity Enhancement: UAVs have a immense potential to augment capacity of cel-

lular networks i.e. to increase data rate, densifying an existing network and to cope with

high traffic demands especially in dense urban areas or special events. Besides the long-

range connectivity, multiple UAVs anchorage can facilitate better load balancing and traffic

offload [34].

• Group Mobility: The mobility models are application dependent e.g. aggregating traf-

fic of group users within a high-speed train or bus. Group mobility in mobile networks

can cause degradation in network quality because of dynamic changes of network utiliza-

tion [35]. Efficient placement of UAVs can reduce the strain on existing network in such

scenarios and provide quality network acquisition.

• Coverage: To provide UE’s signals of acceptable network, especially in shadowed zones.

Cellular connectivity for UAV systems is interesting because it promises coverage in beyond

visual line of sight scenarios [36]. In our work, providing coverage through UAVs is the

main focus.

Different cooperative diversity protocols can be employed in this context. UAVs integration as

relay into next generation wireless network needs efficient UAVs placement to enhance overall

system efficiency. Broadly, cooperative diversity protocols can be classified into three categories

based on the type of processing and requirements by relay and destination terminals, highlighted

in Fig 2.2 [37].

Figure 2.2: Cooperative diversity protocols

• Fixed Relaying: Relay works as Amplify-and-Forward (amplify the received signal sub-

ject to their power constraint) or decode and forward relay, and then re-transmit the signal.

• Selection Relaying: Adaptive strategies are followed. Relay selects a suitable cooperative/non-

cooperative action based on SNR between the transmitting terminal and the relay.

• Incremental Relaying: It enhances spectral efficiency of both selection and fixed relaying

by getting limited feedback form the destination terminal, and relaying when required.
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2.2.1 Radio Relay Technologies

UAV-gNB can be used as a relay in various scenarios depending on the relay technology adopted.

Broadly, it can be classified in three categories as illustrated in Fig. 2.3 [1].

• Layer 1 Relay: In this case, the received signal from Tx will be relayed (amplified and

forwarded) to the respective Rx. This is called repeater or booster or more specifically an

Amplify-and-Forward relay. One major disadvantage of such relay is that noise will also

be amplified with the desired signal. However, the simplicity and inexpensiveness of this

relay far outweigh the benefits.

• Layer 2 Relay: In this case, the received signal from Tx will be amplified and forwarded

to the respective Rx and additional functions like modulation, demodulation, coding and

decoding are performed as well. These functions facilitate in elimination of the noise.

• Layer 3 Relay: In this type of relay technology, the layer 3 functions such as user data

regeneration processing are performed as well as layer 2 functions plus amplification of

the received signal. Layer 3 relay also allows eradication of the noise but at the cost of

increased processing delay.

Moreover, Table 2.2 highlights the benefits and drawbacks of all the three radio relay technologies.

Table 2.2: Comparison of radio relay technologies [1].

Relay Technology Advantages Disadvantages

Layer 1 Relay
(Amplify-and-Forward
Relay)

• Simple functionality

• Inexpensive, easy to integrate
with an existing network

• Amplification of the noise
with the desired signal

Layer 2 Relay
(Decode-and-Forward
Relay)

• Noise Elimination

• Layer 2 functions configu-
ration facility i.e, modula-
tion, demodulation, coding
and decoding

• Increased processing delay
due to layer 2 functions.

• Addition of radio control
functions between base sta-
tion and relay station

Layer 3 Relay

• Noise Elimination

• Layer 3 and layer 2 functions
configuration facility i.e, user
data regeneration process-
ing, modulation, demodula-
tion, coding and decoding

• Expensive, complex function-
ality and configuration

• Increased processing delay
due to layer 3 and layer 2
functions.

• More prone to interference
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Figure 2.3: Relay in Cellular Communication [1]

2.3 Optimum Placement of UAVs as Relaying

Different researchers have studied, explored and analysed optimum placement of UAVs as UAV-

aided base station. In [38], the authors explained UAV-BS optimum placement in device-to-

device communication scenarios. The authors derived a controllable framework was for analysing

coverage and data rate by evaluating different scenarios with the help of simulator measurements

and analytical results. At the end of paper, there is discussion about the coverage vs required

time for UAV-BS to cover the desired area (delay), in terms of stop points. In [33], path

loss models were suggested for LoS and NLoS conditions. The authors discussed importance

of airborne wireless BSs in cellular network, prediction of path loss for Air-Ground Channel

(at low altitude), and its dependency on primary factor (elevation angle). At the beginning,

the authors proposed statistical propagation model for foreseeing the air-to-ground path loss

between a Low Altitude Platform (LAP) and a terrestrial UE. Outcomes were presented based

on mathematical equation and simulations in Wireless InSite for three different frequencies (700

MHz, 2000 MHz and 5800 MHz), and four virtual-cities (generated using a script writing in

MATLAB) with reference to ITU-R document recommendations and taking into consideration

of reflection, scattering, and diffraction. The authors summarised that in an urban environment,

path loss for air-ground channel (at low altitude) is dependent on elevation angle between the

terminal and the serving BS.

In [19], effectiveness of UAV aid BS in cellular communication was studied and optimal

placement of UAV-BS was conducted in consideration to 3D space. Simulations were performed

for evaluating the performance in different scenarios. Main focus of this study was exploring

the trade-off between maximising the number of users while keeping minimum transmit power.

In [39], coverage probability of UAV-BS especially for downlink link was studied and analysed in

relation to antenna gain and UAV-BS altitude. Circle packing theory was used, and coordinates
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of UAV-BSs were determined in a way to increase coverage area and UAV-BS life time. The

authors also highlighted the UAV altitude adjustment for mitigating interference. At the end of

paper, there is discussion about the minimum number of UAVs required for providing coverage

for a given terrestrial area. In [40], impact of UAV-BS height over an area, where UAV-BS

is providing coverage to the users was explored. The authors investigated the availability of

optimum UAV-BS height (in case of Rician fading), where coverage area can be maximised.

At the end of the paper, formulas for the optimal height and maximum coverage radius were

provided.

In [34], author studied the optimal placement and distribution of UAV-BS in future wireless

cellular networks with focus on minimising network delays. The authors proposed a strategy

of UAV-BSs allocation to the demand area using idea of entropy nets. At the end, the author

highlighted the optimisation of network delays while having no impact on capacity and coverage.

In [24], the authors describe the opportunities and challenges of UAVs in wireless communication

technologies. Firstly, an overview of UAV-aided wireless communications is presented as summa-

rizing the basic networking architecture for three practical scenarios: i) UAV-aided ubiquitous

coverage under the overloaded base station (BS) or malfunctioning BS, ii) UAV-aided relaying,

and iii) UAV-aided information dissemination and data collection. Results are presented based

on simulation under specific system parameter for path loss with static and mobile relaying.

In [41], authors examined connectivity and coverage of UAV-BS with focus on observing an area

of interest by suggesting connectivity-based mobility model between UEs and UAV-BS. Different

scenarios were explored to show the trade-off between quality network acquisitions by UAV-BS

and remain connected with UEs. In [42], main focus of study was backhaul link between UAV-BS

and terrestrial BS. User-centric and Network-centric methodologies were proposed and optimal

3D backhaul-aware placement of a drone-BS is explored. The authors also focused on UAV-BS

battery vs channel variations and UAV-BS flight time. However, key areas which required in

depth study and analysis are:

• SWAP constraints of the UAVs.

• Link performance of UAV relay using mmWave at the Backhaul and Access link.

• Analysis/optimisation of different optimal parameter to maximise the performance.

• Optimal trajectory for the UAV.

2.4 5G Spectrum Frequency Bands

5th Generation cellular technology represents a massive leap forward for wireless mobile commu-

nications, far surpassing 4G (LTE/Advanced/Advanced Pro, WiMax), 3G (UMTS/WCDMA,

CDMA/1xEV-DO), and 2G (GSM/GPRS, CDMA/1xRTT) communication platforms in terms

20



2.4 5G Spectrum Frequency Bands

of data rate and reduced latency. In order to support all the requirements it promises to deliver,

massive quantities of new radio spectrum (5G NR frequency bands) have been allocated to 5G,

notably in millimeter-wave bands [2; 43]. The basic idea for 5G is to use frequency spectrum

above 6 GHz which will provide enough bandwidth to every user that higher data rates are

possible [44]. 5G technology can employ cm-waves to mm-waves frequencies ranging from 20

GHz to up to 300 GHz. 3GPP Release-16 is expected to be standardized by 2020 [7], however,

3GPP Release 15-the first full set of 5G standards is released in 2019 [6]. In our analysis and

observation, we consider 28 GHz frequency band which is the part of the 5G frequency RF

plan [45; 46]. Fig. 2.4 depicts the 5G spectrum frequency bands. For addressing the diversi-

Figure 2.4: 5G spectrum frequency bands.

fied requirements from the envisioned 5G usage scenarios, 5G needs access to ”low”, ”medium”

and ”high” frequencies, illustrated in Fig. 2.5. A sufficient amount of harmonised spectrum in

each layer should be made available by national regulators in a timely manner to enable mobile

operators to deliver 5G services.

Figure 2.5: Multi-layer frequencies approach for 5G usage scenarios [2].
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2.5 UAVs in mmWave Band

Wider bandwidth availability in mmWave has attracted both the academia and researchers atten-

tion for its use in next generation wireless networks. Reduced antenna size at the tiny wavelength

band has made it even more suitable in terms of lighter weight as payload in aerial communica-

tions [47]. In addition to this, multi-stream, multi-beam and multi-user (MU) communications

features is another positive aspect of utilising mmWave band. Until the present time, there

is limited work on mmWave air-to-air and air-to-ground channel modelling. Although, aerial

communication is different from terrestrial channel models because they have lower path loss

exponent and smaller small scale fading [48]. However, mmWave links constraints UAV-gNB

from using high altitude due to its intrinsically high path loss with regards to the growing dis-

tance from transmitter to receiver, so terrestrial channel models can be applied to mmWave

aerial communication scenarios as well; where UAV-gNB will be placed at the same height as

of the terrestrial base station [49; 50; 51]. Nonetheless, while using mmWave, antenna patterns,

blockage environment and fading channel model must be cautiously adapted. In [52], author

presented a 3D sectored pencil beam pattern for mmWave antenna. Likewise, Nakagami-m fad-

ing channel was considered more suitable in mmWave communication links due to enormous

difference between NLoS and LoS signal strengths [52; 53; 54; 55]. In [56], author described

3D analytical framework by introducing a 3D sectorized antenna and 3D blockage model while

simultaneously considering UAVs and UEs altitude. In [57], authors proposed a methodology for

optimal height, coverage radius and coordinates of UAV configured as base stations while con-

sidering blockage by human body. Furthermore, for integrating UAV configured as base station

into heterogeneous next generation wireless networks, concept of network slicing was introduced

i.e. providing a network slice for necessary backhaul, front-haul, and network functions while

considering the mobility of UAV-BS [49]. UAVs integration into next generation wireless network

needs efficient UAVs placement to enhance overall system efficiency.

Nevertheless, the primary areas requiring in-depth study and analysis are as follows:

• Evaluating the link performance of UAV-gNB relay using mmWave at the backhaul and

Access link.

• Analysis/optimisation of key parameters to optimize the performance.

• Integration of the UAV-gNB using mmWave in Backhaul and Access link with the existing

heterogeneous networks i.e. 3G, LTE, and 5G.

• The practical implementations of designing practical antenna array on chip while using

mmWave.
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2.5 UAVs in mmWave Band

2.5.1 Path Loss Models for mmWave Band

Several path-loss models has been proposed in literature based on extensive measurements per-

formed in 73 GHz, 60 GHz, 38 GHz, and 28 GHz frequency bands, summarised in Table 2.3.

However, we are using Log-distance path loss model in our analysis and observation.

Table 2.3: Relevant mmWave path loss models.

Path Loss
Model

Summary
Measurement

Frequency
Project Critical Analysis

Reference Path
Loss Model
(RPLM) or
Log-Distance
Path loss model
[58; 59; 60; 61;
62; 63; 64; 65]

Calculating path loss at
reference distance d0,
having dependency on
only one variable np

28 GHz,
38 GHz and

60 GHz,

MiWEBA,
IEEE

802.15.3c, and
NYU projects,

Having dependency
on single

parameter.

Modified Path
Loss Model
(MPLM) [65;
66; 67; 68]

Considered as an
updated version of

RPLM

28 GHz and
73 GHz,

WINNER II
and 3GPP
projects,

Two parameters
facilitate higher

degree of freedom
in calculation and

analysis.

Dual Slope
Path Loss
Model
(DSPLM) [59;
65; 69]

Extension of MPLM,
where extrapolation

operations was
considered i.e.

including path loss
values at 400 m rather

than 200 m,

28 GHz, NYU project

More suitable for
calculating path
loss of values at
greater distances
than 200 m up-to

400 m.

2.5.1.1 Log-Distance Path Loss Model

Path loss between the Tx and Rx over a distance d (m) at a given carrier frequency f (Hz) is

given by [58; 59; 60; 61]:

PL(d) = PL(do) + 10 α log10(
d

do
) +N(0, σ2) (2.1)

where:

• PL(d) is the path loss in dB at distance d,

• do is the reference distance equal to 1 m,

• PL(do) = 20 log10( 4πdo
λ ) is the path loss at the reference distance,

• α is single path Loss exponent (PLE), which describes the attenuation of signal as it

propagates in the channel. It is obtained through best fit (MMSE) over all measurement

for a particular measurement campaign,
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2.5 UAVs in mmWave Band

• N(0, σ2) is the Zero mean Gaussian random variable (shadowing),

• d is the distance between the Tx and the Rx where d ≥ do,

This model is used for MiWEBA and IEEE 802.15.3c projects [62; 63]. This model use a

single parameter α, and referencing do equal to 1 m. Normally, 1st meter of propagation has no

obstruction from transmiter antenna which enhance the effectiveness of this model as standard

path loss modelling methodology for mmWave band. Moreover, Table 2.4 summarize the Path

loss exponent and standard deviation values of Log-Distance Path loss Model determined in

measurement campaign [3; 4].

Table 2.4: Path loss exponent and standard deviation values for Log-Distance Path loss Model
obtain in the measurement campaign [3; 4].

Scenario Environment Frequency Path Loss Standard
[GHz] Exponent Deviation [dB]

Urban Macro LoS 2 2.0 1.7
Urban Macro NLoS 2 2.8 3.5
Urban Macro LoS 10 2.0 3.1
Urban Macro NLoS 10 3.1 4.1
Urban Macro LoS 18 2.0 2.0
Urban Macro NLoS 18 3.0 4.5
Urban Macro LoS 28 2.0 2.3
Urban Macro NLoS 28 2.7 4.9
Urban Macro LoS 38 1.9 3.5
Urban Macro NLoS 38 2.7 10.5
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Chapter 3

Link-Level Performance

Modelling 5G-UAV Relay

This chapter presents the technical contribution of this study to achieve objectives addressed

by RQ1. We propose and describe the system architecture and link-level performance modelling

of UAV-gNB use as an Amplify-and-Forward relay. We formulate mathematical framework for

calculating UE received power for the direct path (between the gNB and UE) and the relay

path (between the gNB and UE via UAV) based on two cases; (i) Friis Transmission Equation,

and (ii) Log-Distance Path loss Model. For the proposed system architecture, we utilize ITU

recommended city model to obtain the probability for LoS and NLoS paths in different urban

environments. In addition to this, we study and analyze different parameters i.e., UAV location

and amplification factor to maximize the performance of an Amplify-and-Forward UAV based

relay for providing enhanced coverage to the UEs. This chapter concludes with the SNR analysis

for the relay path compared with the direct path where we identify the constraints for effective

relaying.

3.1 System Architecture Description

The proposed system architecture of this study is depicted in Fig. 3.1, showing an aerial-

terrestrial network based on the combination of traditional terrestrial base station (gNB) com-

municating with UAV equipped with an Amplify-and-Forward relay (UAV). The Back-haul link

between the gNB and the UAV is using mmWave link as well as the Access link (UAV-UE) is

providing coverage to the UEs through mmWave.

Motivated by the adoption of terrestrial channel models for air-to-ground channels of static

UAV-gNB, UAV is deployed as a quasi-stationary aerial gNB behaving like an orthodox cell

tower [49; 50; 51] (hence Doppler effect is not considered in this study). High data rate mmWave
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3.2 Link-Level Performance Modelling

Figure 3.1: The proposed system architecture for UAV relay using mmWave.

links constraints UAVs from using high altitude due to its intrinsically high path loss with

growing distance from Tx to Rx. Consequently, the altitude of a UAV must be carefully planned.

Additionally, the intrinsic high path loss feature of mmWave necessitates the optimal deployment

of mmWave UAV in consideration to three dimensional (3D) placement analysis from Tx to Rx.

Isotropic antennas are considered for simplifying the analysis. Arbitrary antenna patterns and

Multi Input Multi Output (MIMO) can be easily adoptable with the available isotropic model.

Unlike the terrestrial gNB, UAV can provide dynamic coverage and has become mature in

terms of light weight and longer battery life [70]. In this study, the UAV is deployed as a layer 1

Amplify-and-Forward relay which can be readily incorporate in a cellular communication system.

System parameters and notations are described in Table 3.1.

In Amplify-and-Forward relay technology, radio frequency signals received on downlink from gNB

and uplink from UE are amplified by an amplification factor (β) and transmitted, respectively [1].

Importance of an amplification factor is to mitigate the path loss. Because, the amplification

process is performed in the physical layer domain, the noise is amplified inadvertently, which

limits the overall efficiency of the system. It is a trade-off between performance and complexity at

the relay terminal, where simple function, low implementation cost and short processing delay

in Amplify-and-Forward relay technology has resulted in its widespread usage in the cellular

networks.

3.2 Link-Level Performance Modelling

At mmWave frequency band, accurate channel modelling is an important prerequisite to design

an efficient wireless communication network; especially for fostering new techniques that can

comply with its propagation characteristics. Broadly, channel models can be divided into two

sub-categories: analytical and physical models [71].
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Table 3.1: Notation and parameters used for modelling.

Description Parameter Unit

Unmanned Aerial Vehicle relay UAV -

User Equipment UE -

gNB coordinates (xgNB, ygNB, zgNB) -

UAV coordinates (xUAV, yUAV, zUAV) -

UE coordinates (xUE, yUE , zUE) -

gNB height hgNB m

UAV height hUAV m

UE height hUE m

Distance between gNB and UAV D2 m

Distance between UAV and UE D1 m

Horizontal distance between gNB and UAV d2 m

Horizontal distance between UAV and UE d1 m

Horizontal distance between gNB and UE D m

UE received power via the direct path PUE−D dBm

UE received power via the relay path PUE−R dBm

UAV received power PUAV−r dBm

gNB transmitted power PgNB dBm

UAV transmitted power PUAV−t dBm

gNB antenna gain GgNB dBi

UAV antenna gain GUAV dBi

UE antenna gain GUE dBi

UAV antenna gain GUAV dBi

Amplification factor of the UAV β dB

Path Loss Exponent (PLE): gNB–UE link α -

Path Loss Exponent (PLE): UAV–UE link α1 -

Path Loss Exponent (PLE): gNB–UAV link α2 -

Zero mean Gaussian random variable: gNB–UE link(shadowing) N(0, σ2)

Zero mean Gaussian random variable: UAV–UE link(shadowing) N(0, σ2
1) -

Zero mean Gaussian random variable: gNB–UAV link(shadowing) N(0, σ2
2) -

Standard deviation for gNB-UE σ

Standard deviation for UAV-UE σ1 -

Standard deviation for gNB-UAV σ2 -

• Analytical models: mathematical analysis of channel,

• Physical models: exploring the electromagnetic properties of the signal from Tx to Rx [72].

Analytical models are either propagation based or correlation-based, while physical models are

either deterministic or stochastic, illustrated in Fig. 3.2. We considered propagation based Friis

Transmission Equation and Log-Distance Path Loss model for the analysis and observations.
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Figure 3.2: Channel models techniques explored in this study.

3.2.1 Direct Path: gNB-UE (Based on Friis Transmission Equation)

Mathematical modelling has received significant importance in understanding wireless signal

propagation characteristics. It provides a recipe on how to simplify an observed phenomenon

and to obtain a computationally tractable description. Using Friis Transmission Equation and

referring to Fig. 3.3, the received power by UE via direct path is given by [73]:

PUE−D = PgNB + GUE + GgNB − 20 log10

(
λ

4πD

)
(3.1)

where,

Figure 3.3: Base station to user equipment communication.

• PUE−D is the UE received power in dBm,

• PgNB is the gNB transmitted power in dBm,

• GgNB is the gNB antenna gain,

• GUE is the UE antenna gain,

• λ is wavelength of the signal from the gNB to the UE in m,

• D is the Euclidean distance between gNB and UE, is given by:

D =
√

(xUE − xgNB)2 + (yUE − ygNB)2 + (zUE − zgNB)2 (3.2)
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3.2.2 Direct Path: gNB-UE (Based on mmWave Log-Distance Path

Loss Model)

Using Log-Distance path loss model, which is based on single parameter α that represents the

path loss exponent and referring to Fig. 3.3, the path loss from gNB to UE is given by [58; 59;

60; 61; 62; 63; 64; 65; 71]:

PL(D) = PL(do) + 10 α log10

(
D

do

)
+N(0, σ2)

where,

• PL(D) is path loss from gNB to UE in dB,

• do is equal to 1m as reference distance,

• PL(do) = 20 log10( 4πdo
λ ) is the path loss at the reference distance,

• α is the Path Loss Exponent (PLE) for gNB–UE link,

• N(0, σ2) is the Zero mean Gaussian random variable for gNB–UE link (shadowing),

• σ is the standard deviation.

The received power by UE via direct path can be expressed as:

PUE−D = PgNB − PL(D) (3.3)

3.2.3 Relay Path: gNB-UAV-UE (Based on Friis Transmission Equa-

tion)

Figure 3.4: End-to-end representation of the gNB to the UE communication using a relay node.

Using Friis Transmission Equation and referring to Fig. 3.4, the received power by UE is

given by [73]:

PUAV−r = PgNB + GUAV + GgNB − 20 log

(
λ2

4πD2

)
where,

• PUAV−r is the UAV received power in dBm,

• PgNB is the gNB transmitted power in dBm,
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3.2 Link-Level Performance Modelling

• GUAV is the UAV antenna gain,

• GgNB is the gNB antenna gain,

• λ2 is wavelength of the signal from the gNB to the UAV in m,

• D2 is the Euclidean distance between gNB and UAV, is given by:

D2 =
√

(xUAV − xgNB)2 + (yUAV − ygNB)2 + (zUAV − zgNB)2 (3.4)

For simplifying the expressions, let:

k2 =

(
λ2

4π

)
=

(
c

4πf2

)

Thus, PUAV−r can be written as:

PUAV−r = PgNB + GUAV + GgNB − 20 log10

(
k2

D2

)
(3.5)

When deploying UAV as an Amplify-and-Forward relay, the following amplification takes

place as specified in [1]:

PUAV−t = β + PUAV−r (3.6)

where,

• PUAV−t is the UAV transmitted power in dBm,

• β is the amplification factor in dB,

By substituting in (3.5) and referring to Fig. 3.4, the received power by UE via relay path is

given by:

PUE−R = PUAV−t + GUE + GUAV − 20 log10

(
λ1

4πD1

)
where:

• PUE−R is the UE received power via UAV in dBm,

• λ1 is wavelength of the signal from the UAV to the UE in m,

• D1 is the Euclidean distance between gNB and UAV, is given by:

D1 =
√

(xUE − xUAV)2 + (yUE − yUAV)2 + (zUE − zUAV)2

For simplifying the expressions, let:

k1 =

(
λ1

4π

)
=

(
c

4πf1

)
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Thus, the received power by UE via UAV is:

PUE−R = PUAV−t + GUE + GUAV − 20 log10

(
k1

D1

)
(3.7)

Substituting (3.5) and (3.6) in (3.7), assuming the same antenna gain for the Tx and Rx sides

of the UAV, the received power of the UE via UAV is:

PUE−R = β + PgNB + GgNB + 2 GUAV +GUE − 20 log10

(
k2

D2

)
− 20 log10

(
k1

D1

)
(3.8)

In addition to the frequency and antenna gains, received bower by the UE has dependency on

three main parameters:

• Distance between gNB and UAV (D2),

• Distance between UAV and UE (D1), and

• Amplification factor (β).

3.2.4 Relay Path: gNB-UAV-UE (Based on mmWave Log-Distance

Path Loss Model)

Using log-distance path loss model and referring to Fig. 3.4, the path loss from gNB to the UAV

is given by:

PL(D2) = PL(do) + 10 α2 log10

(
D2

do

)
+N(0, σ2

2)

where,

• PL(D2) is path loss from gNB to UAV in dB,

• do is equal to 1m as reference distance,

• PL(do) = 20 log10( 4πdo
λ ) is the path loss at the reference distance,

• α2 is the Path Loss Exponent (PLE) for gNB–UAV link,

• N(0, σ2
2) is the Zero mean Gaussian random variable for gNB–UAV link(shadowing),

• σ2 is the standard deviation.

Path loss exponent and standard deviation values are listed in Table 2.4 for different frequencies

obtained through measurement campaigns. The received power by the UAV can be expressed

as:

PUAV−r = PgNB − PL(D2)
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PUAV−r = PgNB − PL(do)− 10 α2 log10

(
D2

do

)
−N(0, σ2

2) (3.9)

As per (3.6) and (3.9), the UAV transmitted power is given as:

PUAV−t = β + PgNB − PL(do)− 10 α2 log10

(
D2

do

)
−N(0, σ2

2) (3.10)

Similarly, path loss from the UAV to the UE is given by:

PL(D1) = PL(do) + 10 α1 log10

(
D1

do

)
+N(0, σ2

1) (3.11)

where:

• PL(D1) is the path loss from UAV to UE in dB,

• α1 is the Path Loss Exponent (PLE) for gNB–UE link,

• N(0, σ2
1) is the Zero mean Gaussian random variable for gNB–UE link(shadowing),

• σ1 is the standard deviation.

Similarly, the received power by UE via relay path is given by:

PUE−R = PUAV−t − PL(D1)

Substituting (3.8) and (3.9) in (3.10), received power by the UE is given by:

PUE−R = β + PgNB − 2 PL(do)− 10 α2 log10

(
D2

do

)
+ 10 α1 log10

(
D1

do

)
−N(0, σ2

1)−N(0, σ2
2)

Substituting PL(do), received power by UE can be written as:

PUE−R = β+PgNB−40 log10

(
4πdo
λ

)
−10 α2 log10

(
D2

do

)
+10 α1 log10

(
D1

do

)
−N(0, σ2

1)−N(0, σ2
2)

(3.12)

3.2.5 LoS and NLoS Probabilities in Different Urban Environments

The knowledge of LoS and NLoS probability is crucial to estimate signal attenuation correctly

in mobile wireless communication. Especially in built-up areas, more accurate LoS probability

determination helps to obtain more realistic propagation models or path loss models. In this

section, we utilize ITU recommended city model to obtain the probability for LoS and NLoS

paths in different urban environments [74; 75]. Generally, there are three cases:

• P(LoS): The Line of Sight probability corresponds to the probability that the signal from

Tx to Rx will reach along an unobstructed propagation path (Zero reflection or scattering),
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• P(NLoS): The Non Line of Sight probability corresponds to the probability that the signal

from Tx to Rx will reach along an obstructed propagation path (via one or more reflections

or scattering),

• Outage: In this case, the path loss is sufficiently high or infinite i.e. having signal strength

below the required threshold and can exist in both states.

Although, aerial communication is different from terrestrial channel models because they have

lower path loss exponent and smaller small scale fading [48]. However, mmWave links constraints

UAV-gNB from using high altitude due to its intrinsically high path loss with regards to the

growing distance from transmitter to receiver, so terrestrial channel models can be applied to

mmWave aerial communication scenarios as well; where UAV-gNB will be placed at the same

height as of the terrestrial base station [49; 50; 51]. Probability of geometrical LoS between

a terrestrial Tx at height hgNB and Rx at height hUAV (or hUE) can be deduced from ITU

recommended city model [5]. This probability has dependency on three statistical parameters:

• A is the ratio of built-up land area to the total land area (dimensionless).

• B is the mean number of buildings per unit area (buildings/km2).

• C describes the building′s heights distribution according to Rayleigh Probability Density

Function given by:

f(hb) =
hb
C2

exp
−h2

b

2C2

where, hb is the building height in meters.

Assuming, evenly spaced building (on average) for the easy estimation of number of building

between two points. The probability of LoS ray would be [5]:

P(LoS) =

lr∏
l=1

(P (hb) < hgNB) (3.13)

where,

• hgNB is the height of the gNB

• lr is the number of building crossed.

Following the ITU recommendation doc and related mathematical steps, the probability of LoS

for gNB to UAV link can be written as [5; 33]:

P(LoS)gNB−UAV =

q∏
p=0

[
1− exp

(
−

[
hgNB − (q+1/2)(hgNB−hUAV)

(q+1)

]2
2C2

)]
(3.14)
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where,

• q=floor(d2

√
AB − 1) and,

• d2 is the ground distance between gNB and UAV,

Similarly, probability for LoS for UAV to UE link would be:

P(LoS)UAV−UE =

t∏
s=0

[
1− exp

(
−

[
hUAV − (t+1/2)(hUAV−hUE)

(s+1)

]2
2C2

)]
(3.15)

where,

• t = floor(d1

√
αB − 1) and,

• d1 is the ground distance between UAV and UE

Subsequently, probability of NLoS paths for gNB to UAV would be:

P(NLoS)gNB−UAV = 1− P(LoS)gNB−UAV (3.16)

Similarly, probability of NLoS paths for UAV to UE link will be:

P(NLoS)UAV−UE = 1− P(LoS)UAV−UE (3.17)

3.2.5.1 LoS and NLoS Probability Plotting

In order to plot the probability of LoS rays, we use the approach in [33]. Refer to Fig. 3.1,

ground distance d1 from gNB to UAV can be calculated as below:

d1 =
hUE

tan(θ)

where: θ is UE elevation angle.

In literature [33], resulting plot for Eq. 3.17 becomes a continuous function of elevation angle

and environmental parameters. Thus, the probability for LOS from UAV to UE is plotted in

Fig. 3.6 for four urban environments described in Table 3.2.

Table 3.2: Urban environmental parameters [5].

Parameters Environment Value

A, B, C Suburban 0.1, 750, 8
A, B, C Urban 0.3, 500, 15
A, B, C Dense Urban 0.5, 300, 20
A, B, C High-rise urban 0.5, 300, 50

Referring to the Fig. 3.4, there are two links and four possible combination.
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Figure 3.5: LoS probability for different urban environments.

gNB to UAV =

gNB to UAV (LoS)

gNB to UAV (NLoS)

UAV to UE =

UAV to UE (LoS)

UAV to UE (NLoS)

Accordingly, the average path loss from gNB-UAV will be:

PLgNB−UAV = PL(LoS)gNB−UAV×P (LoS)gNB−UAV+PL(NLoS)gNB−UAV×P (NLoS)gNB−UAV

(3.18)

Likewise, the average path loss from UAV-UE will be:

PLUAV−UE = PL(LoS)UAV−UE × P (LoS)UAV−UE + PL(NLoS)UAV−UE × P (NLoS)UAV−UE

(3.19)

3.2.6 SNR Analysis

SNR is a wireless communication measure which is used to compare the level of the desired signal

to the level of noise. SNR is defined as the ratio of signal power to the noise power expressed

in decibels. A negative SNR indicates more noise than signal. SNR is a major component

in the analysis and design of the link budget of a telecommunication system. In cooperative

relaying, merit of using relay path need to be assessed based on the SNR of the received signal.

In our analysis, we are using an Amplify-and-Forward relay, to bring the signal strength to a

certain level by the amplification factor (β). However, noise is always present with the input

signal and amplifying a signal with noise will worsen the scenario due to the noise added by an

amplifier. Below, is the analysis of SNR of direct link in comparison with relay link based on
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LoS propagation condition [76; 77; 78].

3.2.6.1 Direct Path SNR (gNB-UE):

Referring to Fig 3.6, the received power signal at the destination (UE) using direct path is given

by [79]:

PUE−D = υD PgNB (3.20)

where:

Figure 3.6: Base station to user equipment communication.

• PUE−D is the UE received power in mW using direct path,

• PgNB is the gNB EIRP transmitted power in mW,

• υD is the channel gain (coefficient) in the direct link between gNB and UE (including the

gains of the antennas at both ends) .

For a typical terrestrial wireless channel, channel gain (coefficient) includes the following effects:

• Path loss: Power loss in the signal due to the distance it travels, which is given by Friis

formula,

• Shadowing: Attenuation/blocking of the signal by large objects like buildings.

The effective SNR i.e ratio of signal power from signal and the noise power is [76; 79]:

SNRD−UE =
υD PgNB

NUE
(3.21)

where:

• NUE is the noise power picked by destination node.

3.2.6.2 Noise Power

Noise power in a Rx is usually dominated by the thermal noise generated in the frontend Rx

amplifier [80]. Thermal noise is also generated in the lossy components of antennas and thermal-

like noise is picked up by antennas as radiations from ambient environment. In this case, the
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noise power picked by UE can be determined as follows [80]:

NUE = FUE k To BUE (mW ) (3.22)

Where:

• FUE is the UE Rx Noise Figure (NF),

• k = 1.38× 10−23 J K−1 is Boltzmann’s constant,

• To is the reference Rx temperature, 290°K [81],

• BUE is the UE Rx bandwidth in Hz.

3.2.6.3 Relay Path SNR (gNB-UAV-UE):

Figure 3.7: gNB To UE communication using a UAV relay node.

Similarly, referring to Fig 3.7, received signal powers at the destination produced by an

Amplify-and-Forward relay is given by [79; 80]:

PUE−UAV = β υ1 υ2 PgNB (3.23)

where:

• β is the amplification factor,

• PUAV−r is the UAV received power in mW,

• υ1 is the channel gain (coefficient) in the link between gNB and UAV (including the gains

of the antennas at both ends).

• υ2 is the channel gain (coefficient) in the link between UAV and UE (including the gains

of the antennas at both ends).

In this case, the noise power picked by the UAV can be determined as follows [80]:

NUAV = FUAV k To BUAV (mW ) (3.24)

Where:
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3.2 Link-Level Performance Modelling

• FUAV is the UE Rx noise figure,

• k = 1.38× 10−23 J K−1 is Boltzmann’s constant,

• BUAV is the UE Rx bandwidth in Hz,

The effective SNR is the ratio of signal power from (3.24) , and the noise power which is sum

of amplified noise power of UAV relay plus noise power picked up by UE.

SNRUE−UAV =
β υ1 υ2 PgNB

β υ2 NUAV +NUE
(3.25)

3.2.6.4 Relay Path SNR vs Direct Path SNR:

For the relay link to be better in comparison with the direct link, the following inequality should

be satisfied.

SNRUE−UAV > SNRUE (3.26)

Substituting (3.21) and (3.25) into (3.26) and referring to Fig. 3.8:

Figure 3.8: Relay Path SNR vs Direct Path SNR.

β υ1 υ2 PgNB

β υ2 NUAV +NUE
>
υD PgNB

NUE

β υ1 υ2 �
��PgNB

β υ2 NUAV +NUE
>
υD �

��PgNB

NUE

• Case 1: With the reasonable assumption of NUE = NUAV

β υ1 υ2

���NUE (β υ2 + 1)
>

υD
���NUE

β υ1 υ2

β υ2 + 1
>
υD
1
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3.2 Link-Level Performance Modelling

β υ1 υ2 > υD (β υ2 + 1)

β υ1 υ2 > υD β υ2 + υD

β υ1 υ2 − υD β υ2 > υD

β υ2

(
υ1 − υD

)
> υD (3.27)

It is clear that (3.27) can be satisfied, if υ1 > υD. Consequently, with the increase in the

amplifier gain the received signal by the UE via the relay path will have eventually more SNR

as compared to the direct path.

• Case 2: NUE 6= NUAV

β υ1 υ2

NUE β υ2 +NUAV
>

υD

NUE

NUE (β υ1 υ2) > υD (NUE β υ2 +NUAV)

NUE β υ1 υ2 − υD NUE β υ2 > υD NUAV

NUE β υ2( υ1 − υD) > υD NUAV

β υ2( υ1 − υD) > υD
NUAV

NUE
(3.28)

Substituting (3.22),and (3.24) into (3.28) :

β υ2( υ1 − υD) > υD
FUAV k To BUAV

FUE k To BUE
(3.29)

It is obvious that (3.29) can be satisfied, if υD > NUAV/NUE. Subsequently, with the in-

crease in the amplifier gain the received signal by the UE via the relay path will have eventually

more SNR as compared to the direct path.

The mathematical framework presented in this chapter will be using in the forthcoming chap-

ter for numerical analysis, evaluation and comparison of the mathematical equations with the

simulations results.
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Chapter 4

Simulations Results, and

Discussions

This chapter starts with illustrating simulation using ray-tracing simulator in different urban

environments. We present comparison and verification of the simulation results vs mathematical

equations (which were presented in chapter 3) i.e., using both analytical approach and ray-tracing

simulator results. Furthermore, using ITU recommended city model and based on the propaga-

tion conditions i.e., LoS and NLoS , we simulate statistical parameters of the received power in

particular; the median and the standard deviation in various urban environments. Additionally,

the optimum UAV-gNB height is evaluated in different urban scenarios while providing cover-

age to the UEs via an Amplify-and-Forward relay. This chapter concludes with the numerical

analysis of the SNR for the relay path in comparison with the direct path.

4.1 Ray-Tracing Simulations

In this section, we describe the setup of mmWave channel propagation simulation analysis.

Ray-tracing simulations is a method for simulating the propagation of RF signal and has a sig-

nificant scope in evaluating channel characteristics, and can be used for evaluating novel radio

technologies. Ray-tracing methods can provide different parameters like received power, path

loss, time delays, angle of arrival, angle of departure, channel impulse response and propagation

paths [82]. Received power, and path loss are important for determining system capacity, cov-

erage distances and calculating link budget for cellular system [33]. In contrast to the empirical

models or theoretical models which are fast and easy in computation but limited to range-based

and mostly valid for the environment where they were developed [83]. In our simulation, we are

using Wireless InSite ray-tracing simulator for simulation propagation [84].
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4.1 Ray-Tracing Simulations

4.1.1 Wireless InSite Ray-Tracing Simulator

Wireless InSite® is a suite of ray-tracing models and high-fidelity EM solvers for the analysis of

site-specific radio wave propagation and wireless communication systems. The RF propagation

software provides efficient and accurate predictions of EM propagation and communication chan-

nel characteristics in complex urban, indoor, rural and mixed path environments [84]. Wireless

InSite has a unique collection of features that simplifies the analysis of complex and massive

propagation problems [83; 84]. Ray-tracing has strong reliance on a number of factors such

as the topography, the wavelength, angular steps of the radiating rays, and scattering entities

(including vehicles, foliage, and buildings). Fig. 4.1 shows an example of a typical simulation

environment setup in Wireless InSite where terrestrial gNB (in green color) is communicating

with 8 UAVs (in brown color) and UAV is providing coverage to the ground UEs (in red color).

Figure 4.1: Example of Wireless InSite Ray-Tracing simulator: gNB communicating with the
UAVs and UAVs providing coverage to the ground UEs

4.1.1.1 Ray-Tracing Simulations Settings

In our ray-tracing simulation, we consider 28 GHz frequency band which is the part of the

5G frequency RF plan [45; 46]. We evaluate and perform our analysis in different simulating

scenarios (explained in the coming sections). An isotropic antenna is used for both UAV and

ground gNB (at a typical height of 30m) [85]. An isotropic antenna is a theoretical antenna that

radiates equally in all directions. The antenna has a gain of 0 dBi and has an efficiency of 100%.

The concept of an isotropic antenna is used as a reference antenna for the antenna gain. gNB

antenna is feed with a transmit power of +43 dBm (a typical value for lower power macro-cells

as per 3GPP) [86], UAV is acting as an Amplify-and-Forward relay with an amplification factor

(β) of 50 dB. System and landscape parameter details are stated in Table 4.1. We place 500 UEs

uniformly over a disc region of 30m radius from the UAV. Since, this simulation is conducted in

free space, so number of reflections, transmission, and diffractions are set to 0. Several simulation
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4.1 Ray-Tracing Simulations

scenarios are performed, described as below:

Table 4.1: Simulation parameters.

Parameter Value

Frequency 28 GHz

Antenna Isotropic

Channel Model Free Space

Number of Reflection 0

Number of Transmissions 0

Number of Diffractions 0

Transmit Power 43 dBm

Number of UEs 500

(a) System model (b) System architecture

(c) UEs received power vs. UAV height

Figure 4.2: Scenario:1 Variable UAV height

4.1.1.2 Scenario:1 Variable UAV-gNB Height

In this set of simulation, we deploy UAV at horizontal distance of 60m from the gNB with UAV

height varied from 10m to 100m. System model and system architecture are shown in Fig. 4.2a,

and Fig. 4.2b, respectively. We calculate the received power by UEs via an Amplify-and-Forward

relay (UAV) and results are depicted in Fig. 4.2. We observe that as the UAV height increases,

the received power by the UEs decreases and most number of UEs are receiving good coverage

when the UAV height is at 30m (which is the same height of the gNB). Likewise, we notice that
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4.2 Models Comparison and Verification

edge users coverage is optimum at this point. Additionally, we observe that with the increase in

the UAV height, the level of the received power by the UEs decreases.

(a) System architecture (b) UEs received power vs. UAV to gNB distance

Figure 4.3: Scenario:2 Variable UAV horizontal distance

4.1.1.3 Scenario:2 Variable UAV-gNB Horizontal Distance

In this set of simulation, we deploy UAV at a fixed height of 30m (same height as the gNB) and

move UAV in a horizontal direction (away) from the gNB, depicted in Fig. 4.3a. We calculate the

received power by the UEs via the Amplify-and-Forward relay (UAV) and results are depicted

in Fig. 4.3b. We observe that as the distance between the UAV and gNB increases, the received

power the by UEs decreases. Hence, in this case, the nearest point with the gNB will be the

optimum point (if applicable).

4.1.1.4 Scenario:3 Variable UAV-gNB Height and Horizontal Distance

In this set of simulation, we preform the analysis by varying both the UAV elevation and the

UAV horizontal distance. We deploy UAV at a horizontal distance of 20m, 40m and 60m from

the gNB, respectively. For each horizontal distance, we elevate the UAV from 10m to 100m,

as depicted in Fig. 4.4. We calculate the received power by UEs via the Amplify-and-Forward

relay (UAV) and results are shown in Fig. 4.4. We observe that as the UAV height increases,

the received power by the UEs decreases and most number of UEs are receiving good coverage

when the UAV height is at 30m (which is the same height of the gNB). Likewise, we notice that

edge users coverage is optimum at this point.

4.2 Models Comparison and Verification

In this section, we present comparison and verification of the simulation results vs mathemati-

cal equations (which were presented in chapter 3). Mathematical propagation models simplify

the calculations and speed up radio coverage estimations. Similarly, deterministic ray-tracing

models are shown to be most accurate if the relevant parameters and description (environment
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4.2 Models Comparison and Verification

(a) Simulation Scenario:1 (b) d2 = 20m

(c) Simulation Scenario:2 (d) d2 = 40m

(e) Simulation Scenario:3 (f) d2 = 60m

Figure 4.4: Scenario 3: UAV vertical and horizontal movement.

details, building databases etc.) are properly feed to it; though high computation time and

operation complexity has hindered its widespread applications. For this purpose, we consider

the scenario, depicted in Fig.4.5a, where terrestrial gNB is communicating with UAV and UAV

is providing coverage to the ground UEs. We use 28 GHz frequency band for both links (Access

and Backhaul). Furthermore, an isotropic antenna is deployed both at gNB and UAV and we

feed gNB with a transmit power of 43 dBm. We deploy UAV at horizontal distance of 60m from

the gNB, and UAV was elevated from 10m to 100m. We calculate received power by UEs using

two methods:

• Friis Transmission Equation (Eq. 3.8), and

• Wireless InSite Ray-Tracing Simulator(Free Space).

We illustrate results in Fig. 4.5b, Fig. 4.5c, and it is visible that received power by the UEs
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4.3 Direct Path Vs Relay Path Evaluation

via Friis Transmission Equation, and Wireless In Site simulations is following exactly the same

trend trend. Moreover, in Fig. 4.5d, we depict the comparison of both the Friis Transmission

Equation and Wireless In Site simulations results.

(a) System model

(b) Wireless InSite simulation (c) Friis Transmission Equation via Matlab

(d) Comparison of Friis Transmission Equation and
simulation results

Figure 4.5: Model verification and comparison.

4.3 Direct Path Vs Relay Path Evaluation

As highlighted earlier, UAV utilization as an Amplify-and-Forward relay is beneficial in providing

coverage to the shadowed zones and enhancing capacity as well. In this section, we evaluate the

performance of the direct path (between the gNB and UE) and the relay path (between the gNB

and UE via UAV) with a variable amplification factor (β) by considering the scenario depicted

in Fig.4.6a, where a terrestrial gNB is communicating with the UAV and UAV is providing

coverage to the ground UE. We use 28 GHz frequency band for both the links (Access and
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4.4 Evaluation of LoS and NLoS Scenarios

Backhaul). Furthermore, an isotropic antenna is used for both at gNB (at a typical height of

30m) and the ground UE (at a height of 1.5m) [85]. For the UAV, parabolic antenna is deployed

with a gain of 23 dBi at the receiving end. The UE is positioned at a distance of 50m from the

UAV and UAV is deployed at a distance of 40m from the gNB. Terrestrial BS is feed with a

transmit power of +43 dBm. For the sake of simplicity, we only considered losses of free space

path losses. We calculate the UE received power via direct and relay paths using (3.12) by

varying the amplification factor (β) from 20 dB to 80 dB, and results are depicted in Fig. 4.6b.

From the results, it is obvious that a suitable amplification factor is required in UAV for achieving

better signal strength in the relay path with comparison to the direct path.

(a) Simulation Scenario (b) Amplification factor (β) vs. received power

Figure 4.6: Received power of direct path vs. relay path

4.4 Evaluation of LoS and NLoS Scenarios

In wireless communication networks, distinguishing between LoS and NLoS link status is of

high importance. LoS communication links can potentially leads to significant performance im-

provement as compare to NLoS links, especially in the emerging mmWave communications [21].

Statistical parameters varies accordingly and earlier characterization of LoS and NLoS links can

facilitate in accurate channel modelling and will ultimately lead to more reliable channel assess-

ments, especially in the UAV-relay networks. In chapter 3, LoS probability is plotted for different

urban environments in Fig. 3.5 based on (3.15), (which are derived in chapter 3). In this section,

we calculate the mean received power by UEs in different urban environments, while segregating

LoS and NLoS modes. We build the system model via Matlab programming language, where

we uniformly distribute UEs at an equal distance of 2m within a disc region of radius 50m with

a height of 1.5m. A terrestrial gNB is deployed at a height of 30m with a horizontal distance of

40m from the UAV. We vary the UAV height from 10m to 100m by considering different urban

environments based on ITU-R recommendation city model. Since, there are two links: (i) gNB to

UAV, and (ii) UAV to UE; gNB to UAV link is assumed LoS and for UAV to UE link, we utilize

probabilities based on (3.15). For obtaining the LoS condition, we realize a Bernoulli random
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4.4 Evaluation of LoS and NLoS Scenarios

variable for each UE with a success probability of P(LoS)UAV−UE. The Bernoulli Distribution is

a discrete distribution having two possible outcomes: either success or failure, as explained by

the below function:

rand(length(P(LoS)UAV−UE), 1) < P(LoS)UAV−UE

where:

• P(LoS)UAV−UE is the LoS probability for UE, referring to (3.15),

• The rand function generates arrays of random numbers whose elements are uniformly

distributed in the interval ((length(P(LoS)UAV−UE),1).

gNB link is considered LoS, and for UAV to UE LoS link, probability for different environ-

ments is calculated for each UE based on its elevation angle, as below [5; 33]:

d1 =
hUE

tan(θ)

where:

• θ is the UE elevation angle with UAV,

• d1 is the horizontal distance between UE and UAV.

4.4.1 Suburban Environment

We started our analysis with suburban environment which has the following parameters [5],

depicted in Fig. 4.7:

• Ratio of built-up land area to the total land area, A: 0.1,

• Mean number of building per unit area, B1: 750,

• Buildings ′ heights distribution, C: 8.

We calculate the mean received power of the UEs and plot it in Fig. 4.7. In suburban environment

building concentration is less which results in increase in probability of LoS rays concentration.

We record that the optimal UAV height is in the same range as the gNB height. We also highlight

the UEs which are getting LoS coverage (in red colour) and the UEs, which are getting NLoS

coverage (in blue colour) in Fig. 4.7.

4.4.2 Urban Environment

Subsequently, we consider an urban environment which has the following parameters [5], depicted

in Fig. 4.8:
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(a) System model (b) Suburban environment(A: 0.1, B1: 750, C: 8)

(c) Mean received power for suburban environment (d) UEs segregation into LoS and NLoS modes

Figure 4.7: Suburban environment.

(a) System model (b) Urban environment(A: 0.3, B1: 500, C: 15)

(c) Mean received power for urban environment (d) UEs segregation into LoS and NLoS modes

Figure 4.8: Urban Environment.

• Ratio of built-up land area to the total land area, A: 0.3,

• Mean number of building per unit area, B1: 500,
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4.4 Evaluation of LoS and NLoS Scenarios

• Buildings ′ heights distribution, C: 15.

The mean received power of the UEs is calculated and plotted in Fig. 4.8. From the charts, it

is visible that the optimal UAV height is in the same range as the gNB height. Similarly, the

UEs which are getting LoS coverage are highlighted in red colour and the UEs which are getting

NLoS coverage are shown in blue colour in Fig. 4.8.

4.4.3 Dense Urban Environment

(a) System model (b) Dense urban environment(A: 0.5, B1: 300, C:
20)

(c) Mean received power for dense urban environ-
ment

(d) UEs Segregation into LoS and NLoS modes

Figure 4.9: Dense urban environment.

Afterwards, the same analysis is performed for the dense urban environment which has the

following parameters [5], depicted in Fig. 4.9:

• Ratio of built-up land area to the total land area, A: 0.5,

• Mean number of building per unit area, B1: 300,

• Buildings ′ heights distribution, C: 20,

We calculate the mean received power of the UEs and plot it in Fig. 4.9. We notice that the

optimal UAV height in the dense urban environment is the same range as the gNB height. We

also depict the UEs which are getting LoS coverage (in red colour) and the UEs, which are

getting NLoS coverage (in blue colour) in Fig. 4.9.
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4.4 Evaluation of LoS and NLoS Scenarios

4.4.4 High-Rise Urban Environment

(a) System model (b) High-rise urban environment(A: 0.5, B1: 300,
C: 50)

(c) Mean received power for high-rise urban enviro-
ment

(d) UEs Segregation into LoS and NLoS modes

Figure 4.10: Urban environments

Finally, we perform the analysis and investigation for the high-rise urban environment which

has the following parameters [5], depicted in Fig. 4.10:

• Ratio of built-up land area to the total land area, A: 0.5,

• Mean number of building per unit area, B1: 300,

• Buildings ′ heights distribution, C: 50,

The mean received power of the UEs is calculated and plotted in Fig. 4.10. In high rise urban

environments concatenation of building is more so UAV has to be elevated more to get the

optimal position. Similarly, we highlight the UEs which are getting LoS coverage (in red colour)

and the UEs, which are getting NLoS coverage (in blue colour) in Fig. 4.10. It is obvious,

that the lesser number of UEs are in the LoS coverage as compare to the urban and suburban

environments.

The LoS probability corresponds to the probability that the signal from transmitter to re-

ceiver will reach along an unobstructed propagation path i.e. zero reflection or scattering which

indicates the absence of obstacles in the communicating path. However, minimum UAV height

is more to prone to be obstructed which should be considered in the channel assessments and

network deployments in different urban environments.
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In contrary to the lower frequencies, the key challenge in mmWave band is the high increase

in the path loss with the growing distance between Tx and Rx, which is a trade-off between

placing UAV at higher altitude and providing quality LoS links while maintaining minimal path

loss [3]. Since, UAV will be elevated more to get the optimum coverage in high rise urban

environment which also replicate that coverage radius for suburban area will be greater than

high rise urban environment.

4.5 SNR Analysis: Direct Path Vs Relay Path: LoS Prop-

agation Condition

In this section, we present the numerical analysis of the SNR for the relay path in comparison

with the direct path. We deploy a UAV at a horizontal distance of 50m from the gNB and

position the UE at a distance of 100m and 60m from gNB and UAV, respectively as depicted in

Fig. 4.11. Terrestrial gNB is feed with a transmit power of +43 dBm [86]. An isotropic antenna

is used for both the gNB (at a typical height of 30m) and the ground UE (at a height of 1.5m)

[85]. An isotropic antenna is a theoretical antenna that radiates equally in all directions and

has a gain of 0 dBi with an efficiency of 100%. For the UAV, we deploy parabolic antenna with

a gain of 23 dBi at the receiving end. For the sake of simplicity, we only considered the losses

of free space path losses. The noise power of the UAV and UE receivers are considered as -106

dBm and -104 dBm, respectively [87]. We calculate and plot the SNR of the direct and the relay

paths against varying amplification factor (β), illustrated in Fig. 4.11. The SNR of direct path

is constant, however, at the point of intersection the SNR of the relay path is better than direct

path. Therefore, in this scenario, as the amplifier gain increases, the received power via relay

will have eventually more SNR as compare to direct path.

(a) Simulation scenario (b) Amplification factor vs. received power

Figure 4.11: Results of SNR of direct path vs. relay paths
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Chapter 5

Conclusions and Future Work

The utilization of mmWave band has a huge potential in the next generation wireless networks

because of vast available bandwidth and the pencil beam high gain antenna arrays. However,

its sensitivity to blockage is a restraining factor, which is causing considerable signal strength

variability between LoS and NLoS conditions. The architecture presented in this study provides

a promising solution to the above problems through UAV (allowing for aerial-to-ground LoS

link, and a controllable movement in 3D space). The goal of this study was the evaluation

of the performance of next generation UAV networks using mmWave in Access and Backhaul

links. In this study, the mathematical framework and ray-tracing simulation presents in-depth

details and multi-path propagation, permitting assessment of how the environment and the

placement of communication nodes impact system performance. The optimum UAV-gNB height

is evaluated in different urban scenarios while providing coverage to the UEs via an Amplify-

and-Forward relay which is very beneficial for planning and deployment of UAV-gNB assisted

network especially in the upcoming smart cities.

5.1 Summary of RQ1 Outcomes

The main observations and outcomes of RQ1 can be summarized as following:

(refer to Chapter 3 for details)

• We derived a mathematical framework, having equations for calculating the UE received

power:

1. For direct path (gNB-UE) using Friis Transmission Equation,

2. For relay path (gNB-UAV-UE) using Friis Transmission Equation,

3. For direct path ((gNB-UE) using Log-Distance path loss model (shadowing),

4. For relay path (gNB-UAV-UE) using Log-Distance path loss model (shadowing),

• We utilized the probability for LoS and NLoS paths in different urban environments for

the proposed system architecture using ITU recommended city model,
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5.2 Summary of RQ2 outcomes

• We performed the SNR analysis of the relay path in comparison with the direct path and

highlighted the related constraints,

5.2 Summary of RQ2 outcomes

The main observations and outcomes of RQ2 can be summarised as following:

• We compared and verified the simulation results against the presented mathematical frame-

work to validate both the model and the simulations results,

• We performed ray-tracing simulation in different scenarios to evaluate the performance of

an Amplify-and-Forward UAV relay in free space and different urban environments,

• We explored, evaluated and analyzed different parameters i.e., UAV-gNB location, and

amplification factor to maximise the performance of an Amplify-and-Forward UAV relay

for providing enhanced coverage area. Evaluation of UAV optimum height was conducted

in different urban environments,

• Furthermore, the need of suitable amplification factor was highlighted (in the UAV-gNB)

for having better signal strength in the relay path with comparison to the direct path,

• At the end, we performed numerical analysis of the SNR for the relay path in comparison

with the direct path.

5.3 Final Remarks and Future Directions

In this thesis, we conclude that ray-tracing simulator facilitates in planning of coverage and

understanding key propagation parameters. We derive a mathematical framework with the goal

to investigate and evaluate the use of mmWave in Access and Back-haul communication links

simultaneously for an Amplify-and-Forward relay deployed on UAVs. For the future work, we

plan to use machine learning algorithms for optimizing the deployment of UAV-gNB in 3D space,

identifying propagation environment features such as mountains, ridges, rural areas, cities and

determining appropriate level of details to the respective environmental model. Additionally,

in cellular communication industry perspective, using mmWave for cellular coverage is a a key

concern. We plan to extend our study using MIMO antennas in the UAV-gNB. Large antenna

arrays can permit for compensation of severe propagation conditions at high frequency [88; 89].
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