17,728 research outputs found

    Adaptive Reliable Routing Protocol for Wireless Sensor Networks

    Get PDF
    International audienceMany Wireless Sensor Networks (WSN) applications success is contingent upon the reliable delivery of high-priority events from many scattered sensors to one or more sink nodes. In particular, WSN has to be self-adaptive and resilient to errors by providing efficient mechanisms for information distribution especially in the multi-hop scenario. To meet the stringent requirement of reliably transmitting data, we propose a lightweight and energy-efficient joint mechanism for packet loss recovery and route quality awareness in WSNs. In this protocol, we use the overhearing feature characterizing the wireless channels as an implicit acknowledgment (ACK) mechanism. In addition, the protocol allows for an adaptive selection of the routing path, based on a collective cooperation within neighborhood

    A Power Estimation Method for Energy Efficient Wireless Sensor Network

    Get PDF
    Wireless sensor networks (WSN) are composed of large number of sensor node with restricted energy. The energy is one of the most important terms in wireless sensor networks problem. Sensor node of WSN consists of processor unit, memory unit and power supply. Wireless sensor node is battery operated, therefore the biggest challenge in field of wireless sensor is the lifetimes of WSN node which can be improve by achieving communication with low power consumption. So in this proposed work, a path metric that accurately captures the expected number of link layer transmission required for reliable end to end packet delivery with minimum number of retransmission are considered; we analytically computed estimated cost with direct data transmission within the node and with shortest path between those nodes. Power is analyzed in terms of minimum cost which is the function of distance, number of packets used for transmission along with numbers of permissible hops. Comparative results are shown between time v/s delay, time v/s direct estimated cost and estimation with shortest minimum retransmission path, with variable data packets rate and number of hops. So, with the proper selection of data packet rate and number of hops for end to end transmission considerable reduction in power consumption can be obtained

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network
    • …
    corecore