10 research outputs found

    Distributed Performance Measurement and Usability Assessment of the Tor Anonymization Network

    Get PDF
    While the Internet increasingly permeates everyday life of individuals around the world, it becomes crucial to prevent unauthorized collection and abuse of personalized information. Internet anonymization software such as Tor is an important instrument to protect online privacy. However, due to the performance overhead caused by Tor, many Internet users refrain from using it. This causes a negative impact on the overall privacy provided by Tor, since it depends on the size of the user community and availability of shared resources. Detailed measurements about the performance of Tor are crucial for solving this issue. This paper presents comparative experiments on Tor latency and throughput for surfing to 500 popular websites from several locations around the world during the period of 28 days. Furthermore, we compare these measurements to critical latency thresholds gathered from web usability research, including our own user studies. Our results indicate that without massive future optimizations of Tor performance, it is unlikely that a larger part of Internet users would adopt it for everyday usage. This leads to fewer resources available to the Tor community than theoretically possible, and increases the exposure of privacy-concerned individuals. Furthermore, this could lead to an adoption barrier of similar privacy-enhancing technologies for a Future Internet. View Full-Tex

    Enhancing Tor performance for bandwidth-intensive applications

    Full text link
    When it was first introduced a decade ago, Tor, the anonymous onion routing protocol, aimed at providing anonymity for latency-sensitive applications, such as web-browsing, as opposed to bandwidth-intensive applications, such as on-demand or live video streaming. This emphasis on latency-sensitive applications is evident from proposed Tor circuit-scheduling techniques [23], [10] that throttle bandwidth-intensive applications in favor of bursty, latency-sensitive applications. In this paper, we deviate from this traditional view by identifying key attributes and design decisions that negatively impact Tor’s performance in general and its ability to cater to bandwidth-intensive applications in particular, and by proposing new capabilities that aim to enhance Tor’s performance as it relates to anonymizing bandwidth-intensive traffic. We present results from in-vivo measurement studies that shed light on Tor’s approach to manage load across relays, which manifests itself in the way source-based routing at the end-systems (clients) is handled. We present an analytical model that captures the key attributes of the feedback control inherent in Tor’s approach to load management – namely, probing and circuit selection. We show that changing some of these key attributes yields measurable improvement in terms of overall network utilization as well as better load balancing of relays, resulting in better predictability of individual circuit performance. To boost the performance of bandwidth-intensive circuits, we propose the use of on-demand relays (angels) to not only increase the capacity in the Tor network, but also to implement special bandwidth-boosting functionality using multi-path routing. Our conclusions are backed up with results from simulation experiments.National Science Foundation (0735974, 0820138, 0963974, 1012798), Google (2011 Faculty Research

    ATTACKING ANONYMOUS COMMUNICATION NETWORKS THROUGH PORT REDIRECTION

    Get PDF

    Optimizing on-demand resource deployment for peer-assisted content delivery (PhD thesis)

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for service in a peer-to-peer (P2P) fashion. Such peer-assisted service paradigms promise significant infrastructure cost reduction, but suffer from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to the clients. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to optimally utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the uplink capacity of clients. We target three applications that require the delivery of fresh as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time -- the time it takes to deliver the content to all clients in a group. The second application is live streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for bandwidth-intensive applications. For each of the above applications, we develop mathematical models that optimally allocate the already available resources. They also optimally allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate those techniques through simulation and/or implementation. (Major Advisor: Azer Bestavros

    Optimizing on-demand resource deployment for peer-assisted content delivery

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for services in a pee-to-peer (P2P) fashion. Such peer-assisted service paradigm promises significant infrastructure cost reduction, but suffers from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to clients especially for real-time applications where content can not be cached. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to efficiently utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the upstream capacity of clients. We target three applications that require the delivery of real-time as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time - the time it takes to deliver the content to all clients in a group. The second application is live video streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for clients running bandwidth-intensive applications. For each of the above applications, we develop analytical models that efficiently allocate the already available resources. They also efficiently allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate these techniques through simulation and/or implementation

    Multipath Routing on Anonymous Communication Systems: Enhancing Privacy and Performance

    Get PDF
    We live in an era where mass surveillance and online tracking against civilians and organizations have reached alarming levels. This has resulted in more and more users relying on anonymous communications tools for their daily online activities. Nowadays, Tor is the most popular and widely deployed anonymization network, serving millions of daily users in the entire world. Tor promises to hide the identity of users (i.e., IP addresses) and prevents that external agents disclose relationships between the communicating parties. However, the benefit of privacy protection comes at the cost of severe performance loss. This performance loss degrades the user experience to such an extent that many users do not use anonymization networks and forgo the privacy protection offered. On the other hand, the popularity of Tor has captured the attention of attackers wishing to deanonymize their users. As a response, this dissertation presents a set of multipath routing techniques, both at transport and circuit level, to improve the privacy and performance offered to Tor users. To this end, we first present a comprehensive taxonomy to identify the implications of integrating multipath on each design aspect of Tor. Then, we present a novel transport design to address the existing performance unfairness of the Tor traffic.In Tor, traffic from multiple users is multiplexed in a single TCP connection between two relays. While this has positive effects on privacy, it negatively influences performance and is characterized by unfairness as TCP congestion control gives all the multiplexed Tor traffic as little of the available bandwidth as it gives to every single TCP connection that competes for the same resource. To counter this, we propose to use multipath TCP (MPTCP) to allow for better resource utilization, which, in turn, increases throughput of the Tor traffic to a fairer extend. Our evaluation in real-world settings shows that using out-of-the-box MPTCP leads to 15% performance gain. We analyze the privacy implications of MPTCP in Tor settings and discuss potential threats and mitigation strategies. Regarding privacy, in Tor, a malicious entry node can mount website fingerprinting (WFP) attacks to disclose the identities of Tor users by only observing patterns of data flows.In response to this, we propose splitting traffic over multiple entry nodes to limit the observable patterns that an adversary has access to. We demonstrate that our sophisticated splitting strategy reduces the accuracy from more than 98% to less than 16% for all state-of-the-art WFP attacks without adding any artificial delays or dummy traffic. Additionally, we show that this defense, initially designed against WFP, can also be used to mitigate end-to-end correlation attacks. The contributions presented in this thesis are orthogonal to each other and their synergy comprises a boosted system in terms of both privacy and performance. This results in a more attractive anonymization network for new and existing users, which, in turn, increases the security of all users as a result of enlarging the anonymity set
    corecore