21,987 research outputs found

    Active vision for dexterous grasping of novel objects

    Get PDF
    How should a robot direct active vision so as to ensure reliable grasping? We answer this question for the case of dexterous grasping of unfamiliar objects. By dexterous grasping we simply mean grasping by any hand with more than two fingers, such that the robot has some choice about where to place each finger. Such grasps typically fail in one of two ways, either unmodeled objects in the scene cause collisions or object reconstruction is insufficient to ensure that the grasp points provide a stable force closure. These problems can be solved more easily if active sensing is guided by the anticipated actions. Our approach has three stages. First, we take a single view and generate candidate grasps from the resulting partial object reconstruction. Second, we drive the active vision approach to maximise surface reconstruction quality around the planned contact points. During this phase, the anticipated grasp is continually refined. Third, we direct gaze to improve the safety of the planned reach to grasp trajectory. We show, on a dexterous manipulator with a camera on the wrist, that our approach (80.4% success rate) outperforms a randomised algorithm (64.3% success rate).Comment: IROS 2016. Supplementary video: https://youtu.be/uBSOO6tMzw

    Multi-View Picking: Next-best-view Reaching for Improved Grasping in Clutter

    Full text link
    Camera viewpoint selection is an important aspect of visual grasp detection, especially in clutter where many occlusions are present. Where other approaches use a static camera position or fixed data collection routines, our Multi-View Picking (MVP) controller uses an active perception approach to choose informative viewpoints based directly on a distribution of grasp pose estimates in real time, reducing uncertainty in the grasp poses caused by clutter and occlusions. In trials of grasping 20 objects from clutter, our MVP controller achieves 80% grasp success, outperforming a single-viewpoint grasp detector by 12%. We also show that our approach is both more accurate and more efficient than approaches which consider multiple fixed viewpoints.Comment: ICRA 2019 Video: https://youtu.be/Vn3vSPKlaEk Code: https://github.com/dougsm/mvp_gras

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Contingent task and motion planning under uncertainty for human–robot interactions

    Get PDF
    Manipulation planning under incomplete information is a highly challenging task for mobile manipulators. Uncertainty can be resolved by robot perception modules or using human knowledge in the execution process. Human operators can also collaborate with robots for the execution of some difficult actions or as helpers in sharing the task knowledge. In this scope, a contingent-based task and motion planning is proposed taking into account robot uncertainty and human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts of geometric reasoning processes are embedded inside the planner to cope with task constraints like detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated with different challenging scenarios in simulation and a real environment.Postprint (published version

    Hierarchical Salient Object Detection for Assisted Grasping

    Full text link
    Visual scene decomposition into semantic entities is one of the major challenges when creating a reliable object grasping system. Recently, we introduced a bottom-up hierarchical clustering approach which is able to segment objects and parts in a scene. In this paper, we introduce a transform from such a segmentation into a corresponding, hierarchical saliency function. In comprehensive experiments we demonstrate its ability to detect salient objects in a scene. Furthermore, this hierarchical saliency defines a most salient corresponding region (scale) for every point in an image. Based on this, an easy-to-use pick and place manipulation system was developed and tested exemplarily.Comment: Accepted for ICRA 201

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments
    • …
    corecore