53,629 research outputs found

    Naturally Rehearsing Passwords

    Full text link
    We introduce quantitative usability and security models to guide the design of password management schemes --- systematic strategies to help users create and remember multiple passwords. In the same way that security proofs in cryptography are based on complexity-theoretic assumptions (e.g., hardness of factoring and discrete logarithm), we quantify usability by introducing usability assumptions. In particular, password management relies on assumptions about human memory, e.g., that a user who follows a particular rehearsal schedule will successfully maintain the corresponding memory. These assumptions are informed by research in cognitive science and validated through empirical studies. Given rehearsal requirements and a user's visitation schedule for each account, we use the total number of extra rehearsals that the user would have to do to remember all of his passwords as a measure of the usability of the password scheme. Our usability model leads us to a key observation: password reuse benefits users not only by reducing the number of passwords that the user has to memorize, but more importantly by increasing the natural rehearsal rate for each password. We also present a security model which accounts for the complexity of password management with multiple accounts and associated threats, including online, offline, and plaintext password leak attacks. Observing that current password management schemes are either insecure or unusable, we present Shared Cues--- a new scheme in which the underlying secret is strategically shared across accounts to ensure that most rehearsal requirements are satisfied naturally while simultaneously providing strong security. The construction uses the Chinese Remainder Theorem to achieve these competing goals

    Usability of Humanly Computable Passwords

    Full text link
    Reusing passwords across multiple websites is a common practice that compromises security. Recently, Blum and Vempala have proposed password strategies to help people calculate, in their heads, passwords for different sites without dependence on third-party tools or external devices. Thus far, the security and efficiency of these "mental algorithms" has been analyzed only theoretically. But are such methods usable? We present the first usability study of humanly computable password strategies, involving a learning phase (to learn a password strategy), then a rehearsal phase (to login to a few websites), and multiple follow-up tests. In our user study, with training, participants were able to calculate a deterministic eight-character password for an arbitrary new website in under 20 seconds

    Experimental Case Studies for Investigating E-Banking Phishing Techniques and Attack Strategies

    Get PDF
    Phishing is a form of electronic identity theft in which a combination of social engineering and web site spoofing techniques are used to trick a user into revealing confidential information with economic value. The problem of social engineering attack is that there is no single solution to eliminate it completely, since it deals largely with the human factor. This is why implementing empirical experiments is very crucial in order to study and to analyze all malicious and deceiving phishing website attack techniques and strategies. In this paper, three different kinds of phishing experiment case studies have been conducted to shed some light into social engineering attacks, such as phone phishing and phishing website attacks for designing effective countermeasures and analyzing the efficiency of performing security awareness about phishing threats. Results and reactions to our experiments show the importance of conducting phishing training awareness for all users and doubling our efforts in developing phishing prevention techniques. Results also suggest that traditional standard security phishing factor indicators are not always effective for detecting phishing websites, and alternative intelligent phishing detection approaches are needed

    Securing library information system: Vulnerabilities and threats

    Get PDF
    Threats and vulnerabilities in computers and networks are common nowadays since computers are widely used by the public. The risks of computer threats and vulnerabilities are high since most computers are connected to the internet. Library Information Systems is also vulnerable to attack since it is a public access institution. Majority of users are naive when it comes to computer and network securities. Some breaches in Library Information System are intentional and some are unintentional. Risks analysis should be done to find the threats and risks in designing the Library Information System. Threats are made possible due to lack of proper procedures, software flaws and policies. The administrators should anticipate all the possible attacks and their mitigation techniques. In this paper, we will try to address various issues arise from this vulnerabilities and threats. We will also describe how we can reduce and overcome this vulnerabilities and threats

    Sci-Hub unmasked: Piracy, information policy, and your library

    Get PDF
    • …
    corecore