6 research outputs found

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Design and validation of a system for controlling a robot for 3D ultrasound scanning of the lower limbs

    Get PDF
    Peripheral arterial disease (PAD) is a common circulatory problem featured by arterial narrowing or stenosis, usually in the lower limbs (i.e. legs). Without sufficient blood supply, in the case of PAD, the patient may suffer from intermittent claudication, or even require an amputation. Due to the PAD’s high prevalence yet low public awareness in the early stages, its diagnosis becomes very important. Among the most common medical imaging technologies in PAD diagnosis, the ultrasound probe has the advantages of lower cost and non-radiation. Traditional ultrasound scanning is conducted by sonographers and it causes musculoskeletal disorders in the operators. In addition, the data obtained from the manual operation are unable for the three-dimensional reconstruction of the artery needed for further study. Medical ultrasound robots release sonographers from routine lifting strain and provide accurate data for three-dimensional reconstruction. However, most existing medical ultrasound robots are designed for other purposes, and are unsuited to PAD diagnosis in the lower limbs. In this study, we present a novel medical ultrasound robot designed for PAD diagnosis in the lower limbs. The robot platform and the system setup are illustrated. Its forward and inverse kinematic models are solved by decomposing a complex parallel robot into several simple assemblies. Singularity issues and workspace are also discussed. Robots need to meet certain accuracy requirements to perform dedicated tasks. Our robot is calibrated by direct measurement with a laser tracker. The calibration method used is easy to implement without requiring knowledge of advanced calibration or heavy computation. The calibration result shows that, as an early prototype, the robot has noticeable errors in manufacturing and assembling. The implemented calibration method greatly improves the robot's accuracy. A force control design is essential when the robot needs to interact with an object/environment. Variable admittance controllers are implemented to adapt the variable stiffness encountered in human-robot interaction. An intuitive implementation of the passivity theory is proposed to ensure that the admittance model possesses a passivity property. Finally, experiments involving human interaction demonstrate the effectiveness of the proposed control design

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore