204 research outputs found

    Nonlinear Control of Underactuated Systems using a 3-D Virtual Laboratory

    Full text link
    Control of underactuated mechanical systems is currently one of the most active fields in research due to the diverse applications of these systems in real-life. The aim of this article is focused on the application of nonlinear control techniques for underactuated systems and the virtual simulation of their dynamics behavior. The main contribution of this research is related with the applications of balancing controllers designed with linearization techniques, and including swing-up control using energy based methods for two of the most typical underactuated systems used for testing nonlinear control: The cart-pole and the rotating pendulum systems. The second contribution relies in the development of a virtual laboratory for testing this algorithms and also with a great feature included; the platform is not tied to specific embedded controllers, the users can proof their own control techniques, adding control equations using a graphical user interface developed for that purpose. Finally, the analytical results will be validated via numerical solutions implemented on Matlab-Simulink toolbox, comparing the controllers and the simulation capabilities through several test cases

    Forward and backward motion control of wheelchair on two wheels

    Get PDF
    The challenge in designing wheelchair on two wheels involves the design and implementation of suitable control strategies for a two wheeled wheelchair to perform comparably similar to a normal four wheeled wheelchair. It is important to note that a wheelchair on two wheels is expected not to take much space during mobility as compared to when it is on four wheels. Moreover, disabled people are encouraged and expected to perform most activities that others can do and hence lead an independent life. Thus, wheelchairs on two wheels are needed for disabled persons to perform some of the essential tasks in their living and work environments. In this research a model of the standard wheelchair is developed as a test and verification platform using Visual Nastran software. Novel fuzzy logic control strategies are designed for lifting up the chair transforming a four-wheeled wheelchair to a two-wheeled wheelchair) and maintaining stability and balance while on two wheels. Furthermore, position control for forward and backward mobility of the wheelchair on two wheels is developed using fuzzy logic control. Simulation results of the proposed control strategy are presented and discussed

    On Observer-Based Control of Nonlinear Systems

    Get PDF
    Filtering and reconstruction of signals play a fundamental role in modern signal processing, telecommunications, and control theory and are used in numerous applications. The feedback principle is an important concept in control theory. Many different control strategies are based on the assumption that all internal states of the control object are available for feedback. In most cases, however, only a few of the states or some functions of the states can be measured. This circumstance raises the need for techniques, which makes it possible not only to estimate states, but also to derive control laws that guarantee stability when using the estimated states instead of the true ones. For linear systems, the separation principle assures stability for the use of converging state estimates in a stabilizing state feedback control law. In general, however, the combination of separately designed state observers and state feedback controllers does not preserve performance, robustness, or even stability of each of the separate designs. In this thesis, the problems of observer design and observer-based control for nonlinear systems are addressed. The deterministic continuous-time systems have been in focus. Stability analysis related to the Positive Real Lemma with relevance for output feedback control is presented. Separation results for a class of nonholonomic nonlinear systems, where the combination of independently designed observers and state-feedback controllers assures stability in the output tracking problem are shown. In addition, a generalization to the observer-backstepping method where the controller is designed with respect to estimated states, taking into account the effects of the estimation errors, is presented. Velocity observers with application to ship dynamics and mechanical manipulators are also presented

    Synthesis of LQR Controller Based on BAT Algorithm for Furuta Pendulum Stabilization

    Get PDF
    In this study, a controller design method based on the LQR method and BAT algorithm is presented for the Furuta pendulum stabilization system. Determine the LQR controller, it is often based on the designer's experience or using trial and error to find the Q, R matrices. The BAT search algorithm is based on the characteristics of the bat population in the wild. However, there are advantages to finding multivariate objective functions. The BAT algorithm has an improvement for the LQR controller to optimize the linear square function with fast response time, low energy consumption, overshoot, and a small number of oscillations. Swarm optimization algorithms have advantages in finding global extrema of multivariate functions. Therefore, with a large number of elements of the Q and R matrices, they can also be quickly found and these matrices still satisfy the Riccati equation. The controller with optimal parameters is verified through simulation results with different scenarios. The performance of the proposed controller is compared with a conventional LQR controller and implemented on a real system

    Modelling and control of a wheelchair on two wheels

    Get PDF
    Wheelchairs on two wheels are needed for disabled persons to perform some of the essential tasks in their living and work environments. In fact it offers great advantages and efficiency for the user. Besides allowing a disabled to lead independent life, it is expected not to take much space during mobility as compared to when it is on four wheels and thus a wheelchair on two wheels has associated design and development challenges. These include modelling and controller design for the system to perform comparably similar to normal four-wheeled wheelchair. In this paper physical model of a wheelchair on two wheels that mimics double inverted pendulum is designed and a novel fuzzy logic control mechanism is developed and tested with control of the two-wheeled wheelchair
    corecore