88 research outputs found

    Passivity-Based Stability Analysis and Damping Injection for Multiparalleled VSCs with LCL Filters

    Get PDF

    Passivity-Based Analysis and Design of Linear Voltage Controllers for Voltage-Source Converters

    Get PDF

    Criterion for the electrical resonance stability of offshore wind power plants connected through HVDC links

    Get PDF
    Electrical resonances may compromise the stability of HVDC-connected Offshore Wind Power Plants (OWPPs). In particular, an offshore HVDC converter can reduce the damping of an OWPP at low frequency series resonances, leading to system instability. The interaction between offshore HVDC converter control and electrical resonances of offshore grids is analyzed in this paper. An impedance-based representation of an OWPP is used to analyze the effect that offshore converters have on the resonant frequency of the offshore grid and on system stability. The positive-net-damping criterion, originally proposed for subsynchronous analysis, has been adapted to determine the stability of the HVDC-connected OWPP. The reformulated criterion enables the net-damping of the electrical series resonance to be evaluated and establishes a clear relationship between electrical resonances of the HVDC-connected OWPPs and stability. The criterion is theoretically justified, with analytical expressions for low frequency series resonances being obtained and stability conditions defined based on the total damping of the OWPP. Examples are used to show the influence that HVDC converter control parameters and the OWPP configuration have on stability. A root locus analysis and time-domain simulations in PSCAD/EMTDC are presented to verify the stability conditions

    Virtual-Flux-Based Passivation of Current Control for Grid-Connected VSCs

    Get PDF

    Passivation of Grid-Following VSCs: A Comparison Between Active Damping and Multi-Sampled PWM

    Get PDF
    This article compares different strategies used to enhance the stability properties of grid-following voltage-source converters (VSCs). Because of digital delays, VSC admittance exhibits a nonpassive zone, which introduces negative damping and may destabilize the grid-connected operation. It is shown that typically used active damping (AD) strategies only bring positive impact up to a certain frequency, while deteriorating admittance properties around and above the Nyquist frequency. Multi-sampled pulsewidth modulation (MS-PWM) greatly extends the passive admittance region, using only a single-loop current controller. Experimental admittance measurements are performed on a single-phase VSC, up to twice the switching frequency. Subsequently, different grid-connected scenarios are tested to show that MS-PWM retains stable operation, where AD methods cause instability. This article also offers analytic modeling and experimental measurements of noise propagation for compared strategies. It is shown that derivative-based AD is not highly sensitive; however, MS-PWM offers additional noise suppression

    Passivation of Current-Controlled Grid-Connected VSCs Using Passivity Indices

    Get PDF

    Contributions to impedance shaping control techniques for power electronic converters

    Get PDF
    El conformado de la impedancia o admitancia mediante control para convertidores electrónicos de potencia permite alcanzar entre otros objetivos: mejora de la robustez de los controles diseñados, amortiguación de la dinámica de la tensión en caso de cambios de carga, y optimización del filtro de red y del controlador en un solo paso (co-diseño). La conformación de la impedancia debe ir siempre acompañada de un buen seguimiento de referencias. Por tanto, la idea principal es diseñar controladores con una estructura sencilla que equilibren la consecución de los objetivos marcados en cada caso. Este diseño se realiza mediante técnicas modernas, cuya resolución (síntesis del controlador) requiere de herramientas de optimización. La principal ventaja de estas técnicas sobre las clásicas, es decir, las basadas en soluciones algebraicas, es su capacidad para tratar problemas de control complejos (plantas de alto orden y/o varios objetivos) de una forma considerablemente sistemática. El primer problema de control por conformación de la impedancia consiste en reducir el sobreimpulso de tensión ante cambios de carga y minimizar el tamaño de los componentes del filtro pasivo en los convertidores DC-DC. Posteriormente, se diseñan controladores de corriente y tensión para un inversor DC-AC trifásico que logren una estabilidad robusta del sistema para una amplia variedad de filtros. La condición de estabilidad robusta menos conservadora, siendo la impedancia de la red la principal fuente de incertidumbre, es el índice de pasividad. En el caso de los controladores de corriente, el impacto de los lazos superiores en la estabilidad basada en la impedancia también se analiza mediante un índice adicional: máximo valor singular. Cada uno de los índices se aplica a un rango de frecuencias determinado. Finalmente, estas condiciones se incluyen en el diseño en un solo paso del controlador de un convertidor back-to-back utilizado para operar generadores de inducción doblemente alimentados (aerogeneradores tipo 3) presentes en algunos parques eólicos. Esta solución evita los problemas de oscilación subsíncrona, derivados de las líneas de transmisión con condensadores de compensación en serie, a los que se enfrentan estos parques eólicos. Los resultados de simulación y experimentales demuestran la eficacia y versatilidad de la propuesta.Impedance or admittance shaping by control for power electronic converters allows to achieve among other objectives: robustness enhancement of the designed controls, damped voltage dynamics in case of load changes, and grid filter and controller optimization in a single step (co-design). Impedance shaping must always be accompanied by a correct reference tracking performance. Therefore, the main idea is to design controllers with a simple structure that balance the achievement of the objectives set in each case. This design is carried out using modern techniques, whose resolution (controller synthesis) requires optimization tools. The main advantage of these techniques over the classical ones, i.e. those based on algebraic solutions, is their ability to deal with complex control problems (high order plants and/or several objectives) in a considerably systematic way. The first impedance shaping control problem is to reduce voltage overshoot under load changes and minimize the size of passive filter components in DC-DC converters. Subsequently, current and voltage controllers for a three-phase DC-AC inverter are designed to achieve robust system stability for a wide variety of filters. The least conservative robust stability condition, with grid impedance being the main source of uncertainty, is the passivity index. In the case of current controllers, the impact of higher loops on impedance-based stability is also analyzed by an additional index: maximum singular value. Each of the indices is applied to a given frequency range. Finally, these conditions are included in the one-step design of the controller of a back-to-back converter used to operate doubly fed induction generators (type-3 wind turbines) present in some wind farms. This solution avoids the sub-synchronous oscillation problems, derived from transmission lines with series compensation capacitors, faced by these wind farms. Simulation and experimental results demonstrate the effectiveness and versatility of the proposa

    A Root-Locus Design Methodology Derived from the Impedance/Admittance Stability Formulation and Its Application for LCL Grid-Connected Converters in Wind Turbines

    Get PDF
    This paper presents a systematic methodology for the design and the tuning of the current controller in LCL grid-connected converters for wind turbine applications. The design target is formulated as a minimization of the current loop dominant time constant, which is in accordance with standard design guidelines for wind turbine controllers (fast time response and high stability margins). The proposed approach is derived from the impedance/admittance stability formulation, which, on one hand, has been proved to be suitable for the controller design when the active damping is implemented and, on the other hand, has also been proved to be very suitable for system-level studies in applications with a high penetration of renewable energy resources. The tuning methodology is as follows: first, the physical system is modeled in terms of the converter admittance and its equivalent grid impedance; then, a sensitivity transfer function is derived, from which the closed-loop eigenvalues can be calculated; finally, the set of control gains that minimize the dominant time constant are obtained by direct search optimization. A case study that models the target system in a low-power scale is provided, and experimental verification validates the theoretical analysis. More specifically, it has been found that the solution that solves the minimization of the current controller time constant (wind turbine controller target) also corresponds to a highly damped electrical response (robustness provided by the active damping)

    Passivity-Based Stability Assessment of Grid-Connected VSCs - An Overview

    Get PDF

    Small Scale Harmonic Power System Stability

    Get PDF
    corecore