836 research outputs found

    Authority-Sharing Control of Assistive Robotic Walkers

    Get PDF
    A recognized consequence of population aging is a reduced level of mobility, which undermines the life quality of several senior citizens. A promising solution is represented by assisitive robotic walkers, combining the benefits of standard walkers (improved stability and physical support) with sensing and computing ability to guarantee cognitive support. In this context, classical robot control strategies designed for fully autonomous systems (such as fully autonomous vehicles, where the user is excluded from the loop) are clearly not suitable, since the user’s residual abilities must be exploited and practiced. Conversely, to guarantee safety even in the presence of user’s cognitive deficits, the responsibility of controlling the vehicle motion cannot be entirely left to the assisted person. The authority-sharing paradigm, where the control authority, i.e., the capability of controlling the vehicle motion, is shared between the human user and the control system, is a promising solution to this problem. This research develops control strategies for assistive robotic walkers based on authority-sharing: this way, we ensure that the walker provides the user only the help he/she needs for safe navigation. For instance, if the user requires just physical support to reach the restrooms, the robot acts as a standard rollator; however, if the user’s cognitive abilities are limited (e.g., the user does not remember where the restrooms are, or he/she does not recognize obstacles on the path), the robot also drives the user towards the proper corridors, by planning and following a safe path to the restrooms. The authority is allocated on the basis of an error metric, quantifying the distance between the current vehicle heading and the desired movement direction to perform the task. If the user is safely performing the task, he/she is endowed with control authority, so that his/her residual abilities are exploited. Conversely, if the user is not capable of safely solving the task (for instance, he/is going to collide with an obstacle), the robot intervenes by partially or totally taking the control authority to help the user and ensure his/her safety (for instance, avoiding the collision). We provide detailed control design and theoretical and simulative analyses of the proposed strategies. Moreover, extensive experimental validation shows that authority-sharing is a successful approach to guide a senior citizen, providing both comfort and safety. The most promising solutions include the use of haptic systems to suggest the user a proper behavior, and the modification of the perceived physical interaction of the user with the robot to gradually share the control authority using a variable stiffness vehicle handling

    A Service Robot for Navigation Assistance and Physical Rehabilitation of Seniors

    Get PDF
    The population of the advanced countries is ageing, with the direct consequence that an increasing number of people will have to live with sensitive, cognitive and physical disabilities. People with impaired physical ability are not confident to move alone, especially in crowded environment and for long journeys, highly reducing the quality of their life. We propose a new generation of robotic walking assistants whose mechanical and electronic components are conceived to optimize the collaboration between the robot and its users. We will apply these general ideas to investigate the interaction between older adults and a robotic walker, named FriWalk, exploiting it either as a navigational or as a rehabilitation aid. For the use of the FriWalk as a navigation assistance, the system guides the user securing high levels of safety, a perfect compliance with the social rules and non-intrusive interaction between human and machine. To this purpose, we developed several guidance systems ranging from completely passive strategies to active solutions exploiting either the rear or the front motors mounted on the robot. The common strategy at the basis of all the algorithms is that the responsibility of the locomotion belongs always to the user, both to increase the mobility of elder users and to enhance their perception of control over the robot. This way the robot intervenes only whenever it is strictly necessary not to mitigate the user safety. Moreover, the robotic walker has been endowed with a tablet and graphical user interface (GUI) which provides the user with the visual indications about the path to follow. Since the FriWalk was developed to suit the needs of users with different deficits, we conducted extensive human-robot interaction (HRI) experiments with elders, complemented with direct interviews of the participants. As concerns the use of the FriWalk as a rehabilitation aid, force sensing to estimate the torques applied by the user and change the user perceived inertia can be exploited by doctors to let the user feel the device heavier or lighter. Moreover, thanks to a new generation of sensors, the device can be exploited in a clinical context to track the performance of the users' rehabilitation exercises, in order to assist nurses and doctors during the hospitalization of older adults

    NASA Strategic Roadmap Summary Report

    Get PDF
    In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Safety Awareness for Rigid and Elastic Joint Robots: An Impact Dynamics and Control Framework

    Get PDF
    This thesis aims at making robots with rigid and elastic joints aware of human collision safety. A framework is proposed that captures human injury occurrence and robot inherent safety properties in a unified manner. It allows to quantitatively compare and optimize the safety characteristics of different robot designs and is applied to stationary and mobile manipulators. On the same basis, novel motion control schemes are developed and experimentally validated

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure

    Neuromuscular Control Modeling: from Physics to Data-Driven Approaches

    Get PDF
    Il controllo neurale della postura umana è stato investigato a partire da un punto di vista fisico. Il paradigma di controllo intermittente è stato usato allo scopo di capire il peso di quest'ultimo nella generazione delle traiettorie del centro di pressione. Un primo contributo di questo lavoro rigurda quindi l'analisi del centro di pressione generato dal suddetto modello biomeccanico attraverso l'extended detrended fluctuation analysis, recentemente proposta in letteratura. Le proprietà di correlazione a lungo termine e disomogeneità sono risultate strettamente legate al guadagno derivativo del modello di controllo intermittente e anche al grado di intermittenza. Il paradigma di controllo è stato poi esteso verso un sistema biomeccanico più complesso, cioè un pendolo inverso doppio link con controllo intermittente alla caviglia. I contributi più significativi hanno riguardato la modellazione matematica del centro di pressione per una struttura multi-link e la verifica della sua plausibilità fisiologica. Si è poi preso in considerazione il caso della postura perturbata, integrando aspetti cinematici, dinamici e relativi all'attività muscolare. A tal fine, si è utilizzato sia un approccio fisico che basato su dati per l'identificazione dei modelli a struttura variabile Si sono prese in considerazione differenti condizioni di sperimentali, e in tutti i casi l'approccio utilizzato ha garantito un adeguato grado di interpretabilità riguardo il ruolo del sistema nervoso centrale nella regolazione del postura eretta in condizioni perturbate. La seconda parte della tesi ha riguardato la caratterizzazione del controllo motorio attraverso il segnale elettromiografico di superfice. Il primo contributo ha riguardato l'identifcazione dell'onset muscolare in condizioni di basso rapporto segnale rumore, sfruttando operatori energetico di tipo Teager-Kaiser al fine del precondizionamento del segnale mioelettrico. La versioe estesa di questo tipo di operatori è risultata particolarmente utile al miglioramento delle performance di numerosi algoritmi di detection. Si è poi proseguito con l'utilizzo di tali segnali al fine della classificazione dei gesti dell'arto superiore. In particoalre si è prerso in considerazione il problema della motion intention detection dei principali movimenti della spalla , utilizzando sia descrittori del segnale elettromiografico nel dominio del tempo e della frequenza. Quest'ultimo aspetto risulta essere un elemento di novità nel contesto scientifico in quanto si sono considerati il riconoscimento l'intezioni di movimento di otto gesti della spalla con particolare attenzione al ruolo dei descrittori del segnale per la classificazione. Infine, con approcci simili, si è preso in considerazione il problema del riconoscimento della scrittura manuale a partire dal dato elettromiografico. Tale aspetto risulta poco investigato sotto la prospettiva della pattern recognition mioelettrica, ma la sua valenza è data dalla crescente richiesta di interfacce uomo-macchina per compiti riabilitativi che coinvolgono una componente cognitiva significativa, Inoltre, vista la tendenza ad investigare il ruolo del polso per il prelievo del segnale elettromiografico al fine della realizzazione delle suddette interfacce, si è analizzato l'utilizzo dei segnali elettromiografici del polso rispetto a quelli dell'avambraccio al fine di predirre le cifre scritte dall'utente, noto che l'avambraccio risulta essere la zona di prelievo più comunemente utilizzata.The biomechanics and the neural control of the human stance was investigated starting from a physical point of view. In particular the intermittent motor control paradigm was investigated with the aim of understanding how such paradigm mirrors in the center of pressure (COP) trajectories. A first contribution given in this work of thesis regards the analysis of COP generated from intermittent controlled inverted pendulum through the extended detrended fluctuation analysis, which was recently introduced in the literature. It has been found that the long-term correlation and inohmogeniety properties of the COP time series strictly depend on the derivative gain term of the intermittent controller and on the degree of intermittency of the control action. Thus, , another contribution provided in this work of thesis regards the use of a more complex biomechanical model of the stance, e.g. a double-link inverted pendulum intermittently controlled at the ankle. In terms of novelty, it deserves to be pointed out the results regarding the mechanical modeling of the COP for a multi-link structure, and the assessment of its physiological plausibility. . On the other hand, when the perturbed posture motor task was taken into account, there was the need to enlarge the perspective, integrating kinematic, dynamic and muscle activity data. The idea of employing different sources of information to develop models of the CNS represents an important element that was investigated using tools related to hybrid system identification theory. Subjects underwent to impulsive support base translations in three different conditions: considering eyes open, closed, and performing mental counting. Although such data were essentially analyzed through a data-driven approach, the identified models guaranteed physical interpretations of the role played by the CNS in the three different conditions. The second main core of this thesis regards the characterization of the motor control using the surface electromyographic (sEMG) signals. A first contribution given in this work regarded the muscle onset detection considering low SNR scenarios. In this framework, energy operators such as the Teager-Kaiser energy operator (TKEO) and its extended version (ETKEO) were investigated as signal preconditioning steps before the application of state of the art onset detection algorithms. The latter have been significantly boosted when ETKEO was used with respect to TKEO. The use of extended energy operators for the sEMG signal preprocessing constitutes a novel element in this field that can be also further investigated in future studies. From the sEMG muscle, one can also predict which movement the subject is going to perform. This aspect can be enclosed in the motion intention detection (MID) field. In this thesis a MID problem was investigated by taking into account two important aspects: as first the study was centered on the shoulder joint movements. Secondly, the MID problem was faced under a pattern recognition perspective. This allowed to verify whether methodologies encountered in the myoelectric hand gesture recognition can be transferred in the affine field of MID In contrast to what reported in the literature, where MID problems generally consider only few movements, in this work of thesis up to eight shoulder movements have been investigated. Myoelectric pattern recognition architectures were also used in the assessment of the ten hand-written digits. Despite the handwriting can be considered a hand movement that involves fine muscular control actions, it has not been consistently investigated in the field of sEMG based hand gesture recognition. Further, since the literature supports the change from forearm to wrist in order to acquire EMG data for hand gesture recognition, it was investigated whether such exchange can be performed when a challenging classification task, as the handwriting recognition has to be performed

    NASA Tech Briefs, December 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Bit Bang 7: Future of Energy

    Get PDF
    This book is the 7th in the Bit Bang series of books produced as multidisciplinary teamwork exercises by doctoral students participating in the course Bit Bang 7: Future of Energy at Aalto University during the academic year 2014–2015. The course aims at fostering teamwork and multidisciplinary collaboration, as well as providing participants with a global, futurecentric perspective on the energy sector. The growing global demand for energy and diminishing natural resources are driving the development of eco-efficient energy sources, new ways of doing business, and designing our living environment. Bit Bang 7 addresses the topic of energy sources and technologies from the perspective of their economic, environmental and social sustainability. The course elaborates on the interconnectedness of these phenomena, and links them to possible future scenarios, global megatrends and ethical considerations. Will we see disruptive changes in our energy future? Can we impact consumption patterns, ways of doing business, and our way of life? Are we creating a sustainable future for the generations to come? Working in teams, the students set out to answer questions related to the changing energy sector and to brainstorm radical scenarios of what the future could hold. This joint publication contains articles produced as teamwork assignments for the course, in which the students were encouraged to take novel and radical views on the future of energy. The Bit Bang series of courses is supported by the Multidisciplinary Institute of Digitalisation and Energy (MIDE). Previous Bit Bang publications are available from http:/mide.aalto.fi
    • …
    corecore