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Abstract

This thesis focuses on the neuromuscular control modeling from two different perspectives

which can be encountered in many engineering applications. Indeed, the characterization of

the motor control constitutes the ground for a deeper understanding of the central nervous

system (CNS), but also for the design of systems that permit to opportunely interact with the

human being in tasks ranging from clinical diagnostics to rehabilitation and human-machine

interaction.

In this framework, the biomechanics and the neural control of the human stance was

investigated starting from a physical point of view. In particular, based on the recent

findings reported in the literature, the intermittent motor control paradigm was investigated

with the aim of understanding how such paradigm mirrors in the center of pressure (COP)

trajectories. In other words, a first objective of this study is to find possible perspectives

to link model based approaches to the more classical field of posturography. Following this

line, a first contribution given in this work of thesis regards the analysis of COP generated

from intermittent controlled inverted pendulum through the extended detrended fluctuation

analysis, which was recently introduced in the literature. It has been found that the long-term

correlation and inohmogeniety properties of the COP time series strictly depend on the

derivative gain term of the intermittent controller and on the degree of intermittency of

the control action. This opened to the possibility of interpreting COP descriptors used in

posturography under a model based perspective. Thus, under this view, another contribution

provided in this work of thesis regards the use of a more complex biomechanical model of the

stance, e.g. a double-link inverted pendulum intermittently controlled at the ankle, to infer

how two populations, young and elderly healthy adults, are described by the aforementioned

model. In terms of novelty, it deserves to be pointed out the results regarding the mechanical

modeling of the COP for a multi-link structure, and the assessment of its physiological

plausibility through state of the art COP features.

Hence, rather than developing the analysis upon the more commonly employed sway
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angle time-course, focus was given to the COP, which is the most direct measure that one

can perform in posturography. On the other hand, when the perturbed posture motor

task was taken into account, there was the need to enlarge the perspective, integrating

kinematic, dynamic and muscle activity data. The idea of employing different sources

of information to develop models of the CNS represents an important element that was

investigated using tools related to hybrid system identification theory. This permitted to

exclude linearization hypotheses that may limit the description of the control action, nor

to implement too restrictive and cumbersome experimental setups for the data acquisition.

Indeed, subjects underwent to impulsive support base translations in three different conditions:

considering eyes open, closed, and performing mental counting. Although such data were

essentially analyzed through a data-driven approach, the identified models guaranteed physical

interpretations of the role played by the CNS in the three different conditions, without the

need of external devices that injected random external forces at the lower or upper trunk

levels.

The second main core of this thesis regards the characterization of the motor control

using the surface electromyographic (sEMG) signals. This was motivated by the fact that

modern technologies can exploit the sEMG signals not only for the analysis, but also for the

design of architectures that, based on a certain amount of information, permit for instance to

properly interact with a machine in many rehabilitation contexts. Thus, a first contribution

given in this work regarded the muscle onset detection considering low SNR scenarios. In

this framework, energy operators such as the Teager-Kaiser energy operator (TKEO) and

its extended version (ETKEO) were investigated as signal preconditioning steps before the

application of state of the art onset detection algorithms. The latter have been significantly

boosted when ETKEO was used with respect to TKEO. It deserves to be pointed out that

the use of extended energy operators for the sEMG signal preprocessing constitutes a novel

element in this field that can be also further investigated in future studies.

Despite the knowledge of muscle onset activity constitutes a valuable source of information,

modern technologies could require more structured forms of the information itself. Indeed,

from the sEMG muscle one can also predict which movement the subject is going to perform

by analyzing multiple sources of muscle activity. This aspect can be enclosed in the motion

intention detection (MID) field. In this thesis a MID problem was investigated by taking

into account two important aspects: as first the study was centered on the shoulder joint

movements, since such joint plays a key role in many rehabilitation tasks of the upper
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limb, although it was less studied from a kinesiological point of view. Secondly, the MID

problem was faced under a pattern recognition perspective. This allowed to verify whether

methodologies encountered in the myoelectric hand gesture recognition can be transferred in

the affine field of MID. In particular, it was investigated both the time and frequency domain

features since the latter have not been yet studied for solving EMG base MID problems.

Moreover, in contrast to what reported in the literature, where MID problems generally

consider only few movements, in this work of thesis up to eight shoulder movements have

been investigated.

In a similar fashion, myoelectric pattern recognition architectures were also used in the

assessment of the ten hand-written digits, i.e. 0,1,. . . ,9. Indeed, despite the handwriting can

be considered a hand movement that involves fine muscular control actions, it has not been

consistently investigated in the field of sEMG based hand gesture recognition. Hence, the

study performed in this work aims to verify the possibility to recognize the written digits from

the sEMG muscle activity. Further, since the literature supports the change from forearm to

wrist in order to acquire EMG data for hand gesture recognition, it was investigated whether

such exchange can be performed when a challenging classification task, as the handwriting

recognition has to be performed. The present results highlight that only when a proper

spatial covering of the forearm and wrist muscles, in terms of EMG electrodes, is reached,

the trained pattern recognition architectures can provide satisfactory performances.

In brief, this work of thesis focuses on the possibility to study aspects of neuromuscular

control, i.e. related to balance maintenance and upper limb motion recognition and intent

detection. Hence, the thesis is organized as follows:

• Chapters one and two take into account the investigation of the CNS control modeling

in static and perturbed posture.

• Chapter three involves study of surface EMG signals in terms of onset detection and

temporal characterization of motor control in lower and upper limb motor tasks.

• Chapter four and five focus on the characterization of upper limb movements with

data-driven approaches through sEMG data, introducing more advanced aspects related

to the myoelectric pattern recognition control in MID and handwriting recognition.
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Chapter 1

Quiet posture: the mechanics of the

stance and the intermittent control

paradigm

1.1 Introduction

Balance maintenance of human upright stance constitutes a research area where different

disciplines, ranging from biomechanics to robotics and neuroscience, found applications

[1, 2, 3]. Indeed, despite each discipline carries its own perspective, all of them agree on

the importance of understanding the hidden neuromuscular control mechanisms that the

central nervous system (CNS) implements to maintain body balance. In robotics for instance,

biological inspired control policies are crucial since they can be embodied in legged robots to

efficiently maintain the stance [4, 5], whereas, in biomechanics and neuroscience, the analysis

of postural adjustment strategies is particularly useful to better understand how pathologies

affecting CNS may impact on the motor control performances [6, 7].

Although many different methodological approaches can be encountered in the literature

to study the upright balance maintenance in unperturbed conditions, two general ways

are clearly recognized. From one side, the model-based analyses make extensively use of

the single link or multi-link inverted pendulum (IP) to model the mechanics of the stance

[8, 9, 10]. Hence, the CNS acts as a controller that modulates the control torque at the

joints in order to maintain stability and reject the toppling torque. The latter is induced

by the gravity field and by the internal postural noise,wich is due to hemodynamics and

respiration [11, 12]. In this view, the stance maintenance is treated as a cybernetic problem,
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Chapter 1 Quiet posture: the mechanics of the stance and the intermittent control paradigm

where the mechanics of the body affects and coexists with the processes that CNS is engaged

to solve, i.e. sensory information fusion, motor commands generation and delivery [8, 13].

Indeed, the presence of an active control modulation injected in the feedback loop by the

CNS was demonstrated in [12, 14], where it was highlighted that muscle stiffness, due to the

basal muscle tone and tendon mechanical properties, is not sufficient per se to provide stance

regulation.

A second way commonly recognized in the literature to study human balance maintenance

makes use of data analysis methods and it is commonly referred as posturography. In such

perspective, kinematic and dynamic postural time-series such as the trajectories of center of

mass (COM) and center of pressure (COP) are commonly taken into account. In particular,

the latter is one of the most employed since the COP is easily measurable through force plates.

As a matter of fact, literature shows a wide spectrum of timeseries analysis approaches either

specifically developed for COP [2, 15], or coming from non-linear signal processing field

[7, 16, 17, 18]. Moreover, many important studies in posturography employed descriptors

coming from the two above-mentioned lines in order to characterize the COP properties of

healthy and pathological populations [19, 20, 21].

It is interesting to observe that some seminal works did not shrink from merging mechanical

model-based and data-driven analyses [22, 10, 9, 23]. Indeed, despite the two aforementioned

perspectives are different [23], the need for a unified view results of great importance

when one would obtain highly explainable models. Indeed, in [23] the aforementioned

approaches were combined through the approximate bayesian computation, in order to infer

the parameters of the intermittent controller from posturographic data. This makes more

underpinned the interpretation of the results if compared to models obtained through black

box identification procedures, where high fidelity data fitting could be counterbalanced by a

limited interpretability. This constitutes a recent example of a joined perspective manifested

above. However, one can find older works in literature where the need of a profound model

interpretation was pointed out through combination of model and data analyses. In [10] for

instance, sway diffusion analysis (SDA) proposed by Collins and De Luca [2], was applied to

simulated COP data obtained through an IP model under a continuous control paradigm.

The control gains were varied within a feasible range, and the relations between the latter

and the SDA parameters were pointed out [10]. Also in [9], the IP was used to model the

stance, but the control policy employed shows an intermittent nature [9]. Such model was

used to simulate sway data and changes in the controller parameters were related to changes
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1.1 Introduction

in the power spectral density properties of the sway signals.

It emerges from the previous paragraph, that the single link IP was particularly employed

to mimic the human upright stance mechanics, whereas behind the CNS control action,

debate regarding the actual strategy employed by the nervous system is still open. As

anticipated, the ankle stiffness model proposed by Winter cannot be sufficient to stabilize the

posture [24, 14]. For this reason, an active control torque that models the CNS role at the

ankle is injected in the IP dynamics. Such torque was in general thought as a feedback law

based on the delayed information of the sway angle ad its time derivative. Indeed, despite

different speculative studies concerning the synthesis of the neural controller through optimal

control theory can be found[25, 26], proportional (P) and derivative (D) delayed feedback

law injected continuously or intermittently seemed to produce COM and COP data that

coherently shares common properties with real data [10, 9, 8, 27, 28].

It is important to note that, as suggested by Asai and colleagues [9], and further confirmed

in [29, 23, 13], an intermittent control can be more energetically efficient than a continuous

one, since the controller can exploit the saddle type equilibrium point of the IP mechanics.

Indeed, although the global IP dynamic is unstable, two manifolds, one stable and one

unstable are potentially available to bound the sway around the equilibrium point. This

can be obtained by steering the state close to the stable manifold [9], obtained through an

unstable delay-induced dynamics that produces, in the state space, spiraling trajectories able

to lead the state closer to the stable manifold. Thus, despite the two sub-dynamics are per

se unstable, they can be orchestrated in a manner, i.e. by opportunely switching between

them, in order to obtain a bounded stability with limit cycle. Hence, an intermittent control

strategy seems more physiologically plausible with respect to a continuous regulation. This

aspect was highlighted also in [2], where a similar conclusion was pointed out through SDA

over real data.

The recent literature confirmed again the validity of the IP model intermittently controlled

at the ankle [8, 30]. However, from a mechanical point of view, the multi-link nature of the

human-body unavoidably rises questions regarding the role of the upper joints. In particular,

it was observed that the hip can contribute to the stance stabilization when the posture

is challenged by additional forces acting on the body [31]. Moreover as shown in [32], the

range of motion around the hip is not negligible also in quiet stance, suggesting the use of

a double-link IP (DIP) for the upright stance mechanical model [29]. Indeed, the velocity

and acceleration around the hip showed significant greater values than those observed at the
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Chapter 1 Quiet posture: the mechanics of the stance and the intermittent control paradigm

ankle [33, 34]. This may indicate that some regulatory strategy acts at the hip in order to

regulate the stance also in unperturbed conditions.

Frequency analysis supported the above stated hypothesis [34], showing that the lower

and upper trunk segments of the body move in phase at frequencies below 0.5 Hz, whereas,

for frequencies greater than 0.9 Hz, the character of the coordination between the upper and

lower body segments becomes anti-phase. The nature of such coordination was investigated

through a modeling perspective in [29, 8]. Specifically, Morasso and colleagues [8], highlighted

that the hip can contribute through a passive mechanism, that is, a stiffness model as that

proposed by Winter, whereas at the ankle, an intermittent control law based on a lumped

sway information was employed [8, 13]. Such model can be refereed as the DIP/VIP, where

VIP denotes the virtual inverted pendulum that can be obtained from any multi-link IP

structure and that can be employed in quiet stance to describe an internal model exploited

by the CNS to develop a control action [8, 27].

The physiological plausibility of the DIP/VIP model was assessed through the analysis of

kinematic sway data, indeed, the upper and lower trunk oscillation showed the in-phase and

counter-phase patterns respectively for the frequencies ranges lower that 0.5 Hz and greater

than 0.9 Hz [8]. However, the model should also be able to reproduce plausible COP patterns

as those observed in real data. This for two main reasons: as first, for any human balancing

task, two variables, i.e. COM and COP, are of great physical importance, in particular,the

COP encompasses the control action at ankle and upper joints [30, 13]. The second reason

lies on the fact that COP time course constitutes a variable that can be effectively employed

to merge classical posturography and model-based postural analysis [13].

Incidentally, investigating the plausibility of COP data obtained from DIP/VIP should

require the use of meaningful descriptors that can be “robbed” from posturography, since

they can be related to the neural controller parameters to infer whether the physical model

is able to provide a good description of the actual process. Moreover, as observed in [27, 13],

the COP of a DIP has to be mathematically formulated considering the multi-link nature of

the mechanical structure. Indeed, the COP formulation from a single-link IP may mask the

mechanical meaning of the aforementioned variable, rendering misleading the analysis of real

COP data.

Hence in this chapter, particular attention was given to the descrption of the upright stance

maintenance both from a physical modeling and data analysis point of view. Regarding

the biomecanics of the stance the simple IP and DIP are introduced, then to investigate
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1.2 Methods

the role played by the CNS, the intermittent control paradigm is reviewed both for the IP

and for the DIP/VIP [9, 8]. Some posturographic analysis techniques such as SDA and the

detrended fluctuation analysis (DFA) with its extension (EDFA), are reported. A public

available dataset containing COP of young and elderly adults was employed in this thesis. In

particular, the COP descriptors obtained by varying the control gains of the DIP/VIP were

compared with those characterizing the two aforementioned population in order to further

investigate whether the DIP/VIP model can be used to describe possible rearrangements of

balance motor control due to aging [13, 27].

1.2 Methods

1.2.1 Single-link and double-link inverted pendulum for modeling the

upright stance

In this section the two principal models for the description of the stance mechanics commonly

encountered in the literature are reported. These models, namely the IP and DIP previously

introduced (chapter 1), model the dynamics of the stance in the sagittal plane [9, 8]. Thus,

one could wonder whether a description of such motor task is of interest also in the frontal

plane. It should be noted that the sagittal plane encompasses the description in the anterior-

posterior direction (AP), while the frontal plane takes into account the medial-lateral direction

(ML) [35, 36]. However, from a physical point of view, in quiet conditions, the gravity-pull

mainly impacts on the dynamics of the stance in the sagittal plane. This is due to the natural

constraints enforced by the feet, limbs and joints shapes. This is confirmed by the greater

variations of the COP in the AP if compered with respect to what observed in the ML [35].

Although such aspect could be trivial, one should observe that in ML important regulatory

mechanisms take place at the hip when the feet are slightly disaligned on the support base

[35]. The importance of ML and thus of the frontal plane in modeling the stance can be

observed also in the gait initiation [37], or more in general when the COP displacement is

physically constrained by the nature of the motor task in the AP direction [30].

Hence, despite the modeling of balance maintenance in the frontal plane can carry additive

information regarding the control mechanisms actuated at the lower limb joints [30], in this

work of thesis attention was given to the stance in sagittal plane following the modeling

perspective commonly encountered in the literature [24, 14, 10, 9, 29, 38, 28, 23, 39]. Let
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Chapter 1 Quiet posture: the mechanics of the stance and the intermittent control paradigm

thus introduce the single inverted pendulum model, which constitutes a fundamental block

also in the modeling of more articulated motor tasks [40, 41].

Figure 1.1: Schematic representation of the single-link inverted pendulum used to model the
body stance mechanics.

Figure 1.1 shows the IP with its fundamental kinematic and dynamic quantities. The sway

angle θ(t) represents the angular displacement of the COM around the ankle, assumed that

the COM is rigidly linked to the aforementioned joint by means of a rod with no inertia.

The total torque at the ankle is expressed through τa(t) and, in quiet condition, it mirrors all

the dynamics of the pendulum, that is the destabilizing mechanisms induced by the postural

noise, the gravity pull, and the regulatory actions due to passive and active control policies.

It is important to observe that the global ankle torque is generated by the ground reaction

force R(t) exchanged between the body and the ground through the feet at a certain distance

from the joint center. Such distance varies in time and can be represented by the COP

time-course since the height of the ankle center with respect to the support base remains

invariant static balance maintenace.

In quiet stance, the intrinsic non-linear dynamics of the pendulum can be linearized with

respect to the unstable equilibrium point θ = 0, this was corroborated by experimental data

[24, 42], resulting in a widely accepted and employed modeling assumption [9, 29, 23, 43, 28].

10



1.2 Methods

Hence, the IP dynamics can be written as follows:

Iθ̈ = mgl sin θ + τa (1.1)

or in a linearized form:

Iθ̈ = mglθ + τa (1.2)

where I is the moment of inertia of the pendulum, that in this case corresponds to I = ml2.

The sway angle is θ and is defined with respect to the vertical axis, m is the total body mass

of the subject, l is the distance between the ankle center and the COM, g is the gravity

acceleration whereas τa is the ankle torque. Despite the model (1.2) is a simple second-order

mechanical system, it is able to capture important aspects of the stance mechanics coherently

with what observed from real posturographic data [8]. It should be stressed, that the

equilibrium point θ = 0 corresponding to the alignment of the link with the vertical axis

(figure 1.1) is unstable and of the saddle type, i.e. there are two directions where the state

evolves in a straigth line, moving away from the equilibrium point, or apporaching the latter

in the other case. The two directions are given by the eigenvector of the IP dynamics [9].

This aspect is of great importance, and it is recalled in the next sections to explain the idea

behind the intermittent control paradigm.

On the other hand, since the link is thought rigidly connected with the feet, and they

are in equilibrium with the ground, the reaction force can be applied directly to the COM.

Hence, as highlighted in [44, 13], the following equation holds:

m

ẍg
ÿg

+mg

0

1

 = R =

Rx
Ry

 (1.3)

where ẍg and ÿg are the components of the COM acceleration vector, whereas Rx and Ry

are the components of the ground reaction force R. Moreover, for the feet the following

torque equilibrium relation can be written:

τa = mgxg − COP (t)Ry − laRx (1.4)

where la is the vertical distance between the ground and the ankle joint center. It should be

noted that Rx � Ry, Ry ≈ mg. Thus the contribution given by Rx in (1.4) can be neglected.

11



Chapter 1 Quiet posture: the mechanics of the stance and the intermittent control paradigm

It follows that the center of pressure can be written as

COP (t) = mgxg − τa
mg

(1.5)

since from the pendulum dynamics (1.2) the left-side term, namely the inertial term, is

proportional to τa and under the linerization hypothesis one can write Iθ̈ = mlẍg, by

substituting in (1.5) the relation ẍg = l
g (xg − COP ) holds [12, 36]. Further from (1.5), it

emerges the nature of COP as a lumped measure that accounts for both the gravity pull and

the total ankle momentum τa which encloses the control and the postural noise torques [13].

Let now focus the attention to a double-link description of the stance. As already mentioned

in section 2.1, a DIP description of the stance is encouraged by the fact that hip showed

CNS-mediated regulatory mechanisms in perturbed posture [31] and possibly passive stiffness

mechanisms in quiet stance maintenance [8, 45]. The dynamic equations of the DIP can

Figure 1.2: Schematic representation of the DIP and its VIP lumped from the overall me-
chanical structure.

be retrieved by using the lagrangian formulation [46, 8], one can notice that for the DIP

shown in figure 1.2, the system equations resemble to the common two-link manipulator

equations [46]. Hence, given the two generalized coordinates q1 and q2, representing the

angles between the lower body segment and the vertical axis, and between the lower and

upper body segments respectively, one can write them in a compact notation introducing
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1.2 Methods

q =
[
q1 q2

]T
. Hence the resulting equations of the system are:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1.6)

where M(q), C(q, q̇), G(q) are the inertial matrix, the generalized Coriolis term, and the

gravity dependent torque respectively. The sum of the torques applied at the two joints is

represented by τ . The above mentioned matrices for the DIP and the generalized coordinates

reported in figure 1.2 assumes the following form :

M(q) =

M11 M12

M21 M22

 (1.7)

C(q, q̇) =

C11 C12

C21 0

 (1.8)

G(q) = −g

G1

G2

 (1.9)

with 
M11 = I1 + I2 +m1l

2
1 +m2(L2 + l22 + 2Ll2 cos q2)

M12 = M21 = I2 +m2(l22 + Ll2 cos q2)

M22 = I2 +m2l
2
2

(1.10)


C11 = −m2Ll2q̇2 sin q2

C12 = −m2Ll2(q̇1 + q̇2) sin q2

C21 = m2Ll2q̇2 sin q2

(1.11)


G1 = (m1l1 +m2L) sin q1 +m2l2 sin(q1 + q2)

G2 = m2l2 sin(q1 + q2)
(1.12)

where m1, I1 and m2, I2 are the mass and the moment of inertia of the lower and upper

trunk respectively, l1 represents the distance between the ankle and the lower limb COM, l2

is the distance between the hip and the COM of the upper trunk, whereas L is the distance

between the ankle and the hip joint.

13



Chapter 1 Quiet posture: the mechanics of the stance and the intermittent control paradigm

As done for the IP model, DIP can be linearized as in [29], however, as numerically

evaluated in [8, 13], the intermittent control paradigm is able to stabilize the system given in

a nonlinear form. Moreover, the mechanical linearization of the DIP cancel out the term

C(q, q̇) which shows physical coupling effects between the lower and upper segment. Hence,

hereon the DIP dynamics refers to the nonlinear system reported in (1.6).

As already mentioned, an IP description can be obtained starting from the DIP or more

in general by an multi-link structure [44]. Then, such IP can be used as an internal model

for computing control action as done in the DIP/VIP model [8, 13]. To obtain the virtual IP,

one can observe that from a mechanical point of view, the center of gravity can be retrieved

from the upper and lower limb masses, indeed, for the DIP (see figure 1.2) one can write:

xg
yg

 =

m1l1 sin q1+m2(L+l2) sin(q1+q2)/(m1+m2)

m1l1 cos q1+m2(L+l2) cos(q1+q2)/(m1+m2)

 (1.13)

and the variable qCOM can be computed as:

qCOM = arctan
(
xg
yg

)
(1.14)

where qCOM is the sway angle of the virtual IP with respect to the vertical. Under the

hypothesis that the DIP is in equilibrium, the relations expressed through (1.3),(1.4),(1.5)

hold [44, 13, 27]. However, it is interesting to observe that the multi-link nature of the

DIP suggests a more profound investigation behind the physical meaning of the COP [13].

Actually, the net ankle moment τa expressed in (1.5) is the time derivative of the angular

momentum at the ankle joint [44, 47], more precisely, by introducing σa as the angular

momentum of the DIP around the ankle, it follows that τa ≡ σ̇a. The angular momentum

σa by definition is linear with respect to the angular velocities and it can be obtained by

deriving the lagrangian of the DIP L(q, q̇) with respect to q1 [13]:

σa = ∂

∂q̇1
L(q, q̇) = N(q)q̇ (1.15)

where N(q) can be obtained directly by computing the partial derivative of the lagrangian.

However, as observed in [47], one can exploit the fact that only the kinetic energy term of

the lagrangian depends on q̇. This is convenient since one can easily obtain a form for N(q)
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[13]:

σa =
[
M11 M12

]
q̇ = N(q)q̇ (1.16)

hence N(q) corresponds to the first row of the DIP inertia matrix. The time derivative of the

angular momentum can be performed numerically, however it is interesting to notice that,

when one differentiates (1.15) with respect to time and substitutes in such time derivatives the

DIP dynamics, it realizes that COP lumps all the control actions developed at the ankle and

hip joints, spanning both passive and active mechanisms [13, 44]. Thus, it can be hypothesized

that, if the postural control mechanisms at the considered joints are physiologically plausible,

one should obtain COP time-series that, under some opportune descriptors, resemble the

characteristics observed through real data posturographic analysis [13, 27].

1.2.2 Modeling the CNS active role in balance maintenance: the

intermittent control paradigm

In the previous section, the mechanical models commonly encountered for describing the

kinetic quantities involved in balance maintenance have been introduced. However, a

biomechanical perspective of the regulatory processes that take place at the body joints

cannot avoid the formalization of the active role played by the CNS in sensing and delivering

postural adjustment commands.

As mentioned in 2.1, the role of the CNS in regulating the stance is not limited to the

mere muscle tone maintenance, but on the contrary, the literature highlighted that the CNS

actively contributes to the stance maintenance through feedback control strategies [12, 2].

Moreover, the idea that such control action is characterized by an intermittent nature kept

particular attention from the scientific community. Indeed, as reported in the seminal work

of Collins and De Luca[2], the CNS could monitor the postural fluctuations at the joints

through interoception, acting when the sway overcomes some threshold. However, such

intuition of “act when needed” was better formalized through the use of opportune variable

structure control policies by Asai and colleagues [9]. In this thesis, the intermittent control

employed for modeling the active role provided by the CNS is referred to the one proposed in

[9]. This choice was motivated by two reasons: firstly the model presents physiological and

physical plausible basis as confirmed in [9, 8, 30, 13], secondly the sway data of the global

models, i.e. stance mechanics plus control, seem able to reproduce patterns observed in real

data, supporting the validity of such active control model for the CNS [23].
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Let now consider the stabilization the IP model seen in section 1.2.1 whose dynamics can

be described through (1.2) as in [9, 23]. The torque τa can be thought as the sum of three

contributions:

τa = τs + τact + τn (1.17)

where τs is the stiffness control torque due to basal muscle tone and ligaments mechanical

properties, this control mechanism can contribute to the balance maintenance but it is not

sufficient to provide full stabilization without an additive contribution [12, 14]. A linear

feedback made by a proportional (P) and derivative (D) contributions with respect to the

angle sway variable can capture consistently this stiffness properties of the muscles [12], thus

for τs a the following model can be employed:

τs = −Kθ(t)−Bθ̇(t) (1.18)

where K and B are essentially a passive spring and damping components which model the

aforementioned muscle and ligaments resistance to the body inertia. The intermittent active

control modeling the CNS contribution is expressed through τa, and presents a switching

nature. In order to describe this term in (1.17), a phase space partitioning is required to

inject the input in the system when the system-state latter enters or remains within a specific

portion of the aforementioned space. As in [9, 23], the regions in the state space for which

the active control is turned on or off is shown in figure 1.3. Actually, switching controllers

can be obtained by thresholding quantities of interest such as the sway angle and its time

derivatives [28], this leads to rectangle-like on-off regions in the state space, however more

complicated geometries for describing Soff as that employed in [9, 29, 8] were supported by

other approaches based on reinforcement learning for stabilizing inverted pendulum [48]. A

further aspect that deserves to be recalled is that the feedback loop provided by the active

control generally accounts for a delay term that models the nervous fibers transmission and

commands computation. Such delay in the feedback loop is taken in consideration regardless

the use of a continuous or intermittent motor control paradigm [9, 28, 43]. However, while

in the continuous paradigm the delay implies a fine P and D parameter tuning to get the

IP stabilization, the intermittent control accepts lower values for the two above mentioned

controller gains, exploiting the spiraling delay-induced instability of the system in the Son

region to steer the state close to the unique stable manifold of the pendulum [23]. Thus it is

possible to proof through Poincaré maps that a bounded stability with limit cycle can be
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Figure 1.3: Phase space partitioning for the intermittent control model. Active control is
turned on when system state is in the Son regions and is turned on in the Soff
one

obtained [9]. Hence, the active control law employed can be mathematically expressed as

follows: 
τact = Pθ∆ +Dθ̇∆; if θ∆(θ̇∆ − lθ∆) > 0

τact = 0; otherwise
(1.19)

where P and D are the proportional and derivative control gains of the active controller, θ∆

and θ̇Delta expresses the sway angle and its time derivative delayed of a quantity of time

∆, whereas α is the slope of the line that defines the Son region (figure 1.3). As highlighted

in [23], the switching activity is driven by the portion of the phase plane where the active

controller is turned on with respect to the whole phase plane (figure 1.3). This quantity can

be defined as ρ and it is formally equivalent to [23]:

ρ = Son
Son + Soff

≡ 0.5− arctan (α)
π

(1.20)

To be noted, if the active controller is continuously turned on, the Soff area is equal to

zero (ρ = 1), and the model generalizes the continuous motor control paradigm [23]. For

a non-null Soff the active controller is turned on and off (ρ < 1) and the motor control

paradigm is the intermittent one. Eventually, if the Son area is zero (ρ = 0), the active
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controller never turns on and the pendulum stabilization can be reached only through the

passive components of τa.

The idea of extending this active control policy to a DIP structure was introduced in [29],

where a linearized VIP was employed. Also in that case, a specific partition of the state space

was proposed, and the switching criteria were ruled out. However, one can wonder if there is

the need of an active control component at the hip. However, since the hip presents gross

ligament and muscles, it might contribute through a stiffness mechanism in the stabilization

of the body. The latter principle was followed by Morasso and co-workers in [8], where the

DIP/VIP described in section 1.2.1 was introduced. This perspective is confirmed also by

[45], where hip muscle activity presents no correlation with the oscillations of the upper

trunk. This can be translated in the modeling framework assuming that hip stiffness is

over-critical. Thus, given the hip stiffness Kh, the condition Kh > m2gl2 holds (figure 1.2)

[8], which means that in quiet stance the hip behaves as a non actuated joint which stiffs the

upper trunk. Under this assumption, the control law expressed through 1.19 was used to

active control the DIP only at the ankle. Recalling the torque vector τ in the DIP dynamics

(1.6), it can be viewed as the sum of three components resembling what observed for the IP:

τ = τs + τact + τn (1.21)

the τs represents the stiffness torque modeled as in (1.4), more specifically:

τS =

Kaq1 +Baq̇1

Khq2 +Bhq̇2

 (1.22)

where Ka and Kh model the stiffness at the ankle and the hip, whereas Ba and Bh account

for the intrinsic damping properties of the muscles. Concerning the active torque τact in the

DIP/VIP framework, one can observe that it can be modeled as:

τact =



−(PqCOM∆ +Dq̇COM∆)

0

 if qCOM∆(q̇COM∆ − αqCOM∆) > 0

0

0

 otherwise

(1.23)

to be noticed, the control laws (1.19) and (1.23) are of the same form since they consider the
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same state space partition and the same joint of actuation, however, in this case, the state

variable employed is the one obtained by the VIP internal model, namely qCOM which lumps

the information of the overall DIP mechanical structure. As observed through numerical

simulations [8, 13], the system can be stabilized within the control gains ranges proposed

in [8]. The last term that have to be described in (1.4) and in (1.21) is the postural noise,

i.e. τn and τn for IP and DIP respectively, and it can be modeled through additive gaussian

noise with null mean and standard deviation that commonly ranges between 0.2 and 0.5 Nm.

The two above mentioned models, that is IP and DIP/VIP, can be used in a variety of

ways, ranging from simulation to parameter identification and inference [8, 23, 13]. In the

following sections these two models will be used respectively in two contexts. In the first case,

the IP intermittently controlled is analyzed in order to understand how long-term correlation

and inhomogeneity properties of the simulated COP time-series changes with respect to

changes in the active controller parameters. On the contrary DIP/VIP is used to evaluate

whether differences between COP descriptors of healthy young and elderly adults can be

mirrored in changes in controller parameters. However, before to enter in the details of the

two experiments, it is important to describe the COP analysis techniques used in this work

of thesis.

1.2.3 Time-series analysis perspective of COP data

The annalysis of posturographic data, in particular of COP time course in both AP and ML

directions received great attention through the years [19]. Many different descriptors have

been proposed to synthetically describe the process of balance maintenance and its alteration

from real data. A consistent number of geometrical and frequency domain descriptors were

proposed in [20], however spatial features highlighted by Prieto et. al [20] for instance,

do not take into account the correlation properties of the COP time-series, which on the

contrary can highlight different aspects regarding the regulatory mechanisms involved in

the upright stance maintenance [49]. In this view, nonlinear timeseries analysis approaches

focusing on timeseries self-similarity, disorder state and attractor in phase space revealed to

be particularly useful in characterizing the COP data [50, 7, 49, 17, 51]. Moreover, literature

highlights analysis tools that were developed for the COP[2, 16, 15].
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1.2.4 SDA

Among the tools properly developed for COP, Collins and De Luca proposed the sway

diffusion analysis (SDA) [2], Zatsiorsky and Duarte formulated the rambling and trembling

COP decomposition , whereas Jacono et al. developed the sway density curve [15]. However,

in the latter, descriptors are extracted from an aggregated timeseries that combines both

AP and ML information [15], while rambling and trembling decomposition requires that

COP data are opportunely combined with ground reaction force time-course [16]. Thus,

despite such techniques permit a deep understanding of the posturography dataset one

deals with, they need multiple timeseries fusion. Although SDA can be performed upon the

bidimensional COP data to obtain a global description, one can also treat the single AP

and ML components separately[2]. This is particularly convenient in those cases where one

would study the effects of control parameters changes in a model that describes the stance

maintenance in one direction [10, 27, 13].

The steps required to perform the SDA are reported in [2] and they are here recalled. Given

the COP time course, one can compute the square of the COP displacements ∆r between all

pairs of points separated in time by a specific time interval ∆t, the square displacements

were then averaged over the number of samples m spanned by a given ∆t [2]:

〈∆r2〉∆t =
∑N−m
i=1 (∆r2

i )
N −m

(1.24)

The plot of COP mean square displacement versus time interval ∆t is referred to as a

stabilogram-diffusion plot (figure 1.4). From the latter representation one can compute

different parameters, in particular the two diffusion coefficients Drs and Drl of the short

and long-term region respectively, obtained through linear interpolation as in figure 1.4.

Another important feature is the critical time TCR which describes the time scale for which

a distinction between the two aforementioned regions takes place. Such kind of analysis

resulted particularly useful to discriminate among group of subjects since it permits to

highlight differences in the typical two regions encountered in the stabilogram diffusion plot

obtained for COP data [52, 7]. However, it is remarkable that the SDA descriptors should

be interpreted under the feedback control theory [21], in this perspective the long-term

region should mirror the sign of the modulatory activity carried by the CNS, whereas the

“open-loop” control strategy defined by Collins and De Luca should be prevailed by the

passive stabilization mechanisms. Moreover, it can be observed that the SDA can be classified

20



1.2 Methods

Figure 1.4: Schematic representation of the stabilogram diffusion plot. The TCR is obtained
as the time interval at which the intersection between the two fitting lines,
respectively characterized by Drs and Drl slope coefficients, occurs.

as a multi-scale fractal analysis technique [53, 49]. However, also a global fractal analysis

performed over the time-series can provide meaningful interpretation of the posturographic

data as shown in [7, 13, 54, 51].

1.2.5 EDFA

A typical approach to perform fractal time-series fractal analysis is the detrended fluctuation

analysis (DFA). Such technique was originally developed by Peng et al. [55, 56], and

it was used to deal with a variety of biological timeseries, ranging from heart-rate to

electroencephalographic activity and COP data [56, 57, 54, 7]. More in detail, given a time

series x(i) of length N , the DFA involves the transformation of x(i) in its profile y(i) through

an integration after mean removal [56, 58]:

y(k) =
k∑
i=1

[x(i)− 〈x〉], 〈x〉 =
N∑
i=1

x(i) (1.25)

The resulting profile or random walk undergoes to non-overlapping segmentations of equal

length n. Then, for each segment of the profile, a local trend yn(k) is computed through a

linear fit in a least square sense [59, 56]. When local trend is available, one can proceed by

computing the fluctuation, or standard deviation of the signal profile around the local trend
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as:

F (n) =

√√√√ 1
N

N∑
k=1

[y(k)− yn(k)]2 (1.26)

The process is iterated for different segment size (n) in order to obtain F (n) over a possible

large number of scales. In general, F (n) presents a power law behavior of the type:

F (n) ∼ nα (1.27)

where the α parameter can be estimated through the log-log representation of F (n) versus n

and it is generally referred as the Hurst exponent [58, 56, 7].

What reported until now are the basic steps of the DFA. However, as highlighted in [59],

the inhomogeneity of the data, which can be due to multiple dynamics interactions, can

lead to a consistent variability of the profile fluctuations around the local trend among the

different signal epoch sizes (n). This can produce a departure from model (1.27), rendering

more challenging the interpretation of the classical DFA. To mitigate this aspect, in [60, 59]

the authors proposed a DFA extension, namely EDFA, that takes care of the heterogeneity

in the RMS fluctuations. Hence, in addition to the canonical DFA, one can consider the

following quantity:

dF (n) = max[Floc(n)]−min[Floc(n)] (1.28)

where dF (n) is the difference between the maximum and minimum local RMS fluctuations

Floc(n) [59]. Here, the local RMS fluctuations of the signal profile y(k) from the trend yn(k)

depends on the epoch length (n). As observed in [59], also dF (n) could change with n,

following a power-law dependence with another scaling exponent β:

dF (n) ∼ nβ (1.29)

In this view, β can be used in conjunction with the Hurst exponent (HE) obtained through

the classical DFA in order to enrich the description of the data, hence considering not only

the persistent or anti-persistent behavior of the time-series, but also evaluating the local

inhomogeneity of the latter [59]. Moreover, it is important to note that a relation between

the sample or time scale (n)and the information content of the signal in the frequency domain
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exists [54]. In particular a relation of the following type holds:

n(f) = fs
f

(1.30)

where fs is the sampling frequency and f is considered frequency that one would investigate.

Hence, the larger is the time scale (n) the lower is the frequency one is considering. Despite

this could appear trivial, it is important to remember that the sign of CNS modulation in

balance control is manifested at low-band frequency ranges of 0.5-0.1 Hz (LB) [54, 19].

1.2.6 Long-term correlation and inhomogeneity of the inverted pendulum

COP data under the intermittent control

A first aspect that deserves to be investigated is the study of the global long-term correlation

of the sway data generated by the IP model when it is controlled intermittently (see section

1.2.2). Following what proposed in [9], the stiffness term K in (1.18) was set at the 80%

of mgh. In this way, a low level of intermittency is always required. One thousand stable

simulations of 60 s were run sampling (P,D, ρ) from opportune uniform distributions, whereas

the other parameters of the model were fixed as reported in table 1.1. For each simulation,

the COP with respect to the ankle joint was obtained following the relation proposed in 1.5.

Table 1.1: Table shows the model parameters and the intermittent controller parameters
used to simulate the model. P , D and ρ were sampled from uniform distributions
in plausible ranges [8, 23, 29]

m I h B K g ∆ σ P D ρ
(kg) (kg·m2) (m) (N·m·s/rad) (N·m/rad) (m/s2) (s) (N·m) (N·m/rad) (N·m·s/rad)

60 60 1 4.0 471 9.81 0.2 0.2 U[294; 471] U[0; 400] U[0.3; 1]

Then, EDFA was performed and both Hurst and β exponents were calculated in order

to understand how intermittent controller parameters affects the complexity of the COP

time-course. Moreover, as reported in 1.2.2, the parameter ρ guides the level of intermittency

of the control low. Thus, since ρ ' 0.6 has been reported for a typical intermittent control

model whereas for ρ →1 the control policy approaches a continuous behavior [23], two

different windows of ρ values have been investigated, with respect to the relationship between

ρ itself, the control gains (P and D), and the EDFA exponents (α and β). When ρ ranges

from 0.3 to 0.6 one can consider a full intermittent control regime, whereas for ρ greater

than 0.6, one can refer to a shift toward a continuous control policy.
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1.2.7 DIP/VIP kinetic plausibility

As it would be emerged in section 2.1, a further aspect investigated in this work of thesis

was the evaluation of the kinetic plausibility of the DIP/VIP model[13]. To do this a public

available dataset presented in [61] was employed to compare real COP characteristics with the

ones obtained by simulated COP. In particular, posturogrpahic data of thirty subjects were

taken into account: fifteen belonging to a healthy adults group, representing a young cohort

(Y) with an age not greater than 36.9 years and fifteen to an elderly group (O), presenting

an age greater than 60.0 years [13]. Data were sampled at 100 Hz for 60 s, filtered at 10 Hz

with a zero-phase second order low-pass filter, and detrended. Only the anterior-posterior

component (AP) of COP was considered for further analysis in order to maintain coherency

with the DIP/VIP model description of the upright stance.

Three COP descriptors were selected to evaluate the DIP/VIP kinetic plausibility. Such

descriptors were selected among a set of six, based on their ability in highlighting significant

differences between the Y and O groups. The initial feature set embraced the only two

universal indexes in AP direction presented in [19]: the frequency at which COP presents the

50% (PF50) of its whole power spectrum density (PSD) [19, 20], and the slope of the PSD

in the low frequency band 0.1 - 0.5 Hz (SLOPE-L) [9, 19]. Moreover, two features related to

sway amplitude, i.e. the mean distance (MD) and the sway range (SR) [20, 6] were taken into

account, whereas HE and TCR were considered as complexity time-series descripotrs since

they demonstrated their discriminative power in other studies [62, 63]. Each feature was

computed for both the two aforementioned groups, and they were group-compered as in [13]

to asses which feature could provide insight decription of the changes in control mechanisms

between Y and O.

It resulted that PF50, TCR and HE were able to discriminate between Y and O groups,

hence they were used for the evaluation of COP time-series obtained as output of the

DIP/VIP. The anthropometric characteristics required to fill the latter were computed as

the average among the subjects and they are reported in table 1.2 [13]. In this case, the

Table 1.2: Table shows the anthropometric values used to fill the DIP/VIP model in the
simulation steps.

L l1 l2 m1 m2 I1 I2 Ka Kh Ba Bh
(m) (m) (m) (kg) (kg) (kg·m2) (kg·m2) (N·m/rad) (N·m/rad) (N·m·s/rad) (N·m·s/rad)

0.87 0.39 0.45 19.3 40.7 2.9 7.9 366.0 246.0 22.0 22.0
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coefficient α in (1.23) was set equal to 0.4 s−1 in accordance with [8], in the same way a

delay value of ∆ = 0.2 s was chosen [8, 9], whereas the τn was modeled through white noise

with standard deviation of 0.2 N·m [8, 29].

Concerning the intermittent control gains, based on the results provided by [8], P varied

between 0.3·mgh and 0.9·mgh N·m, and D between 0 to 200 N ·m·s/rad [8]. Such range of

values were linearly spaced forming a parameter space used to parametrized the intermittent

controller for the simulation of COP from the DIP/VIP model. The P-D grids representation

was limited to those values for which the model provided stable and physiologically plausible

outputs. For each combination of P-D parameters, 10 COP time-series were generated [13].

Thus, PF50, TCR and HE were computed for each simulated COP, providing the depen-

dency of each metric upon P and D combinations. For both populations , i.e. Y and O

groups, it was assumed a plausible range for each of the above-mentioned metric (PMR),

defined as the mean population value ± standard deviation (see section 1.3). Eventually, a

series of grids was built to obtain P and D ranges for which all the three COP descriptors

were coherent with synthetic and real data at the same time. Therefore, those P-D values

for which the feature maps fell within the PMR-Y and PMR-O at least one time among the

ten COP realizations and for all of the three features were selected [13, 27].
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1.3 Results

1.3.1 On the long-term correlation properties and inhomogeneity of sway

data under the intermittent control paradigm

In Figure 1.5 the mean trends among all the simulated time series of both F and dF are

shown in the log-log scale. The fluctuations manifest a greater variability at the higher time

Figure 1.5: Log-log representation of the EDFA fluctuations in mean and standard deviation;
the latter was computed over the 1000 synthetic COP time-series generated by
the model.

scales, suggesting that changes in the active controller parameters mainly impacts at the lower

frequency ranges. Indeed, focusing at LB range (figure1.6), one can appreciate that both

type of fluctuations are affected by the aforementioned parameters (see 1.2.6). In particular,

dF showed a greater level of variability at all the (n) with respect to F , likely indicating that

dF responds to the same control parameters changes by greater modifications of its value.

As reported in section 1.3.1, the three intermittent controller parameters (ICP) P , D and

ρ guide the dynamics of the IP, hence in figure 1.7, 1.8, and 1.9 are reported the relations

between the Hurst exponent α, and the inhomogeneity coefficient β, with respect to the

three aforementioned ICP when considered over their range of variation (table 1.1). Globally,

P does not appear related to neither the long term correlation nor to the inhomogeneity

properties of the simulated COP time-series, as showed by the poor correlation obtained

between P , α, and β (figure 1.7). The same can be observed for the ρ parameters (figure 1.9),

although the scattered data points seem to reveal a nonlinear relation between the variables

taken into account (figure 1.9). On the contrary, the derivative gain term D presents a strong

relation observed with both the EDFA coefficients, e.g. r = −0.83 and r = −0.63, p <0.0001,
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Figure 1.6: Log-log representation of the EDFA fluctuations in mean and standard deviation.
Focus on the time scales that maps the frequency band 0.5-0.1 Hz.

for α and β respectively.

Figure 1.7: EDFA coefficients α and β obtained for the simulated COP time series and
scattered in relation to P parameter. The correlation coefficients results r = −0.12
and −0.15, for α and β respectively. Figure shows also the linear trend between
P and the coefficients.

The role of D in affecting the long term correlation and inhomogeneity properties of COP

time-series, at least globally, is strengthened by considering separately α −D and β −D

relations (figures 1.10 and 1.11). In both cases, it appears that the inter-dependence between

D and EDFA coefficients can be fitted with two straight lines characterized by different

slopes, highlighting the possible existence of two different relationships, depending upon D

values. In order to test this hypothesis, both the α −D and β −D were fitted through a

least-square spline approach [64], testing respectively the existence of three models, described

by one, two, and three polynomials of order 1. The criterion used for assessing the best
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Figure 1.8: EDFA coefficients α and β obtained for the simulated COP time series and
scattered in relation toD parameter. The correlation coefficients results r = −0.83
and −0.63, for α and β respectively. Figure shows also the linear trend between
D and the coefficients.

Figure 1.9: EDFA coefficients α and β obtained for the simulated COP time series and
scattered in relation to ρ parameter. The correlation coefficients result r = −0.019
and 0.17, for α and β respectively. Figure shows also the lines fitted through
least mean square analysis between ρ and the coefficients α and β.

model was the normalized Akaike’s information criterion (nAIC) [65], for which the most

accurate model presents the lowest nAIC.

For both α−D and β −D data distributions, the best fitting model is that with a single

knot point and thus with two lines: in this case the nAIC resulted equal to −4.67 versus

−4.57 (one line) and −4.40 (three lines) for α−D. Similarly, for β −D the two-lines model

presented a nAIC of −3.67 versus −3.60 (one line) and −3.52 (three lines). In addition, in

both cases the crossing point between the two lines (the knot), presents the same value, i.e.

D =243 N ·m · s · rad−1 (Figs. 1.10 and 1.11).
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This suggests that ρ ad P data can be partitioned in relation to the knot point identified

for D. Therefore, those P and ρ values for which the correspondent D gain is respectively

<243 N ·m · s · rad−1 and ≥243 N ·m · s · rad−1 are separately consider to better highlight

the possible relations that the two aforementioned parameters may present with respect to

the EDFA coefficients. The P gain does not show any significant correlation neither with

α (r = −0.36 and r = −0.19, for D < 243N ·m · s · rad−1 and D ≥ 243N ·m · s · rad−1

respectively), nor with β (r = −0.32 and r = −0.11, for D < 243N · m · s · rad−1 and

D ≥ 243N ·m · s · rad−1 respectively). On the contrary, ρ presents a different behavior with

respect to α and β depending on the values assumed by the derivative gain. When D is lower

than 243 N ·m · s · rad−1, both α and β showed a significant (p <0.0001) correlation with ρ

(r =0.44 and 0.61, respectively, figure. 1.12), whereas for D greater than 243 N ·m · s · rad−1,

the relations between ρ and the two EDFA coefficients completely disappears (figure 1.13),

showing poor correlation coefficients,e.g. r = −0.0021 for α − ρ and r = −0.14 for β − ρ.

This aspect supports what previously reported regarding the particular shape of the data

cluster shown in 1.9, hence revealing a more profound relation among the ICP and the

characteristics of COP time-course.

Figure 1.10: EDFA α coefficient scattered against D parameter. The two lines of the best
fitting model are reported in black and the knot point is indicated with the
dashed, vertical line.

1.3.2 Regarding the DIP/VIP kinetic plausibility

The average PSD, reported in a log-log scale (see figure 1.14, panel a) shows a higher power

content at the lower frequency range for the Y group and a statistically significant lower

PF50 (figure 1.14 panel b). This was further confirmed by the PMR obtained through the
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Figure 1.11: EDFA β coefficient scattered against D parameter. The two lines of the best
fitting model are reported in black and the knot point is indicated with the
dashed, vertical line.

Figure 1.12: EDFA coefficients α and β obtained for the simulated COP time series and
scattered in relation to ρ parameter for D <243 N ·m · s · rad−1. Figure shows
also the linear trend between ρ and the coefficients.

analysis reported in section 1.2.7 and listed in table 1.3.

Table 1.3: Table shows PMR for the three parameters and for both populations.

PMR

Group PF50 TCR HE

(Hz) (s)

Y 0.09±0.06 1.63±0.59 1.32±0.12

O 0.16±0.13 1.12±0.32 1.17±0.13

Moreover, for the Y group, the mean SDP (figure 1.14, panel c) increased less than the O
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Figure 1.13: EDFA coefficients α and β obtained for the simulated COP time series and
scattered in relation to ρ parameter for D ≥243 N ·m · s · rad−1. Figure shows
also the lines fitted through least mean square analysis between ρ and the
coefficients α and β.

at the lower time scales. This contributes to the higher TCR (Table 1.3), since the SDP slope

in its first part heavily impacts on the TCR estimation [2], the statistical analysis performed

additionally showed that the TCR resulted able to discriminate between Y and O (figure

1.14, panel d). Eventually, the HE exhibited a strong significant difference between the two

groups (figure 1.14, panel f), confirming the discriminant power of this feature [7]. This

can be appreciated also from the remarkable change in the average regression lines slope

between Y and O groups (figure 1.14, panel e, and Table 1.3). The three COP descriptors

were also computed for the synthetic COP data. Gray-maps (figure 1.15) describe how PF50,

TCR and HE vary with respect to the active control parameterization. PF50 seems to be

more sensitive to the variations of D when P was ≈ 300 N·m/rad (figure 3a), and greater

PF50 excursions were found for low P values[13]. On the opposite, TCR (figure 1.15, panel

b) seemed to better mirror changes in the P parameter when D was low (between 0 and 50

N·m·s/rad). The HE instead presented a smoothed trend, radially decreasing when both P

and D increase (figure 1.15, panel c). Eventually, the ranges obtained for the two groups

were reported in table 1.4 and their average± standard deviation values are reported as

shaded areas in figure 1.15. Larger P and D values were admissible to obtain COP having

characteristics in line with the O group with respect to the Y population. On the contrary,

the Y group admitted narrower P and D ranges [13].
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Figure 1.14: Left panels (a, c) show PSD and SDP averaged values for Y (red) and O (blue)
populations. Standard deviations are represented by shaded areas. In panel
a, vertical dashed lines indicate mean PF50 values for both groups. Vertical
dashed lines in panel a and c represent respectively mean PF50 and mean TCR
for Y and O groups. The average regression lines obtained from DFA analysis
are presented in panel e. Shaded areas stand for the standard deviations. In
panels a and e, both axes are expressed in common logarithmic scale. Right
panels (b, d, f) show Y (red) and O (blue) groups comparisons for PF50, TCR:
and HE. ** indicates p<0.01 and * stands for p<0.05.

Table 1.4: Table shows the considered P and D ranges for the grids.

Group P D

(N·m/rad) (N·m·s/rad)

Y 257.36÷322.38 0÷49.47

O 257.36÷463.25 0÷74.21
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Figure 1.15: Panel a shows how PF50 varied with respect to the P and D parameters. Color-
map was obtained computing PF50 from the synthetic COP time-series, obtained
for each point of the P-D grid. TCR and HE were computed with the same line
and shown in panel b and c respectively.Shaded boxes, for Y (red) and O (blue)
populations, are centered in the average P-D values (289.9 – 24.7 for Y and
360.3 - 37.1 for O), while the areas account for the standard deviation (23.4 –
20.1 for Y and 64.1 – 31.9 for O).

1.4 Discussion

In this chapter, the study of balance maintenance under the intermittent control paradigm

was investigated. The first experiment (see section 1.2.6 and 1.3.1) took into account the

study of the postural data generated through the single-link IP model proposed by Asai at al.

[9]. This was done to understand the correlation properties of the COP data generated by

the model, and at the same time, investigate whether such properties changes in relation to

the intermittent controller parameters. In the second experiment (see section 1.2.7 and 1.3.2),
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HE obtained by DFA and other COP descriptors were used to verify the kinetic palusbility of

the DIP/VIP model [13, 8]. Moreover, the latter was used to possibly explain a remapping of

the control activity due to aging by comparing the COP descriptors of the real and simulated

data[13].

1.4.1 Long term correlation and inhomogeneity properties of the COP

under the intermittent control paradigm

Concerning the simulation study proposed in 1.2.6, the results confirm that the intermittent

control policy is a suitable paradigm to model the active role played by the CNS in modulating

the stance. Indeed the fluctuation F and dF showed grater variability at greater time-scales

(figure 1.5), this means that changes in the active control policy induced by changes in the

three ICP, affect the COP time course at the LB (figure 1.6), coherently with what reported

in the literature regarding the frequency bands at which neural modulation mirrors on

COP data. Indeed, for instance, part of such neural modulation due to the visuo-vestibular

information should be mirrored in COP time-series at frequency lower than 0.5 Hz [54].

Further confirmations on the COP frequency band at which the control neural activity

manifests itself can be found in [19], where the universal COP descriptors were related with

the COP at frequency between 0.04 Hz and 0.5 Hz.

Moreover the dF fluctuations presented greater sensitivity to the controller parametric

changes if compared to those shown by F in the LB range (figure 1.6), suggesting a greater

variability of the β coefficients obtained from the simulated COP data. This confirms from

one hand the capability of the inhomogeneity coefficient β to be a further useful parameters

for the description of COP data, and on the other hand, it suggests that such COP descriptors

account for the disorder state of the time-series, and represent useful way to investigate

the neural strategy behind the human balance maintenance [49]. Indeed, the β coefficient

was introduced in [59] to take into account for the local transient that can be found in a

non-stationary time-series [60]. Hence, the investigation of the inhomogeneity coefficient β

as a possible state disorder metric such as the sample entropy or fuzzy entropy should be

carefully assessed in future studies [49, 50].

Although the fluctuations F and dF were able to highlight concise aspects on how active

controller changes affected the posturographic data, a more detailed analysis for each ICP

was carried out in order to quantify the long term correlation and inhomogeinety properties
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of the simulated COP time-series in relation to the active controller characteristics, since

the latter strongly impacts on the stability and sway of the IP model [23]. From a global

perspective, the P parameter did not appear related to neither the long term correlation

properties, nor to the inhomogeneity of the simulated COP time-series as highlighted in

section 1.3.1.This confirms that when P is large enough to compensate the portion of the

gravitational toppling torque not counteracted by the passive muscles properties (K and B),

a wide range of values is admissible for P and thus, with respect to D, its role becomes less

crucial for the control model [8, 9]. The latter aspect aligns with the strong relation observed

between both EDFA coefficients and D (figure 1.8) which showed significant correlations

(section 1.3.1). Incidentally the α−D relation (figure 1.8) points out that the higher is D,

the lower is the long-term correlation of the COP time-series, in agreement with previous

studies that reported lower values of α in elderly populations, where a degraded motor

control can be assumed [52, 13]. A similar interpretation was pointed out by Suzuki et al.

[23], where it was observed that patients affected by Parkinson’s disease showed higher D

values if compared to healthy elderly. In fact, control schemes that involve large derivative

gains constitutes an energetically inefficient control scheme, with inflexible and non-reactive

stabilizing mechanisms, marked b lower Hurst exponents [23].

A decreasing trend was also observed in the β −D relation (figure 1.8), highlighting that

the inhomogeneity of the COP timeseries decreases for progressively higher values of D (Fig.

1.8). The coefficient β was defined to indicate departure from the power law behavior (1.27),

since the standard deviation of the profile from the local trend (1.26) can vary significantly

among the different segments [60]. A reduction of inhomogeneity implies COP timeseries

characterized by regular oscillatory fluctuations, closer to a stationary behavior. Hence

as highlighted above, the β coefficient can provide additional information regarding the

organization of the biological signals in terms of complexity [60]. The lower β values observed

for increasing derivative gains appears in agreement also with the loss of complexity paradigm

[66]. This hypothesis essentially states that healthy physiological systems produce responses

that are complex in the sense of non linear correlations and long-term dynamics, while a

functions’ breakdown, due to aging or disease, leads to less complex outputs that mirror

a reduced ability in producing an adaptive set of responses when facing motor, cognitive

or neurological needs [67, 68]. Thus, the reduction of β coefficient highlights a loss of

fine-structures in COP epochs and it suggests a reduced capability to cope with balance

demands, relying on a set of few and repeatable postural patterns with a limited physiological
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adaptability. Hence, a lower degree of inhomogeneity could reflect a rearrangement in the

CNS motor control schemes due to certain pathologies, resembling an inefficient tuning of

the IP active controller [23, 69].

The last parameter analyzed was ρ, which as happened for P , it did not show significant

correlation neither with α nor with β (figure 1.9). However, the analysis performed through

correlation coefficients on the global set, i.e. considering all the realizations (figure 1.9),

could not highlight possible local linear trends in the ρ-α and ρ-β relations, deserving focused

investigations related to the limits of the intermittent control paradigm. This suggests that,

despite the significant role of ρ in defining the exchange between the ON and OFF sub-

dynamics (section 1.2.2), it appears to be not directly related with the stochastic properties

of the COP time-series quantified through the EDFA. In addition, it deserves to be noted

that, within the range of P and D values selected in this study (Table 1.1), stable simulations

were obtained for ρ up to '0.9, although ρ was free to vary with the upper bound set to

1 (Table 1.1). This indicates that the condition for a fully continuous control (ρ =1) was

not able to provide a stable simulation among the one thousand stable obtained. Hence, the

findings of this experiment are limited to an intermittent control regime.

From the discussion above, it emerges the dominant role of D, among the three ICP, in

determining the long-term correlation and inhomogeneity properties of the COP data. This

aspect was also supported by considering a more fine analysis regarding α−D and β −D

relations. Indeed, as shown in the 1.3.1, both of them were optimally fitted, under nAIC

criterion, by two lines with a knot point at D =243 N ·m · s · rad−1.To be noted, such D

value was obtained directly from the above mentioned data-driven analysis and thus it cannot

be claimed that it represents a critical value for the intermittent control scheme. Its possible

physical meaning, however, deserves to be carefully investigated in future studies, also in

relation to the other ICP. Incidentally, the analysis performed by dividing the data for D

lower and greater than 243 N ·m · s · rad−1 highlighted that the intermittent control law

employed in this study can influence COP time-series properties also through more subtle

features that deserve to be pointed out. As a matter of fact, ρ parameter becomes more

crucial for lower D values, showing significant correlation with α and β (figure 1.12).

1.4.2 Physiological interpretation of the intermittent control

From the discussion reported above, it emerges that the stochastic behavior and the inhomo-

geneity of a timeseries, quantified by the EDFA coefficients, manifest a direct relationship
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with the intermittent nature of balance control when D assumes typical values for this control

strategy [23]. In addition, this is also in agreement with ρ values that not overcome '

0.7, which permits to exploit the two main characteristics of the intermittent control that

actually make intelligent such kind of policy : as first, the fact that the active controller

exploits the saddle equilibrium point of the passive IP with its stable manifold. Hence, from

a kibernetic perspective, this can be viewed as a smart agent that knows the plant and use

its properties. Secondly, since the neural delay is unavoidable, the controller makes use of

typical state steering patterns induced by the presence of the delay admitting lower control

gains. This choice of reaching stability by switching between two unstable dynamics rather

than continuously supervising the process, can be viewed as an ecologic strategy of the CNS

for producing motor commands that guarantees robustness of the system with respect to

parametric changes [70].This eventually permits to obtain limit cycle stability without the

need of greater control efforts [23, 9].

Finally, it is interesting to note that the α coefficient maintains in any case values quite

close to 1 (Fig. 1.12), possibly referring to an attempt to maintain the output of the balance

regularization, i.e. the COP, close to a 1/f process. Indeed, the latter is frequently encountered

in different physiological time-series, characterizing a healthy motor control [54, 71, 72]. On

the other hand, the β coefficient covered a larger set of values (Fig. 1.12), pointing out

that the simulated COP timeseries exhibited different degrees of irregularity in their local

structures [59, 60]. The latter can be associated with the complexity of the physiological

system generating the data[60], which in healthy conditions is commonly characterized by a

higher complexity [72, 73], leading in turn to an enhanced robustness and adaptability of the

response [73, 74].

When D ≥243 N · m · s · rad−1, the correlation between ρ and the EDFA coefficients,

completely disappears (figure 1.13). A possible explanation for this behavior can be proposed

considering that, for such range of D values, the Son dynamics can stabilize the IP process

per se [23], without the need for switching between sub-dynamics, since with this range of D

values (≥243 N ·m · s · rad−1) the (P,D) of the ON-subsystem is located inside the stability

region reported by Suzuki et al. [23]. In this context, the control policy mimics a stabilizing

delayed continuous control [23] and thus it is reasonable to assume that ρ becomes less

crucial within this control scheme, loosing its relations with EDFA coefficients. In passing,

the relations highlighted between α and the two ICP parameters D and ρ in section 1.3.1,

aligns with the the findings of Yamamoto et al. [19], who reported that the slope of the PSD
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at the LB range of the COP signals, which is a universal posturogrpahic index, is related

to the Hurst exponent α of the DFA [75]. Hence the α coefficient seems to be particular

suitable in highlighting the neural modulation of the CNS that affects the COP time-course.

1.4.3 Further insights on the intermittent control: the DIP/VIP.

The simulation experiments and the analysis proposed in the first part essentially aimed

to investigate the intermittent control model in a posturography scenario where time-series

analysis approaches were commonly encountered [7, 2, 49]. This has constituted a first

attempt to merge model-based and data-driven analysis, however the bio-mechanical model

of the stance used was a single-link IP, which can be a limiting assumption also in virtue of

the findings proposed in [29, 8], although as shown in section 1.3.1, it was able to capture

also complex dynamics typical of what observed in real data. In the second experiment

(section 1.2.7) the study was thus enlarged both in terms of mechanical model complexity

and posturographic descriptors employed to evaluate the physiological plausibility of the

intermittent control model by means of the DIP/VIP. Let thus consider the investigation

proposed in 1.2.7.

The P-D grids in section 1.3.2 (figure 1.15) confirmed the sensitivity of synthetic COP to

different parametrization of the active controller, highlighting the possibility to obtain COP

time-series whose descriptors lie within the PMR observed in both Y and O populations

[13]. In particular, both P and D admitted greater values for the O group compared to the

Y one (table 1.4). Such result should indicate the functional rearrangement of the CNS

control recognized in the elderly [76, 52], which can be mapped through the tuning of the

intermittent controller and mirrored by the COP. Incidentally, greater P and D values were

associated with lower HE in the O group 1.15, hence suggesting an enhanced anti-persistent

behavior in the COP time-series of the latter. This aspect aligns with the findings in [7, 52]

and it indicates that greater regulatory efforts are needed to achieve postural stabilization

[52], eventually resulting in a more energetically expensive control [9].

A similar point of view can be reached by analyzing the PF50 (see figure 1.14, panel a).

Indeed, such descriptor quantifies the spreading of the COP spectrum towards the higher

frequencies, i.e. the greater is the PF50, the larger is the amount of power of faster dynamics,

possibly associated with an augmented level of stochasticity [19, 2]. Moreover, from its

physical meaning, COP encompasses both the active and passive control activity at the lower

joints as observed in section 1.2.2, thus reflecting also the motor commands modulated by
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muscles activity and their mechanical characteristics [21]. Therefore, an enhanced stochastic

COP behavior might refer to a stiffer muscular strategy recognizable in the elderly [52] that

may have altered the mechanical muscle properties or the neuromodulatory changes [13].

Confirmations of such hypothesis can be found in the PSD slope at the lower frequencies

(SLOPE-L) [19, 23, 9]. Indeed, a nearly flat SLOPE-L indicates a body stiffness that tends

to be overcritical, i.e. � mgh, whereas a consistent negative value of the slope generally

refers to an optimal stiffness tuning [23, 9]. This agree with the greater P values for the O

population and is also supported by the SLOPE-L computed over the real data that resulted

higher for the O subjects (-0.95±0.84) with respect to the Y group (-1.62±1.15) [13].

The TCR descriptor appears less sensitive to changes in the P-D parameters. As a matter

of fact, form the grids in figure 1.15 one can appreciate that TCR has a uniform trend

and limited variations for a large set of the controller parametrizations [13]. This could be

misinterpreted since it could appear that DIP/VIP is not able to capture the physiological

regulatory mechanisms behind balance maintenance. Indeed, literature highlights that TCR

and more in general SDA can be highly descriptive of the different control dynamics exhibited

in both healthy individuals and populations presenting a wide spectrum of balance disorders

[62, 63]. However, one should recall that the SDA approach is a postural data assessment

framework that grounds the basis on the time-series analysis perspective, hence it might not

be necessarily exploited by a mechanistic model, whenever accurate as the DIP/VIP used in

this study [21, 2]. It is therefore desirable to investigate in the future the possible role of

SDA in the analysis of variable structure balance control model. Indeed despite the two lines

in [2, 9] seem different, they convey both on the idea that multiple dynamics contribute to

the regularization of the stance.

Moreover, as highlighted in [13], one should notice that the choice of a set of COP features

already successfully used for investigating COP timeseries in young and elderly subjects

[7, 52, 20] further supports the validity of the DIP/VIP model from a kinetic viewpoint.

Eventually, it deserves to be stressed that the investigation of the active controller parameters

was limited to P and D gains, while α, and thus ρ, was set at a fixed value (section 1.2.7).

This could represent a partial limitation of the study, since the findings reported in the first

experiment highlight that the role of α could be predominant at least in certain regions

of the active controller parameter space. However, it should be also recalled that the DIP

mechanical structure may require a more refined partition of the state space in order to

maintain the stability, thus this aspect need to be adequately examined in focused studies.
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Undoubtedly, one can have glimpsed the tendency present in modern posturography, which

would infer active controller parameters using data from different populations [23, 77, 78].

This is generally achieved, in unperturbed conditions, using features derived from COM,

even if COP measures are the most common data used in classical posturography [8, 29, 30].

However, there are some reasons that suggest the opportunity to use COP rather than COM.

As first, COP is a directly measurable quantity that can be obtained from force plates,

whereas the COM can be estimated in different ways, i.e. stereophotogrammetric-based

procedures or by processing of COP data [42, 79, 80]. However, although such procedures

are commonly employed to highlight kinesiological aspects of the balance maintenance,

they could lead to a loss of information, that can be instead captured through different

identification procedures [23, 69]. In fact, the COP time-course represents a meaningful

source of information of the descending neural control and of the mechanical actuation

provided by the musculoskeletal system [21]. Hence, the use of COP time-series represents a

more preferable choice when human stance is investigated from a neuromuscular perspective.

However, the use of multi-link structure renders more challenging the COP modeling,

whereas defining COP from a single link IP is somewhat straightforward [81]. Thus, despite

the parametric identification is not the primary aim of the study, the approach followed in

section 1.2.1 for the modeling of the COP from DIP structures constitute a useful contribution

toward the integration of physiological data and mechanical models of balance. This renders

the methodological aspects faced in this study potentially appealing in the identification of

multi-input, multi-output models of the stance.

The additional value of using a DIP/VIP or in general multi-link models can be appreci-

ated also considering that this allows to investigate whether changes in the neural control

modulations are mirrored in how CNS manages the intrinsic body redundancy of the quiet

stance [29, 82]. Indeed, a detrimental condition that affects the CNS capacity in managing

the body redundancy can be a sign of functional rearrangement due to neurological disorders

[69]. The key role of COP in accounting for mechanical redundancy is fundamental also in

other applications, e.g. bipedal legged robotics. In this context, the COP can be treated

through the more general concept of zero moment point [83], which has to encompass the

multi-link structure in its formulation in order to properly control both the standing and

dynamic phase of gait [44, 47]. Therefore, an inefficient regulatory activity can be recognized

by considering COP characteristics [1]. This could hold also for the human system, where

a degraded regulatory activity, due to a disease, can affect the management of multi-link
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structure from a balance maintenance point of view [82, 13].

Findings of the present study support the plausibility of DIP/VIP model of the stance [8],

here enriched by the kinetic perspective [13]. Hence, both the mechanics and the control

policy can be suitable for modeling the cybernetic problem previously introduced (see section

2.1). The hybrid policy employed for managing the body redundancy through the VIP

part of the model resulted to drive the synthetic COP characteristics [13]. Indeed, since a

physiological coherent model of the control action at the two joints was employed, human-like

patterns were observed in the simulated COP time-series [27]. As highlighted in (1.5), COP

spans non linearly the torque vector τ over σa. Thus, both passive and active effects at

the hip and ankle were mirrored in the COP, which encompasses the information about the

stability of the mechanical structure [13].

1.4.4 The role of COP in balance maintenance

Hence, from the two experiments conducted in this thesis, emerges that COP encompasses

information regarding the dynamic stabilization process of the stance, which unavoidably

account for the passive biomechanical structure of the skeletal systems within the gravity

filed, and the neural modulation or active control. Thus, from a physiological point of view,

one can wonder whether such information can be exploited by the CNS to strength the

control output in the ordinary balancing tasks dealt by any subject during the daily life.

Confirmations regarding the plausibility of this assumption were reached also in [1], were the

COP, being proportional to the torque, can be used as a feedback information in the balance

control loop, making the system robust with respect to external perturbation,e.g. support

base movements or external impacts [1, 84]. Moreover, as reported in [13], also quiet stance

is subject to internal and external stimuli such as hemodynamics and gravity pull [75, 11].

Thus, COP can represents itself a valuable source of information that can be used by the

CNS for tuning balance control strategies in either perturbed or unperturbed conditions.

Despite one can wonder about the existence of an internal model of the COP within the

CNS [8], there is no doubt regarding the existence of an integration process of tactile and

proprioceptive sensors of the feet [85], that makes plausible the existence of COP information

within the balance control schemes [8]. This suggests a more profound picture regarding the

nature of the COP. Indeed, as for certain balancing tasks, CNS must switch the role between

COP and COM information in the motor control paradigm [30]. Thus, although classical

literature [36] agreed in viewing the COM as the controlled variable and COP as the control
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variable, it could be a limiting assumption for studying possible rearrangements in the motor

control with respect to neurological disorders. This aspect can be further investigated in

future studies, where kinematic and kinetic simultaneous measures are available [61], in

order to better clarify the relationship between COP and COM in this kind of modeling

framework.
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Chapter 2

Perturbed Posture: a modeling

perspective

2.1 Introduction

In the previous chapter, the problem of human upright stance maintenance was faced

considering the unperturbed case, where the only external force that challenges the central

nervous system (CNS) in regulating the stance is the toppling effects induced by the gravity

field [1]. At the same time, different internal factors supplied by the internal postural noise

or due to changes in the visual field can potentially impact on the balance maintenance, but

they can be still mentioned under the static balance maintenance [2, 3].

On the other hand, perturbed posture refers to those tasks or experiments where additive

eternal disturbances such as external forces, torques and vibrations are employed in perturbing

the upright stance [4, 5, 6]. Despite many different experimental protocol have been developed

for assessing the postural responses to such disruptive events, it is important to highlight

that the support base translational movements were taken into account in the milestone

work of Horak and Nashner [4]. Such form of perturbations continues to be still appealing as

demonstrated in recent works where the problem of balance maintenance is studied also in

relation to cortical information processes [7, 8]. A possible reason behind this may lie on the

capability of support base translational movements to mimic potential events that can be

encountered in the daily living [4, 5, 9]. Additionally, other sources of perturbations i.e. visual

sensory deprivation, or cognitive load, can be employed in conjunction with support base

movements in order to elicit CNS motor responses [10]. This can be obtained respectively by

asking the subjects to close their eyes or perform mental counting while they undergo the
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experiment [10].

The experimental data employed to evaluate the postural adjustments able to counteract

the aforementioned perturbations are those mentioned in the previous chapter. e.g. the

center of pressure (COP), and the kinematic sway angles at the ankle and at the hip [4].

However, also muscular activity has to be cited as a valuable source of information for this

motor task, since the muscles can provide a stereotyped activation patterns [4]. Moreover,

evidences confirm that evoked postural responses to external perturbations, such as support

base movements, can involve higher control cortical centers of the brain [11]. This recently

supports the use of electroencephalography as an additive source of information that can

be adopted in perturbed posture analysis [8, 7]. However, as highlighted in the previous

chapter, a modeling perspective that accounts for biomechanical quantities as those above

mentioned, can be considered fundamental for a better comprehension of the CNS actuated

control mechanisms [12, 13, 14, 1, 15].

In passing, it should be noted that the kinematic and kinetic data are used either for

comparison with the corresponding quantities simulated by the model in order to verify

the biological plausibility [16, 17], or to identify models directly form the data through

specific identification procedures [18, 19, 20]. The latter aspect is of fundamental importance

to enrich meaningful descriptions of the control dynamics elicited by a subject or a given

population. In this context, one can encounter different methodological procedures that differ

depending on the data one deals with. As reported in [19], the identification procedures

applied to retrieve CNS control model are in open or closed loop form, and they can be

performed in the time or frequency domains. However, also the indirect identification [20],

which views at the system in closed loop form as an autonomous system, obtained remarkable

results [20]. A similar approach was used in [21, 22], where a sliding mode control model of

the CNS was proposed, and controller gains were identified through an indirect identification

procedure. The hypothesis that CNS uses a sliding variable to control voluntary movements

was investigated in the fascinating paper of Hanneton et al. [23], where visuo-manual tracking

tasks were analyzed. Such idea was not far from what proposed in [24], where the authors

advanced the hypothesis of switching dynamics to model the human manual control. Moreover

other studies dealing with the modeling of unperturbed balance maintenance supported the

idea of using sliding mode control paradigm to describe the role played by the CNS that

should track the reference position of vertical equilibrium of the pendulum, hence rejecting

all possible disturbance injected by internal or external noise [15, 25].
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This approach gave good results in tracking sway data in unperturbed posture [15], but

also in stabilizing the double-link inverted pendulum (IP), hence rejecting the disturbance

induced by the acceleration of the platform [21, 22]. Indeed, the sway angles of the lower and

upper trunk of the double link IP reproduced what observed in real data [22]. Moreover, the

indirect identification procedure performed allowed to characterize the controller parameters,

identifying the complement role of ankle and hip strategies, although the a posteriori

interpretation of the model is far to be trivial. By using linearity assumptions behind the

structure of the controller, it was possible to get more explainable model of the CNS as done

in [19, 6, 20, 26]. This eventually led to use well acknowledge procedures as those described

in [27].

Another important aspect that literature highlights is the source and type of disturbance.

In [6], for instance, an experimental device was presented and used for neuromuscular control

identification purposes. Such device perturbed the stance by impinging forces at the lower

and upper trunk of the human body rather than accelerate or tilt the support base, hence

highlighting the importance of challenging balance maintenance with external forces. A

relation between torques (controller output) and sway angles was estimated following [28],

which essentially made use of the partial coherence to estimate the neuromuscular frequency

response function. Hence, the experimental protocol and the device employed in [6] was

specifically designed and realized to obtain disturbance time-series minimally correlated to

joint torques, which represent the output of the balance regulatory activity. However, for the

reasons stated above in the clinical scenario, support base movement still represents the most

common choice for investigating upright stance maintenance after external perturbations

[29, 30, 31], but from a modeling point of view, surface translations present some issues

that need to be highlighted. Indeed, the acceleration of the platform induces an inertial

disturbance at the center of mass (COM) that cannot be independent with respect to

the control torques simply from mechanical reasons as it is described in the next section.

Moreover, the magnitude of the perturbation may render the linear approximations used for

modeling the neural controller not pertinent since the mechanics of the stance can reveal its

intrinsic non-linear nature [21].

A possible way to deal with such nonlinearity is the use of discontinuous control architectures

[1, 32]. Indeed many physiological evidences suggest a discontinuous or hybrid nature of

the postural control as already observed in the first chapter of this thesis. Additionally,

as observed in previous studies [4, 7], the muscles act as bursting agents that suddenly
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come into play to reject the disturbances and restore the balance maintenance. These

physiological aspects have been given less consideration in the modeling perspective of

balance maintenance in perturbed conditions [33, 20, 19]. However, the literature manifested

an increasing interest for hybrid system identification and different methodologies have

been developed [34]. Hence, investigating whether a hybrid control policy can be employed

to model the physiological control mechanism in perturbed balance maintenance may be

a valuable research line. Moreover, the idea of modeling neural controllers with hybrid

properties directly form the data constitutes an element of novelty of the present work.

From the control perspective, hybrid systems are characterized by dynamics that arises

from the interaction between continuous and discrete dynamics, and they can be used to

model physical phenomena characterized by a discontinuous behavior [35, 36]. Piece Wise

Affine (PWA) models represent hybrid systems obtained by the partition of the state-input

domain into non-overlapping polyhedral regions and then considering affine sub-systems

for each region. Such kind of models are suitable for deriving hybrid descriptions from the

data, capturing nonlinear characteristics among them [35, 36]. In particular, the piecewise

affine autoregressive with exogenous input models (PWARX), was selected as a proper model

family since it resulted an acceptable trade-off between the complexity of the data that have

to be fitted and the degree of interpretability that such models allow [35, 37].

Therefore, the PWARX was used to build different models of the neuromuscular control

action played by the CNS. It should be noted that a data-driven approach like the one selected

can take into account of multiple and different sources of information [34, 38], resulting in a

good opportunity to explore the physiological mechanisms behind the stance maintenance in

perturbed conditions. This has found confirmations also in other studies related with the

balance maintenance [18, 39], although different experimental conditions held and simpler

autoregressive models were employed. A further aspect that deserves to be pointed out is

the physics of the process under examination. This agrees with the line followed in the first

chapter, and it permits to consciously determine the time-series needed to obtain a good

model description of the CNS. For this reason in the following section, in addition to the

tools needed for the PWARX identification, it is described the experimental protocol that

involved also visuo-deprivation and cognitive load. Attention was given to the formulation of

the stance mechanics since only through mechanics one can comprehend the nature of the

disturbance and how it affects the process [40].
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2.2 Methods

2.2.1 Experimental Protocol

In this study, ten healthy subjects were recruited. None of them was affected by muscu-

loskeletal or neurological disorders that potentially could affect their abilities in maintaining

the stance. Participants gave their written informed consent after being informed on each

step of the experimental procedure. The study was undertaken in compliance with the ethical

principles of the Helsinki Declaration and was approved by the local ethics committee.

In order to acquire the kinematic data, each subject was instrumented with 26 reflective

markers placed on anatomical landmarks following the guidelines given by Leardini et al. [41]

(Figure 2.1). Additional markers were placed on the platform corners to track the translational

movements. A six cameras optical motion analysis system (BTS Elite, Italy) was opportunely

calibrated and used to capture the kinematic data for all the experiments, whereas, a Kistler

force platform was employed for recording the dynamic data, e.g COP and ground reaction

force. Further, muscles activity was collected through surface electromyography (sEMG).

The signals were recorded bilaterally from the tibialis anterior (TA) and the gastrocnemius

medialis (GA). All data were synchronously recorded: kinematics was acquired with a

sampling frequency of 100 Hz, while sEMG and force plate data at 1000 Hz.

Once instrumented, participants stood on a servo-controlled movable platform, waiting for

the rise of the external disturbance. Each perturbation consisted of a backward horizontal

displacement (5 cm) of the base of support, with a time duration of 0.3 s. Each subject

underwent two-stages experiment. In the first stage, the participants performed ten trials

with eyes open to avoid the first trial effect and account for the habituation rate [42]. Then,

in the second stage, three further trials were performed: the first one with eyes open (EO),

the second one with eyes closed (EC), while in the third each subject stood on the platform

with eyes open counting back from 100. This latter is referred to as dual task (DT) and

was designed to investigate how the postural control reflex may change in the presence

of a cognitive task. The time at which the platform motion starts remained unknown for

the subject in both stages of the experiment. Each trial was accepted whether the subject

maintained both feet on the platform for the entire duration of the record, without step

responses. Otherwise, the trial was discharged and repeated.
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Figure 2.1: Example of a subject that underwent to the experimental protocol. One can
appreciate the experimental setup constituted by a Kistler platform positioned
over a translating base. Marker placement and sEMG probes on GA and TA are
also visible. All the data were acquired in the Movement Analysis Laboratory at
Università Politecnica delle Marche.

2.2.2 Perturbed stance mechanics: the role of the support base

acceleration

As it was clarified in the first chapter related to the unperturbed balance maintenance, a

fundamental core in the study of neuromuscular control strategies lies on the mechanics of

the stance. Therefore, also in the case of perturbed posture the mechanical stimuli that are

induced by external actions need to be carefully analyzed and taken into account in the

description of the task. In [6] for instance; the perturbing device can apply direct forces

to the human subject, on the contrary, in support base-shift this does not happen. Indeed,

the support base acceleration generates to the human body an inertial force coupled with

the gravity pulling. Such ensemble of forces provokes disturbance torques at the lower limb

joints, eventually perturbing the human upright stance. It is possible to model the physics

mentioned above in the sagittal plane employing of a multi-link inverted pendulum on a

moving platform [21]. However, as highlighted in the previous section, the magnitude of

the disturbance employed, and the subjects training phase, permitted to assume that the

balancing response was mainly based on the ankle strategy [4], enforcing the validity of a

single-link inverted pendulum model for describing the biomechanics of the motor task. As

58



2.2 Methods

Figure 2.2: Biomechanical model of the upright stance. The generalized coordinates and the
reference frames are also reported, together with the external forces acting on
the system and the internal control torque, modeled as a lumped control action
acting at the ankles.

shown in figure 2.2, the inverted pendulum model was used to describe the mechanics of

the stance, indeed, the whole body is considered as a unique rigid rod hinged at the level

of the ankle, whereas the feet are modeled with no inertia and assumed to be fixed with

the platform. More in detail, let assume the three reference frames: Rg = {O, x̂, ŷ}

representing the global one; Rp = {O′, û, ŵ} the platform RF whose origin coincides

with the ankle joint (O′), and Rb denotes the pendulum RF with the origin in O′. The

entire mechanical system presents two degrees of freedom given by q(t) = [x(t) θ(t)], where

x(t) represents the backward displacement along the horizontal axis (Fig. 2.2), such degree

of freedom was used to inject a disturbance rather than model a control action as done in

other works [43, 44]. The θ(t) is the sway angle of the rod with respect to the vertical axis

ŵ, providing information regarding the COM sway and representing the controlled variable

for the process. As for the unperturbed stance modeling the mass m of the subject can be

considered concentrated in the COM.

In order to derive the equation of the system, conservation of the angular momentum can

be applied:
dL
dt

=
n∑
k=1

Mk/O
(2.1)
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where the term dL
dt

is the rate of change of the angular momentum of the mechanical system

and
∑n
k=1 Mk/O

represents the sum of all moments generated by external forces with respect

to the origin of Rg. In this case n = 2, since the moments acting on the system are: Mg

caused by gravitational field acting on the center of mass m and the global torque applied at

the ankle, generated by the ground reaction force R applied at the CoP (Fig. 2.2). Then, it

is possible to obtain the equation of the single inverted pendulum:

Ma(t) = ml2θ̈(t)−mglsin(θ(t)) + ḋ(t)mlsin(θ(t))θ̇(t)− d̈(t)mlcos(θ(t)) (2.2)

where Ma(t) represents the total torque generated at the ankle, which depends on the

linear displacement d(t), angular displacement θ(t) and their time derivatives. The linear

acceleration d̈(t) acts as an input that generates the inertial disturbance for the system.

Another source of disturbance is given by the Coriolis term, which is the element in (2.2) that

depends on the linear velocity ḋ(t) and angular velocity θ̇(t). It should be noticed that the

net torque measured Ma(t)contains the sign of the active control due to CNS and the torque

due to the disturbance. Hence, to retrieve the control torque at the ankle, the following

decomposition has been taken into account:


τd(t) = −mglsin(θ(t)) + ḋ(t)mlsin(θ(t))θ̇(t)− d̈(t)mlcos(θ(t))

τc(t) = Ma(t)− τd(t)
(2.3)

where Ma(t) is the external ankle torque, obtained as the cross product between position

vector of the CoP (t) with respect to the ankle joint and the ground reaction force R(t)

(figure 2.2). τd(t) is the torque generated by the disturbances while τc(t) is the internal

control torque modeled as the difference between the measured Ma(t) and the disturbance

torque τd(t), derived by the model. The aforementioned mechanical perspective permitted

a better interpretation of how data were related each other in the experiment. Moreover

the disturbance torque in (2.3) clearly shows that the disturbance is coupled with the sway

angle θ(t), challenging the identification of generalized models of the CNS in perturbed

posture. For this reason, some procedures used for mitigate such drawback are reported in

the following.
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2.2.3 Data preparation

For each subject, data series of 1 s were considered, starting from the beginning of the

perturbation for the EO, EC and DT conditions. This was motivated, by the aim of

examining the control dynamics taking place during the transient phase of the response,

avoiding the possible voluntary control effects arising whether greater temporal epochs are

taken into account. This assumption appears in agreement with other studies dealing with the

same topic [42, 45, 46, 29]. The kinematic data were filtered with a second order zero-phase

low-pass filter with 10 Hz cut-off frequency, whereas the kinetic data were low-pass filtered

at 15 Hz, then detrended and down-sampled at 100 Hz.

The inverse dynamics and the decomposition 2.3 were used to retrieve τc(t) as the difference

between Ma(t) and the disturbance torque τd(t). An example of the control torque τc(t) of a

representative subject, for the three considered conditions, e.g. EO, EC, DT, are reported in

figure 2.3.

For what concernes sEMG data, the GA and TA signals of the dominant leg are taken into

account and band pass filtered between 30 and 450 Hz. After that, the root mean square

(RMS) is computed and down-sampled at 100 Hz. to obtain coherent temporal representation

among all the data types. At the end of such step, for each subject and for each condition 4

time series made by 100 samples were obtained, that is, the control torque τc(t), the sway

angle θ(t), and the RMS of GA and TA. Such data were used in the identification procedure

to retrieve a model of the neuromuscular control.

2.2.4 Identification Procedure and Analysis

In this work, the piecewise affine (PWA) paradigm was used to model the time-series behind

the neuromuscular control. Such models are a representation of hybrid systems which can be

obtained as first by partitioning the regression space into a finite number of non-overlapping

convex polyhedral regions, then by identifying linear/affine subsystems within each of the

partitions [35]. As highlighted by [34], one can arbitrarily select a number of finite partitions

in order to approximate, with a certain degree of precision, the relations between the regressors

and the outputs. Hence, such PWA models have been employed to approximate a nonlinear

continuous behavior by a collection of linear or affine sub-models, each of them valid only

in a certain portion of the data space. In the following, the mathematical tools needed for

describing such models are reported. As first let consider a system in the input-output (I/O)
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Figure 2.3: Control torque τc(t) for a representative subject measured in the three experi-
mental conditions.

form:

yk = f (xk, ek) (2.4)

where yk ∈ Rp is the output vector, xk ∈ Rnd is the regression vector, and ek ∈ Rp is the

noise vector, which includes lagged values of the input uk−i and the output yk−i. Following

this representation, for a hybrid system the following holds[40, 34]:

yk = f σ(k)(xk, ek) (2.5)

where yk, xk, ek are as in (2.4), and the discrete state σ(k) ∈ {1, . . . , s} selects the active

sub-model {f j}sj=1 at time k, where s is the number of sub-models. The discrete state σ(k)

depends on the regression vector xk, i.e., σ(k) = j if xk ∈ Xj , where Xj ’s are regions that

form a partition of the whole regression space X . Hybrid system identification, in the form

given by (2.5) requires a parameterization in order to identify an opportune I/O data relation.

Hence, (2.5) becomes [34, 40]:

yk = f σ(k)(xk[θσ(k)], eσ(k),θσ(k)) (2.6)

which implies the determination of all the parameter vectors {θj}sj=1 and the number of

sub-models s constituting the system. In passing, it is also necessary to solve a classification
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problem: it is required to classify which part of data is described by a sub-model rather than

another one [40, 37]. To be noted, the form given in (2.6) is yet a general representation

in which the functions f σ(k) can assume also a non-linear relation with respect to their

arguments. However, as highlighted in [37, 34, 40] linear sub-models made by autoregressive

with exogenous input (ARX) systems provided remarkable results in describing also complex

dynamics [34, 36, 37]. Literature defined the structure of (2.6) made by ARX sub-systems

as piecewise affine autoregressive with exogenous input (PWARX) model.

The general form of PWARX can be found in many works [35, 36, 34, 37, 40]:

yk =



θ>1

xk
1

+ ek, if xk ∈ X1

θ>2

xk
1

+ ek, if xk ∈ X2

...

θ>s

xk
1

+ ek, if xk ∈ Xs

(2.7)

for (k = 1 . . . N), where yk ∈ Rp is the output vector and ek ∈ Rp is the noise at time k.

The regression vector xk ∈ Rnd can assume the following form:

xk =
[
y>k−1 . . . y>k−ny

u>k−1 . . . u>k−nu

]>
(2.8)

where uk ∈ Rm is the input vector and nd = pny + mnu, with non-negative integers ny

and nu representing, respectively, the output and input lag order [37]. Let X ⊆ Rnd be

the regression space, and Xi, (i = 1, 2, . . . , s) represents a convex polyedral subset of X .

Each polyedron Xi is assumed to satisfy Xi = {xk ∈ X : Hi [xk 1]> ≤ 0 }, (i = 1, 2, . . . , s),

Xi 6= ∅ ∀i ∈ {1, 2, . . . , s},Xi∩Xj = ∅ ∀i, j ∈ {1, 2, . . . , s}, i 6= j, and
⋃s
i=1 Xi = X [35, 34].

Each row of Hi defines a separating hyperplane between Xj and the other regions [34].

Indeed, if the PWA map is assumed to be continuous, the model parameters and the partition
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of the domain are not independent. At the switching surface between two modes, it must

hold that [34]:

θ>i [xk 1]> = θ>j [xk+1 1]>, 1 ≤ j < i ≤ s (2.9)

To be noticed, assuming the presence of only two sub-dynamics for the PWARX model, the

state points xk belong either to X1 or X2 with just one separating hyperplane characterized

by the normal vector H1. Hence, in this case, when the condition H1 [xk 1]> ≤ 0 holds,

the dynamics is driven by the first subsystem. When the latter condition does not hold, a

switching to the second subsystem occurs and the system evolves accordingly.

The identification of a PWARX model for the neuromuscular control required firstly to

define the dimension of the regression space nd and the lag orders nu and ny for the input and

output data respectively. This could be a not trivial aspect when no information is available

regarding the order and the dynamics of the neural controller. Hypothetically. Such kind

of information should be retrieved form the data in order to parsimoniously select a model

structure that provides high generalization properties of the model without disregarding the

fitting quality of the data themselves. Moreover, while the output is τc(t), the exogenous

inputs that could be relevant to build the model are the sway angle θ(t) and the muscles

RMS data. This great amount of exogenous information can further challenge the selection of

the model structure. Thus, as suggested in [47], one can take advantage from the minimum

redundancy maximum relevance principle (mRMR) to select the exogenous inputs, their lags,

and the lags relative to the autoregressive part of the model. The mRMR selection algorithm

was formulated by Ding and Peng [48], and further explained in [49]. Despite the mRMR was

originally developed for categorical target variables, it was extended in an efficient manner

for continuous target variables [50], rendering mRMR feature selection procedures appealing

also for time-series modeling [47]. This constitute an element of novelty for the procedures

adopted, that certainly merits future studies. However, it deserves to be highlighted that in

modern system identification, data-driven algorithms inspired by statistical approaches (i.e.

LASSO penalized regression) provided promising results to optimally select and identify the

model from the data [51, 52]. This justified the methodological perspective investigated in

this work, that required the selection of an opportune space upon which identifies the ARX

sub-models.

Thus, the following pipeline was considered: for each subject and trial, a large regression

space was generated delaying the input and output time-series by a lag limit value equal
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to 20. Three large regression spaces, made by data relative to 7 subjects, were created for

training as follows: seven of ten regression spaces were concatenated for trials, namely EO,

EC and DT, by preserving the lag-coordinates. This corresponds to training-testing dataset

split of 70-30%. Each training set was shrunk with the mRMR algorithm to the five most

relevant components for predicting the torques τc at the current time. Thus, by means of

mRMR, the original large nd training dataset were reduced to spaces with nd = 5, where

the lags selection of the autoregressive (AR) and the exogenous (X) components was driven

directly by the data [40]. In order to test the reliability of the identification procedure and

the capability of the model in generalizing the dataset split of 60-40% and 50-50% were

considered as reported in [40]. When regression space was defined, it was possible to proceed

by analyzing how many partitions the datasets contained. This was done through the spectral

clustering, whereas the optimal number of clusters was evaluated through the silhouette

method [53]. Spectral clustering was employed to overcome the limitation of a parametric

clustering approach, such as the Gaussian Mixture models used in [37], where the data are

assumed to be a mixture of gaussian distributions, by relying on a geometric approach [54].

This can be particularly useful when the latter approach permit a better description of the

data rather than the typical distribution based evaluation.

After clustering, data are labeled and employed to identify the polyedral regions that

partition the regression space. In order to do this, soft margin support vector machine (SVM)

was used, as in [37]. The last step was to identify the ARX sub-models. Possible data points

lying on the hyperplanes were discharged and the closed form least mean square estimation

based on pseudo-inverse matrix was employed to recover the parameters of each sub-model

[37, 27]. Normalized root mean square error metric (NRMSE) was used to quantify the fitting

goodness of the three identified models. Such measure will be referred as fit percentage:

fit% = 100
(

1− ‖ y − ŷ ‖
‖ y − µy ‖

)
(2.10)

where y is the data output, ŷ is the output produced by the model and µy indicates the

mean value of y.
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2.3 Results

Table 2.1 shows the I/O structure built through the selection of nd = 5 and the use of mRMR

algorithm. In EC and DT conditions, mRMR does not report the RMS of TA in the first

five most relevant components (Table 2.1), likely indicating that the information provided

through TA in the regression scheme plays a secondary role if compared with GA. It deserves

to be noted that in DT condition mRMR selected three time lags of the control torque in

the first five most significant components, suggesting a more autoregressive scheme rather

than those employed in the other two cases.

Table 2.1: The five ARX components selected by the mRMR algorithm for the three regression
spaces namely EO, EC, DT, in terms of time-series lags chosen.

Condition
AR X

τc θ GA TA

EO {1;20} 12 20 17

EC {1;20} 19 {17;20}

DT {1;4;20} 18 19

In all experimental conditions, the silhouette criterion suggested an optimal number of

cluster equal to 2 (figure 2.4). This indicates that the data can be described by two sub-

dynamics, e.g. two ARX components and one boundary hyperplane dividing the two clusters.

Hence, for each experimental condition the identified systems are reported in Table 2.2.
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Table 2.2: Regression vector (xk), estimated boundary hyperplane (Ĥ12), and sub-models coefficients (θ̂1 and θ̂2) for the identified models in the three
conditions, i.e. EO, EC, and DT.

EO EC DT

xk Ĥ12 θ̂1 θ̂2 xk Ĥ12 θ̂1 θ̂2 xk Ĥ12 θ̂1 θ̂2

τck−1 0.918 0.889 0.943 τck−1 3.470 0.912 0.929 τck−1 -2.250 1.275 1.196

τck−20 -4.574 0.010 -0.079 τck−20 -2.691 0.005 -0.105 τck−20 4.274 0.001 0.006

TAk−17 0.859 0.004 0.004 GAk−17 0.681 0.006 0.021 GAk−19 -0.805 -0.003 -0.001

GAk−20 2.078 0.003 -0.017 GAk−20 1.506 0.008 0.017 θk−18 1.755 -0.022 -0.002

θk−12 -2.472 0.005 -0.059 θk−19 -3.460 0.008 0.029 τck−4 -0.960 -0.316 -0.238

1 1.235 0.043 0.085 1 -0.340 0.030 0.082 1 -0.003 0.028 0.021
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Table 2.3: NMRSE fitting percentages obtained by the models identified for each experimental
condition. The results are relative to three training-testing data split (70-30%,
60-40%, and 50-50%). S1,. . . ,S10 indicate subjects.

Condition
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Training data Testing data

EO 97.1 95.9 96.2 94.3 93.6 90.8 91.2 91.2 87.5 91.6

EC 95.8 94.8 93.9 95.9 95.5 89.5 93.1 93.1 67.9 92.0

DT 97.9 97.9 96.3 97.2 97.5 97.5 98.1 98.1 95.7 97.4

Training Data Testing data

EO 97.7 95.5 95.8 95.1 93.3 91.5 90.0 90.0 87.7 90.0

EC 96.0 94.5 93.3 96.4 96.0 89.9 92.1 92.1 69.4 91.7

DT 97.9 97.8 96.2 97.3 97.5 97.5 97.7 97.7 97.0 97.3

Training Data Testing data

EO 97.1 96.3 97.2 95.4 94.4 87.9 91.2 91.1 85.4 92.3

EC 95.7 95.1 94.5 95.9 96.7 87.3 93.0 92.9 72.4 91.9

DT 97.5 97.7 96.3 97.5 97.6 96.6 97.7 97.7 97.1 97.3

Figure 2.4: Silhouette spectral cluster evaluation for the three shrink regression spaces in
EO, EC, and DT conditions. Note that the optimal numbers of clusters is given
in correspondence to the maximum of the silhouette values.

The identified models present good fitting in training and testing steps, as highlighted

by the value of the fit percentages for the three dataset partitioning (Table 2.3). However,

it should be noted that subject 9 belonging to the testing data presented a moderate fit

percentage value (about 70%) regarding the EC condition. All the other testing data
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guaranteed high NRMSE (Table 2.3) [40].

2.4 Discussion

The study here reported aligns with the approach followed in the first chapter of this thesis.

Indeed, despite the data driven techniques mentioned in 2.2 can be applied for a wide

spectrum of data and processes, their use in the neural control modeling of the upright stance

maintenance required a deep understanding of the mechanical quantities that challenge the

balance in the case of support base translations. Indeed, although the experimental setup

used for the study is commonly employed in the clinical scenario [4, 46], it produces coupling

mechanical effects between the controlled variable and the disturbance, e.g. between the

sway angle and the support base acceleration, that impacts on the generalization properties

of the model one would identify [40]. Hence, rather than avoid this kind of experimental

setup in favour of other devices like those employed in [33, 6], the present results encourage

the development of ad-hoc procedures for the analysis and identification of neuromuscular

models as emerged also from recent studies [7, 8, 20].

Moreover the findings confirm that a multi-source information analysis that accounts

for kinematic, dynamic and EMG data can be used to infer the modalities through which

CNS handles sensory information and cognitive load while the subject undergoes to sudden

perturbations. Although the control action is a postural reflex and and can be mainly

attributed to lower control structures, part of the response seems to be affected by higher

level CNS control structures [4, 11, 7]. This aspect is supported by the criterion used to

select the information and the time-lags of the input-output data used to identify the models

for the three different experimental conditions. Results indicate that the information content

markedly changed for the three tasks under the parsimonious selection criterion given by

the mRMR (Table 2.1). For instance, all the exogenous information in the EO condition,

can be used to obtain good fits in both the training and testing (Table 2.3). Moreover, the

lag orders of the exogenous signals, i.e. θ, GA and TA, are always greater or equal to 12.

This implies that the delays used to obtain a parsimonious model of the physiological control

torque are of the order of 120-200 ms, aligning to the physiological values reported in the

literature [1].

It deserves to be noted that both muscles play a relevant role in EO, whereas for EC and

DT, the TA muscle activity was not ranked within the first five regressors considered for
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the identification procedure. More precisely, in the EC and DT condition, two GA time-lags

were identified to be meaningful in modeling the control action (Table 2.1) while TA did

not appear, eventually supporting that sensory deprivation or cognitive loads can affects

the CNS control responses also in the case of sudden compensatory balance maintenance

mechanisms. A further reason for which mRMR did not rank TA in the first five significant

regressor components may lie on the nature of the experiment as highlighted in [4]. In fact,

moving backward with respect to the subject’s visual field, the support base induces an

inertial force to the COM that requires firstly the activation of the GA in order to prevent

the subject from falling forward [4]. Following this line, the GA muscle activity may reflect

a larger amount of control information with respect to TA, and it can be amplified in the

more challenging conditions EC and DT, offering a more stiffening behavior with respect to

what observed in EO [40].

The role of GA seems to be further enhanced in EC condition, where the presence of two

time lags for the GA muscle activity indicates that the CNS employed the visual sensory

information to regulate more efficiently the redundancy of the control structure [55]. This is in

line with the findings of Albertsen et al.[10], where it is highlighted that postural adjustment

in EC might be promoted by joint stiffening or increment of postural proprioceptive or

vestibular reflex responses. On the contrary, with the presence of vision, the CNS could afford

low degrees of muscle stiffness, which might no longer be possible in visual deprivation [10].

The predominant role of the GA with respect to TA in EC conditions seems to be confirmed

also by the myoelectric activity of the two muscles within the time epoch considered in this

study (Figures 2.5, 2.6).

Indeed, by using the ratio between GA and TA area under the curve as a metric of

contraction prevalence [56], it resulted 2.48±0.43 (EO) and 5.02±0.55 (EC), averaged over all

the participants. However, it deserves to be stressed that the the lack of TA for the identified

models in EC and DT conditions does not mean that the role of tibialis is negligible for the

physiology of balance recovery after the perturbation [57], but it simply means that under a

modeling perspective the role of GA is an essential component in the description of the task

considered.

The identified models for the EO and EC conditions showed a similar ARX structure,

since the number of AR components were the same, incidentally the exogenous component

changed its role passing form EO to EC (Table 2.1). A complete different situation was found

for the DT model (Table 2.1), for which an increase in AR order is captured if compared to
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Figure 2.5: Root-mean-square value (RMS) of the myoelectric activity for the tibialis anterior
(red line) and gastrocnemius (blue line) recorded during the EO trial, from a
representative subject.

Figure 2.6: Root-mean-square value (RMS) of the myoelectric activity for the tibialis anterior
(red line) and gastrocnemius (blue line) recorded during the EC trial, from a
representative subject.

the other two experimental conditions. This structural change could be partially attributed

to the involvement of higher CNS control centers in the cognitive task due to backward

mental counting, hence promoting a more reflex-based control. Indeed, the additional AR

term presented a lag order of 4, (40 ms), which indicated a sudden disturbance compensation.

From a physiological point of view, this could be explained by greater involvement of

the proprioceptive information to produce a postural adjustment (low level scheme), thus

suggesting a control policy mainly driven by the peripheral information. This line holds also

from a kinesiological perspective since previous studies demonstrated that the introduction
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of torque related information for balance regulation in the feedback loop can provide more

robust compensatory mechanism [16, 33].

An important aspect that deserves to be underlined regards the number of clusters, i.e.

the sub-dynamics that silhouettes identified (see section 2.3). Such value was equal to two for

all the three conditions (EO, EC, and DT) and for the different lagged signals, suggesting an

akin control response between the considered perturbed conditions [40]. Albeit interpreting

the two clusters subdivision of the five dimensional data is not straightforward, the identified

models showed satisfactory autocorrelation properties of the residuals (Figure 2.7) in training

and proper fitting percentage in both training and testing as shown in Table 2.3. These

findings suggest that the identification procedure adopted in this work provided generalized

models that did not report detrimental effects neither when the amount of testing data

reached the 50%, with a consequent reduction of data available for training (Table 2.3). Such

training-testing procedure permitted to verify the reliability of the identified control models

in the three different experimental conditions. However, the use of leave-one-subject-out as

validation scheme could provide models able to better highlight subject-specific characteristics

rather than global population mechanisms. Indeed, S9 in Table 2.3 was not completely

described by the identified models in EC condition, which were obtained with the data

belonging to the first 7, 6 and 5 subjects respectively (Table 2.3). Indeed, the NMRSE for

S9 was always not greater than 72.4% in the EC condition. Hence, a leave-one-subject-out

scheme could be employed to highlight whether a behavior like the one above mentioned

can be present also in one of the first 5 subjects never being used for testing. Although this

point was beyond the aim of the present study, it could be potentially useful to characterize

outliers or differences in the neuromuscular control strategy between healthy or pathological

conditions.

To be noted, in section 2.2, the maximum time lag of any variable, e.g. sway angle, torque,

GA and TA myoelectric activity, was set to 20 (corresponding to 200 ms), giving a total

number of possible regressors equal to 80. Therefore, nd = 5 was taken as a fixed value for

two reasons: as first, it guaranteed a robust fitting of the testing data even when the size of

the training set was reduced, promoting the identification of generalized models (Table 2.3).

Secondly, the aforementioned choice allowed to obtain better explainable models if compared

with other techniques such as neural networks or deep learning, for which the goodness of

fitting is favored with respect the model interpretability [40, 58].

By analyzing the switching signals between the two sub-dynamics, it can be observed that
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Figure 2.7: Error signal autocorrelation for a representative subject. The error signal was
obtained as the difference between the output generated by the model and the
measured torque.

the models present one switch (Fig. 2.8), which occurs at 210, 260, 230 ms for OA, OC,

and DT respectively (median values among all the subjects). The aforementioned values are

always lower than about 300 ms, which is the nominal time at which the platform stop to

move. This suggests that the identified neuromuscular control models work with a certain

control policy in the first part of the experiment, where the inertial force suddenly changes

due to the presence of the support base acceleration (2.3), and switches to another policy

when the inertia is reduced (after 300 ms), eventually confirming that the data partitions are

consistent with the physics of the experiment. This suggests that the models made by two

ARX components capture a significant amount of information, confirming the line proposed

in [18] regarding the capability of black box modeling to be sensitive to balancing strategy

changes. Hence, the approach here proposed can be employed in conjunction with more

classical posturographic analyses to investigate the neural policies adopted for maintaining

upright stance challenged by external disturbances [40].

Compering the IP model employed in the first chapter and the one proposed in section

2.2, it is possible to observe that the latter does not present any linearization even if the

use of linearization is a common procedure in both unperturbed and perturbed posture

modeling [12, 18, 6]. Nevertheless, the use of non-linear IP is justified by the nature of the

experiment, since the perturbation magnitude delivered to the subject during the experiments

were higher than the typical postural noise [2], thus rendering the linearization hypothesis
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Figure 2.8: Switching signal of a representative subject in DT condition. Dynamic index i
corresponded to the i-th ARX dynamic fitted with the i-th data cluster, for i=1,2.
The signal shows one switch and in this case the second dynamic occurred at 230
ms.

an over-simplification of the problem. Such disturbance, at the same time, guaranteed a

single-link IP description of the stance as observed in [45] where the same procedure was

employed. This, together with the first trial effect avoidance due to trial repetition (see

section 2.2), allowed to evoke ankle strategies from the subjects, eventually providing a set

of data that effectively account for stereotyped responses of the CNS.

Confirmations regarding the non-linear properties of the process can be inferred also from

the ARX sub-model coefficients: for a given regressor, either a change of the magnitude

or the sign, or even of both were obtained (Table 2.2), indicating that unimodal linear

controllers may be not adequate to fit postural data obtained through support base movement

perturbation. Nevertheless, a piecewise approach seems to be adequate to successfully model

the process when the final goal is the physiological interpretation. In fact, despite other

kinds of models, such as nonlinear ARX (NARX) or PWNARX, could be applied, the

potential benefits in terms of data fitting would be obtained at the cost of poorer and more

difficult interpretability of the results, hindering their practical use in the clinical context

[40, 18]. Moreover, it is noteworthy that despite the single-link inverted pendulum represents

a simplified model of the human upright stance, it appears suitable for modeling stance

maintenance in perturbed conditions. Indeed, many previous studies investigated balance
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responses to external perturbations relying on single-link inverted pendulum model, where

the ankle joint is the only actuated joint for counteracting the disruption [16, 59, 60, 61]. In

addition, as also observed in unperturbed posture modeling, the single-link IP constitutes

the core for the description of any balancing task, indeed, also in dynamical conditions, the

multi-link structure employed can often be reduced to the COP-COM relation [62, 63, 64],

hence basically to a single-link IP description.

It deserves to be pointed out that discontinuous systems [32] with multiple dynamics were

employed to model upright maintenance in perturbed [21], and unperturbed conditions, with

internal physiological noise sources [13, 14, 65]. The latter resulted in highly explainable

models and constitute a great advance toward the understanding of neuromuscular control

CNS actuates in posture maintenance. In the PWARX identification context, the idea of

multiple dynamics with possible discontinuities is still preserved; thus, the high fits obtained in

this study seem to confirm the hypothesis that neuromuscular control of upright stance can be

modeled as a multi-dynamic process [14, 13]. The use of PWARX in modeling neuromuscular

control merits further investigations and additional efforts will be devoted to the investigation

of the entire body chain, whose employment would provide valuable additional insights

regarding the dynamics of balance response to a sudden external perturbation [40]. These

aspects should be taken into account in future studies, since they require the use of different

system identification approaches, e.g. multi-input multi-output, and the acquisition of

kinematics and myoelectric activity also from the upper segments of the human body [40].

Eventually, such kind of system identification framework can be also applied in posturographic

data analysis and other motor tasks, e.g. gait, in relation to different experimental conditions

or populations, such as elderly and pathological individuals.

2.5 Remarks and personal perspective

In these two chapters, it has been highlighted the line followed for the study of neuromuscolar

control in human balance maintenance. An important aspect regarded the finding of a

common ground between the more classical perspective of posturography and the use of

model based approaches. Indeed very recent works in which data and models were used

in conjunction for inferential purposes demonstrated their values in the assessment of the

detrimental effects due to neurodegenerative disease [66]. However, this research line is well

recognizable in previous works [18, 9]. Here, such research line was pursued having the
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possibility of employing a large spectrum of newest techniques, which emerged from the

control and data science theory. Moreover along this path, it was found another research

perspective that aligns with the one above mentioned and confirmed in [67]. Indeed, despite

the inferential purposes are of key importance, also the assessment of appropriate data analysis

techniques are of great importance in the advancement of neuromuscular control modeling

and analysis. To do this, one should start from physical models which demonstrated to be

able in generating plausible physiological data [64, 67]. Thus, it was particularly important

to give attention to the formalization of the human balance maintenance as a biomechanical

problem.

In the next chapters the attention moves toward other problems related to the neuromuscu-

lar control, which are focused on voluntary movements and related to the electromyographic

signal processing. Such research line constitutes the second part of this thesis, and it is

motivated by the recent advancement in the field of biomechancs and neural engineering,

which grounds the bases for new engineering applications.
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Chapter 3

Muscle Onset Detection

3.1 Introduction

Muscle onset detection (MOD) problem plays a fundamental role in different applications

in the field of biomechanics and motor control. Indeed, knowing the instant at which a

certain muscle passes from a relaxed to a contracted state, and vice versa, is a basic kind of

information that can be extracted from surface electromyography (sEMG) signals through the

use of many different algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Before to enter into the technical

details, it is important to give a perspective regarding the needs behind the development of

such techniques and the role that the aforementioned information plays in the clinical and

application scenario. Rhythmic movements, controlled voluntary or involuntary, such as gait

or breathing, are just examples where the timing of muscle activation can characterize the

physiological state of the subject [11, 12]. In neuro-physiology, the evaluation of muscles

activation latency with respect to a given external perturbation, i.e. postural reflex, is

commonly employed to characterize the pathological group versus the control group [13, 14].

In such clinical applications, automatic methods of MOD, can thus be employed to render the

analysis more direct, possibly merging clinician experience with robust detection algorithms

[15].

As literature highlights, sEMG has been widely employed in wearable robotics and MOD

found application in different assistive technologies [16, 17]. In pattern recognition myoelec-

tric control, for instance, the onset detection analysis plays a key role for automatizing the

segmentation of sEMG epochs upon which signal features can be extracted [18]. Further,

end-effector rehabilitation robots, exoskeletons, and assistance robots employed onset de-

tection to trigger their assistive action [19, 20, 21, 22]. Other sensing technologies such as
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electroencephalography (EEG) or inertial measurement unit, can be used to trigger assistive

devices[23, 24, 25]. However as emerged in [26], even a simple threshold based detection

algorithm constitute a viable alternative to more cumbersome solutions such as the EEG.

Moreover the use of sEMG data is recommended in order to obtain accurate detection of the

movement onset [25].

It is worth noticing that, threshold based or other detection algorithms, tend to degrade

their performances when the signal to noise ration (SNR) decreases. Despite this can seem a

trivial consideration, many practical circumstances present the aforementioned detrimental

condition. Indeed, the weakness or alteration of muscle activity due to pathology affecting

the neuromuscular system such as stroke, spinal cord injuries or Duchenne dystrophy could

render more difficult the MOD [27, 28, 29, 30]. Since this can negatively impact on the design

of assistive solutions based only on sEMG, literature reports studies in which information

fusion paradigm, i.e. combining sEMG with other type of information, could be employed

for managing the human-robot interaction [17, 25, 31, 32]. However, different linear and

non-linear filtering solutions were proposed to mitigate the noise effect in MOD algorithms

such as Wiener filter, wavelet transform, subspace approaches and Teager-Kaiser energy

operator (TKEO) [28, 33, 7, 6]. Despite the signal processing techniques reported are just a

limited portion of a continuous growing research field, it is well acknowledged that TKEO

constitutes a preconditioning signal block used in many different detection schemes, ranging

from threshold to statistic-based algorithms [34, 6, 4, 9]. Considering that, in this work,

attention was given to the use of TKEO and its extended version, that is ETKEO, as tools

for sEMG signal preconditioning [16]. The latter represents an attempt to generalize the

definition of the TKEO by introducing three time-lag coordinates that can be tuned to

cope with the intrinsic variability of the sEMG signal. Such extended version can improve

the localization of changes of instantaneous amplitudes in the signal if compared to TKEO

[35, 16]. Indeed, for highly corrupted sEMG signal, the TKEO in its simple version might

not consistently improve the performances of the MOD algorithms taken into account [28, 4],

even showing limited sensitivity to different SNR values [34].

Thus, in the Methods section of this chapter, state of the art and modern muscle onset

detection methods are presented. More in detail, the MOD algorithms introduced are muscle

onset detectors based on threshold (TP), and wavelet transform (WLT) [16, 1, 7]. Regarding

the statistics-based algorithm used in this study, profile likelihood maximization (PLM)

and its fast version are described [4, 9] and finally the well known CUSUM is reported

86



3.2 Muscle onset detection algorithms

[36, 37, 10]. A further section of this chapter describes the TKEO and ETKEO signal

preconditioning filters that can be applied before to use a specific MOD algorithms. A

possible characterization of the ETKEO time-lag coordinates following [16] is also reported.

Then, in the Results section, the comparisons between TKEO and ETKEO preconditioning

using the algorithms cited above over a public available dataset containing sEMG signals

SNR≤8dB are shown.

3.2 Muscle onset detection algorithms

3.2.1 Threshold-based algorithm

The first MOD technique analyzed regards the threshold based method [3, 6, 4]. Such

procedure presents the following steps. As first, the sEMG signal can be preconditioned

through TKEO or ETKEO, then, it goes through rectification and thresholding steps [6, 4].

The threshold can be defined by the following equation:

Γ = µbaseline + h · σbaseline (3.1)

where µbaseline and σbaseline indicate respectively the mean and the standard deviation (STD)

of the rectified signal baseline pattern [6, 4], while h is a scaling factor that can be selected

in the interval h ∈ [3; 7] without affecting the accuracy of the threshold-based detection

algorithms [4], in this work h = 5 was fixed [16]. After the thresholding, a rough binary

signal of 0 and 1 is obtained, giving 1 when the signal is greater or equal to the threshold,

or 0 in the other case. Then, such sequence can be cleaned with a post-processor as that

proposed in [1]. This should reduce the false transitions detected. Finally the vector t̂tran

containing the estimated instants at which each transition occurred is obtained. In the rest

of this chapter, the procedure above-described is referred as threshold and post-processor

detection algorithm (TP).

3.2.2 WLT-based algorithm

The thresholding step is employed also in the formulation of the WLT algorithm proposed in

[7]. A certain number of approximation levels a for the wavelet filter bank is selected [7].
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Then, the threshold method is applied to the signal:

η(t) = max
a
{WLT (a, t)} (3.2)

in other words, the max at any given time of the approximation levels of the filter bank

is taken. As reported by the authors [7], given a portion off the noise baseline where no

activation is present, it is possible to define:


M = max{η(t)} for 0 < t < Tnoise

th = γ ·M
(3.3)

where M is the maximum of the signal (3.2) taken from the baseline pattern lasting from for

Tnoise s. The threshold th is defined as the product between M and the adjusting constant

γ > 1 [7]. Thus, the sEMG signal once preconditioned [16], undergoes trough the steps here

reported. Additional details regarding the theory behind the methodological aspects of the

wavelet transform and parameter selection can be found in [7].

3.2.3 Likelihood maximization algorithms

The two algorithms introduced until now work without any statistical assumption, since the

decision of attributing to a signal sample the label 1 or 0 based on a threshold defined as

in (3.1), (3.3) corresponds to label a portion of the empirical signal distribution as 1 or 0.

However, it is worth noting that, the idea of using signal distribution as a model to include in

a detection algorithm is widely used.The CUSUM or Maximum-Likelihood (ML) algorithms

are typical examples of statistical detectors [36, 38, 4]. In general the latter class of detector

provide robust and accurate performances, however, most of the ML algorithms reported in

literature employ a gaussian distribution model for the sEMG signal [8, 38].

This can be a too restrictive assumption, indeed as highlighted in [4, 16], the use of energy

operators such as TKEO or ETKEO should render the signal probability density function

(PDF) far from a gaussian one, this was further confirmed analytically in [39]. For this

reason a Profile Likelihood Maximization (PLM) approach that accounts for different data

distributions can be a suitable choice when on deals with detection problems [4]. The working

principle behind PLM for MOD assumes that two different PDF, respectively for the signal

baseline and activation segments, are associated to the entire observations. An objective
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function can be defined as follows:

Lk(k) =
k∑
i=1

log f1(x[i]; θ̂1(k)) +
N∑

j=k+1
log f2(x[j]; θ̂2(k)) (3.4)

where x[i] is the i-th data point of the sEMG signal, which sample index is given by k = 1 . . . N .

The θ̂1(·)) and θ̂2(·)) are the ML estimates of the parameters characterizing, in this case,

the PDFs of the baseline and of the activation epoch, i.e., f1(·; ·) and f2(·; ·) respectively.

From what emerges by previous studies [4, 9], a good model for both baseline and activation

segments, once energy operators are used to condition the sEMG signal is the Laplacian

distribution [4, 16, 9], more formally:

f(x) = 1
2b exp

(
−|x− µ|

b

)
(3.5)

in this case, the two coefficients µ and b are the components of the vectors θ̂(k) in (3.4).

Laplace distribution presents closed form estimates given by:

µ̂ = median(x); b̂ = 1
N

N∑
i=1
|x[i]− µ̂| (3.6)

where x represents a given signal epoch.

Broadly speaking, PLM looks for the argument that maximizes the profile likelihood

function (3.4), which represents the most likely instant where the signal, previously described

by the baseline PDF, appears to be better represented by the PDF of the activation pattern.

Thus, the k at which the maximum of the likelihood function is obtained, represents the

detected muscle onset [4, 9, 16]. PLM-based algorithm presented in [4], compute an exhaustive

research to find the maximum of the likelihood function. This aspect could introduce delay

for real time applications that limits the usability of such technique. For this reason, a new

version of the algorithm named PROLIFIC was presented in [9]. PROLIFC introduces the

use of discrete Fibonacci search (DFS), which theoretically requires logN steps with respect

to the N required by the exhaustive form. Since DFS does not constitute a key aspect for

this work, the reader interested to the technical implementation of such searching procedure

is referred to [9].

The last algorithm employed in this work is the CUSUM algorithm [10, 36], which

found applications in many different detection problems [36]. Let consider the time-series

x = (x[1], x[2], . . . , x[k], . . . , x[N ]) made by independent observations, and consider also
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that the process can be modeled through a PDF characterized by the parameters vector

θ. If a change occurs, the concept of stationarity drops and it is plausible that θ assumes

other values. To detect the point at which such change happens, the algorithm works in

the following way: given the PDFs f0(xk; θ0) and f1(xk; θ1) of the hypothesis H0 and H1

(respectively related to the relaxed and contracted phase of the muscle [38], the log-likelihood

ratio between them is given by

sk = log f1(xk; θ1)
f0(xk; θ0) (3.7)

Thus, one can define the cumulative sum function as follows:

CSk =
k∑
i=1

si (3.8)

while the detection function is given by:

gk = CSk − min
1≤j≤k

CSj (3.9)

Then, a stopping time criterion can be defined by assuming a threshold over gk:

ka = inf{k ≥ 1 : gk ≥ h} (3.10)

where ka is the sample index, estimated by the CUSUM, for which the transition is occurred.

Another possibility is to take the k for which the CS function presents a minimum. Additional

information can be found in [10, 36, 37].

All of these technique accept a signal precondition phases, as previously reported. Thus, in

this chapter, the effects of the TKEO and ETKEO over the methodologies proposed in terms

of performances are analyzed. In the next sections an overview of the TKEO and ETKEO is

presented. Moreover, for the latter filter, a time-leg selection criterion is presented.

3.3 Nonlinear signal energy operators

3.3.1 The TKEO in EMG signal preconditioning

The TKEO represents a widely used nonlinear filter in many detection problems and formally

it is defined in both continuous and discrete form [40, 41, 39]. The latter is the most

90



3.3 Nonlinear signal energy operators

popular for its applicability in digital signal processing applications [41]. Given the sampled

time-series x[·], TKEO can be computed through the following equation:

Ψ[n] , x[n]2 − x[n+ 1]x[n− 1] (3.11)

where x[n] indicates the nth signal sample. It can observed that for computing Ψ[n] is required

the information contained in a symmetric time-window [n− 1;n+ 1], with 1 representing a

time lag. Thus Ψ[n] spans three samples of the signal in a non-linear form, providing a local

description of its energy content [41, 40]. Kumaresan et al. [42] introduced a different way

to compute Ψ[n] that makes possible to see at the energy operators as the determinant of

random matrices. This can be referred as the matrix framework, and it was adopted in other

works [43, 41]. Hence the TKEO is computed as:

Ψ[n] = det
( x[n] x[n+ 1]

x[n− 1] x[n]

) (3.12)

3.3.2 The extended TKEO

Based on the matrix framework, an extension of TKEO was presented in [35] and is named

ETKEO. It is obtained through the determinant of a signal embedded matrix of dimension

(d×d), computed by the following procedure [35]. The signal sequence x[·] is sliced in vectors

of length d, as defined in (3.13):

xn =
[
x[n] x[n−m] . . . x[n− (d− 1)m]

]T
(3.13)

wherem and d are integer time-lag values, with d necessarily greater then 1. Thus, introducing

a further embedding integer time-lag s > 0, it is possible to fix the sliced vectors in the

matrix Xn [35]:

Xn =
[
xn xn+s . . . xn+s(d−1)

]
(3.14)

as previously highlighted, once Xn at time instant n is available, ETKEO is computed as

the determinant of that matrix (3.15).

Ψ(d,m,s)[n] = det(Xn) (3.15)
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Ψ(d,m,s)[·] presents three degrees of freedom in terms of time-lag coordinates, namely d, m

and s, that can be opportunely selected to characterize the nonlinear filter structure. To

be noted, ETKEO generalizes TKEO when d = 2, m = 1 and s = 1 [35]. It should also

be observed that the computation of ETKEO at time n requires a signal time-window of

[n− (d− 1)m;n+ (d− 1)s] samples.

In this view, it is important to note that the ETKEO computational parameters can

significantly affect its real-time practical feasibility in two main ways: the first one regards

the computational load and buffering costs, while the second one involves boundary effects.

Regarding the former, if one considers the structure of the embedded matrix for the ETKEO

computation in (3.14), given a value of d equal to 33 as in [35], at any given time instant n,

the dimension of such matrix is (33×33), thus leading to a computational cost for calculating

the determinant much higher with respect to the case d = 2 (approximately 10 time greater

with MATLAB software running on a MacBookPro IntelCore i5). Moreover, for computing

a single ETKEO sample, a sEMG analysis window of length (d− 1)(s+m) is required. This

means that even for limited increases of s and/or m, the above mentioned window would

dramatically enlarge, leading to an increase in the buffering demands for the signal analysis

and window shifting. As reported in a number of different studies [44, 45], the updating rate

for motion intent recognition, based on myoelectric activation patterns, was typically 100 ms.

Therefore, for large values of d the length of the analysis window could compromise real-time

controllability of the triggered device, due to excessive control delays [46].

The second side effect related to the ETKEO computational parameters involves the

ETKEO boundary description. Due to its formulation, for the n-th sample computation, the

ETKEO requires a signal epoch equal to [n − (d − 1)m;n + (d − 1)s]. On one hand, this

prevents the definition of the ETKEO at the tails of the original signal: for instance given a

N -length signal, the ETKEO can not be defined for the first (d− 1)m samples, while the

last sample for which the ETKEO can be defined is the N − (d− 1)s sample. This means

the higher is d value, the higher is the number of samples where the ETKEO can not be

computed, due to the fact that the ETKEO results not defined on a total of (d−1)m+(d−1)s

samples, located at the signal tails. On the other hand, as a secondary effect in a real-time

scenario, the upper limit of the signal epoch needed for ETKEO computation requires to

wait at least (d− 1)s samples for the forward computation of a single ETKEO sample. This

could lead to an excessive increase of the average controller delay, making its real-time use a

challenging issue [46]. Thus, an opportune tuning of the ETKEO time-lags necessarily has
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to account to the signal properties and application in which the filter operates.

3.3.3 ETKEO Parameters Selection

Based on the considerations reported in the previous section, the problem of ETKEO lags

selection can be thought as an optimization procedure with the objective of minimizing the

detection error in sEMG transitions [16]. Concretely, the procedure constitutes of three

steps:

• Generate synthetic sEMG signals with known SNR and transition instants.

• Employ a detection algorithm.

• Set an opportune cost function to be optimized.

In literature, many EMG signal models were developed due to the complex nature of

the myoelectric signal, each of those methods took into account different physical and

morphological properties of the EMG signal [47, 48, 49]. Due to the need for a controlled

environment for algorithms prototyping, the use of synthetic signals in studies related to

EMG onset detection is a common and widely used procedure [1, 7, 50, 51]. In this study,

the surface EMG model originally formulated in [52], and modified accordingly with [1], was

adopted. Such model was selected for two main reasons: firstly, it permits a simple tuning

of the SNR parameter, secondly, despite it represents one of the first proposed method for

sEMG data simulation, the model results still adopted in studies focused on testing feature

extraction methods and onset detection algorithms [1, 50, 53].

According with [16], sEMG realizations of 1 s (1000 samples) with two transitions and

SNR values: 1.4, 2.1, 3, 5 and 8 dB are generated. Regarding the detection procedure, the

TP algorithm proposed in section 3.2 is taken into account during the lag selection procedure

for estimating the ttran of the synthetic sEMG signals. Based on what highlighted in 3.11,

to ensure that ETKEO could be defined at the tails of the sEMG signals, d is fixed equal

to 2, while m and s are kept free to be optimized [16]. In order to account for the different

SNR values adopted, a cost function made by a smooth and non-smooth part is formulated.

Such objective function is defined with respect to the integer vector Θ =
[
m s

]T
, whose

components are the lag-coordinates in equation 3.15. The smooth behavior of the objective

is defined through:

J = T 2
a.e. + λTΘ (3.16)
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where the first term accounts for the sample errors in detecting the transitions and is based

on:

Ta.e. = ||ttran − t̂tran||1 (3.17)

where ttran and t̂tran are respectively the true and estimated vectors containing the instants

at which each transition occurred. The second term of (3.16) represents a regularization

component, which avoids a selection of a large value for both m and s. This has been obtained

by the dot product between λ and Θ. To give at the regularization term an opportune

weight within the optimization procedure, λ =
[
10 10

]T
is set.

The non-smooth behavior instead is generated by fixing the term M to large value, i.e.

105, allowing to penalize forbidden cases such as:

• the selection of large value for m and s with a consequent impossibility to describe the

original signal through Ψ(2,m,s) at the tails.

• not guaranteed enough samples to describe the baseline through Ψ(2,m,s).

• number of detected transitions greater than the number of the actual ones.

• Ta.e. ≥ ε, with ε = 5 ms.

When all the forbidden cases have been avoided, the cost function drops in the smooth

portion of the search space, returning the value J described in(3.16).

A variant of the genetic algorithm (GAL) proposed in [54] and implemented in MATLAB

2019a, Global Optimization Toolbox, is used to deal with the integer optimization and for

each of the aforementioned SNR value, 100 GAL runs are performed. Each GAL run stop

when the average relative change in the best fitness function value, over 400 generations, is

less than or equal to a tolerance value of 10−6.

Being Θ made by m and s, their weighted averages mSNR and sSNR, for each SNR value

were computed as:

ΘSNR[k] =

100∑
i=1

Θi[k] · Ta.e.(i)

100∑
i=1

Θi[k]
for k = 1, 2 (3.18)

where k indicates the component of the vector Θ, while i is the index related to the

optimization trial. The ETKEO time-lags selected by the optimization, i.e. the components
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of ΘSNR, are reported in Table 3.1.

Table 3.1: Optimal m and s obtained through the procedure above-reported with respect to
the different signal SNR considered.

SNR (dB) 1.4 2.1 3 5 8

m
SNR

11 11 9 9 7

s
SNR

8 7 8 6 5

The lag coordinates reported in Table 3.1 can be used to characterize the ETKEO in

different SNR conditions [16].

In order to study the preconditioning effects of ETKEO over the detection algorithm

reported above with real data is important to consider sEMG signals with transitions

annotation made by experts and possibly ranging a wide SNR range. Thus, for such purpose,

in the next section the dataset employed and its partition are presented.

3.4 Real sEMG dataset for MOD

The dataset used in this study was originally presented by Tenan et. al [5]. It contains 103

sEMG signals for which muscle onset transition was labeled by three experts in a randomized

and double blind fashion. Each expert visually determined the muscle onset transition in a

given signal, repeating the labeling after 24 hours. While the inter-determination period was

never longer than 7 days[5]. This dataset was also used in [4, 9] to compare among different

detection algorithms.

Since the signals provided a large spectrum of SNR ranges, the sEMG signals with their

respective true onset transitions are shunted following the SNR-based partition shown in

Table 3.2, resulting in a total of 52 signals. To partition the dataset, knowing the instant

at which transition occurred for each sEMG (see Figure 3.1), it was possible to distinguish

baseline and activation epochs to compute the SNR; this permitted to exclude those signals

having SNR > 8 dB. Then, the selected signals were preprocessed with a second order,

zero-phase, Butterworth band pass filter with cut-off frequencies at 30 Hz and 450 Hz.

The preconditioning effects of ETKEO with respect to TKEO were evaluated applying

95



Chapter 3 Muscle Onset Detection

(a)

(b)

Figure 3.1: Example of raw sEMG signals extracted from [5] employed with different SNR
values: for SNR= 1.4 dB (Panel 3.1a) and SNR= 7.2 dB (Panel 3.1b). The
dashed red line indicates instant at which onsets occurred.

Table 3.2: Partitions of the testing dataset.
SNR Bands (dB) n◦ of epochs

≤ 2 6

2÷ 4 10

4÷ 6 15

6÷ 8 21

both filter to a same sEMG signal and observing the performances for a given onset detection

method [16]. For each SNR band the ETKEO filter was characterized according to the

optimal values reported in Table 3.1. Absolute detection errors, in terms of mean and median
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values were computed for each preconditioning method. To check the significance of the the

improvements obtained by using ETKEO in substitution to the TKEO, the normality of

error samples distributions was evaluated by means of the Kolmogorov-Smirnov test for all

the dataset. Student’s t-test or the signed variant of the Wilcoxon rank-sum test, were used

when errors were respectively gaussian or not-gaussian distributed. Both tests are specifically

suited for dealing with dependent (paired) samples [55]. Significance was set at 5%.

3.5 Results

Table 3.3 shows the detection errors comparison between the TKEO and ETKEO signal

preconditioning. For each MOD algorithm, i.e., TP, WLT, CUSUM, PROLIFIC, the mean

and median absolute errors are computed. Moreover, for completeness, also the standard

deviation and the interquartile range are presented (Table 3.3). Finally the improvement

carried by using ETKEO with respect to TKEO is additionally showed to facilitate the

reader in the analysis of the results.

As one can observe in Table 3.3, the TP shows decreasing detection errors both in mean

and median term for the two nonlinear filtering procedures employed when the SNR increases.

However, despite this cannot clearly indicate the preference for a specific preconditioning

filter, one can observe that, for each SNR range, the standard deviations obtained are

always lower for ETKEO, suggesting a global increase in the detection accuracy also in

highly detrimental conditions. The latter aspect is strengthened by the significantly lower

(p = 7.9 · 10−4) detection error of ETKEO with respect to TKEO. Another element that

confirm this aspect lies in the improvement magnitudes, which grows in relation to the

decreasing of the. Thus the lower is the SNR the greater is the advantage of use ETKEO

preconditioning.

Regarding the WLT algorithm, it shows a decreasing error trend in median terms. By

compering the first and the last SNR bands, similar improvements of about 40% are obtained.

In any case, the global improvement of the ETKEO with respect to the TKEO resulted

statistically significant, with p = 0.019.

The CUSUM algorithm benefits from the use of the ETKEO signal preconditioning,

showing a percentage improvements in all the cases not lower than 85%. Significance of the

improvement is guaranteed by p = 1.4 · 10−7, showing the highest improvement of using

ETKEO over TKEO among the four considering algorithms (91.8%). Finally, ETKEO
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significantly decreases the detection error also for a robust algorithm as the PROLIFIC

(p = 5.3 · 10−5), which appears to perform globally better than the other methods. Indeed

it presents the lowest median error (54.9 ms) and an almost regular increase in percentage

improvements, which follows the increase in the SNR value.
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Table 3.3: Absolute onset detection errors for each considered SNR band in terms of mean, median, STD, 25-percentile and 75-percentile. All values
are expressed in milliseconds. For each algorithm (TP, WLT, CUSUM and PROLIFIC) the last row reports the global detection behavior
considering the whole dataset. In the last column the improvement of the optimized ETKEO over TKEO is shown, computed with respect to
the median error values. Symbols ‡ and † indicate p < 0.01 and p < 0.05, respectively.

SNR range Mean (ms) SD (ms) Median (ms) 25-Perc (ms) 75-Perc (ms) Improvement (%)ETKEO TKEO ETKEO TKEO ETKEO TKEO ETKEO TKEO ETKEO TKEO
TP

≤ 2 243.7 733.5 381.0 456.4 92.5 765.4 42.9 400.9 199.2 1042.9 87.9
2÷ 4 154.0 225.5 92.0 115.0 125.0 231.2 87.9 121.1 245.6 309.1 45.9
4÷ 6 101.3 201.3 106.2 266.9 58.6 104.0 27.6 47.8 146.6 231.9 43.7
6÷ 8 116.9 182.3 229.8 305.3 41.5 69.8 25.0 28.3 94.2 107.5 40.6
≤ 8 134.2 259.7 203.6 330.1 69.3 109.6 31.5 45.2 146.5 304.7 36.7‡

WLT
≤ 2 139.8 504.5 66.9 578.5 133.3 208.3 126.5 127.4 197.7 861.3 35.9

2÷ 4 145.9 191.5 146.3 254.5 95.0 121.3 33.7 30.3 188.5 191.9 21.7
4÷ 6 165.2 248.5 272.5 335.4 104.9 122.6 31.7 71.2 128.5 223.4 14.4
6÷ 8 92.2 158.8 170.2 311.4 35.2 61.0 7.8 19.4 130.5 122.4 42.4
≤ 8 129.1 230.9 192.3 352.9 78.6 116.9 25.2 33.0 146.5 192.9 32.8†

CUSUM
≤ 2 126.6 827.1 91.9 584.3 149.7 999.0 90.8 153.8 239.7 1182.1 85.0

2÷ 4 222.8 1143.8 170.4 489.2 148.7 1134.5 128.9 883.3 298.3 1483.9 86.9
4÷ 6 93.8 708.1 92.0 492.2 55.7 793.5 23.4 257.1 131.2 1124.8 93.0
6÷ 8 65.5 618.0 54.8 579.2 48.8 729.0 32.2 35.9 80.9 1115.2 93.3
≤ 8 115.5 769.2 114.8 558.7 78.6 958.0 40.3 100.3 152.6 1181.4 91.8‡

PROLIFIC
≤ 2 303.4 357.9 519.4 534.6 104.0 111.1 56.6 57.6 157.7 409.2 7.2

2÷ 4 185.5 460.0 156.8 392.2 136.0 396.7 124.5 140.1 173.3 746.1 65.7
4÷ 6 123.4 371.4 249.6 453.3 50.8 93.8 20.7 40.4 88.6 680.9 45.8
6÷ 8 39.4 229.7 32.7 462.0 36.6 135.7 11.7 30.5 54.8 884.7 73.0
≤ 8 122.2 410.4 236.1 443.5 54.9 137.9 24.9 46.6 125.5 756.6 60.2‡99
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3.6 Discussion

In this work, the ETKEO and TKEO were employed for conditioning the sEMG signal before

applying state of the art onset detection methods. This was done to verify whether ETKEO

outperforms the commonly employed TKEO to enhance the change point detectability present

in the signal. Since the ETKEO presented a more flexible structure with respect to TKEO,

a characterization method to obtain time-lag coordinates has been proposed. Among the

detectors employed, attention was given to TP and WLT since they are commonly employed

[26, 7]. Moreover, two methods based on statistical modeling of the signal and time-series

change point phenomenon were employed, i.e. PROLIFIC and CUSUM. As highlighted

in literature [4, 38], the algorithms developed through the latter approach generally result

in more accurate detectors with compared to threshold-based ones. However, effects of

signal preconditioning step in statistical based methods were analyzed in [4, 9]. Thus, such

investigation deserved an adequate analysisin order to assess the TKEO and ETKEO signal

conditioning effects on the performance of the above mentioned detectors.

Regarding the use of TP algorithm combined with ETKEO, hereafter indicated as ETKEO-

TP, it showed substantial improvements (Table 3.3) for all the considered SNR ranges with

respect to TKEO (TKEO-TP). Results suggest a great advantage of using ETKEO-TP in

highly noise conditions. Indeed, for SNR≤2 dB the ETKEO-TP detection outperformed

TKEO-TP of about 85%. On the other hand, for the other SNR ranges, the improvements

remained still higher than 40%.

Despite its simplicity, the ETKEO-TP detection algorithm showed results (Table 3.3)

comparable with more robust algorithms, such as Wavelet-based (WLT) and Bayesian-based

change point detection methods [4]. In particular, ETKEO-TP applied over 52 signals with

SNR ≤ 8 dB gave results comparable with Bayesian approach [4], while outperformed the

WLT method both in mean (134 ms vs 235 ms) and median error terms (69 ms vs 209 ms). It

should be highlighted that in [4] results were obtained considering the original entire dataset

[5], where 51 additional signals having SNR ≥ 8 dB were included.For this reason, a direct

comparison with respect to [4] cannot be done. However, the considerations stated above

confirm the goodness of the improvements obtained in this work.

Moreover, for the whole dataset made by 52 signals with SNR ≤ 8 dB, ETKEO-TP globally

outperform TKEO-TP of about 36%, showing significant differences over the detection errors

distributions (Table 3.3). A possible interpretation behind such improvement could lie on
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Figure 3.2: The figure shows the bar plots of the outliers percentage among all the epochs
for the dataset analyzed, preconditioning the signal with TKEO and the ETKEO
with optimal time lags. The three classes differs for the choice of h for computing
the threshold.

the properties of the rough binary activation signal at the output of the thresholding step,

which was post processed. By knowing the point at which the transition occurred, it was

possible to count the number of outliers (O class), i.e. those samples that belonging to the

baseline produce 1, or belonging to the activation pattern produce 0. By defining the post

processor as in [1], it can be easily appreciated that the percentage of the samples belonging

to the O class over their relative epoch length negatively affects the performances of the post

processor.

To better explain this aspect, it is possible to observe that for the TP algorithm with h=5,

the percentage of outliers with ETKEO remained lower with respect to TKEO preconditioning

(figure 3.2), confirming once again that outliers percentage highly impacts on the post-

processor output, and a low level of outliers can improve the accuracy of a threshold-based

MOD procedure. Incidentally, it is worth noticing that, as highlighted in Figure 3.2, the

outliers percentage did not depend on the specific h value used to threshold setting (see

(3.1)), supporting that its choice was not crucial for the detection algorithm performances

[4].

The WLT method showed the lowest percentage improvements for all the SNR bands

and also for the whole dataset (Table 3.3). Nevertheless, the variability of the onset errors,

mirrored by the SD values and the 25- and 75-percentile, seemed to greatly reduce with

ETKEO preconditioning, leading to a more consistent onset detection measurements. For

low SNR ranges, the percentage improvements remain in any case limited and below those

obtained for the ETKEO-TP. This aspect underlines the intrinsic reliability of the WLT

detector, which could be linked to the a priori assumptions on the sEMG signal, at the
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base of the algorithm development [7]. However, the above mentioned reliability of the

WLT method appeared to have a global less impact on its performances with respect to the

ETKEO-TP, since the detection errors (mean and median values) remain comparable taking

into account the whole dataset (SNR≤ 8 dB, Table 3.3).

For what concerns the CUSUM algorithm, it appeared to improve in all the considered

SNR bands (Table 3.3) with respect to the other methods, taking the highest advantages

from ETKEO preconditioning. These significant improvements could be outlined bearing in

mind that the CUSUM employed in the present study relies on the variance changes between

baseline and activation patterns and that the energy operators basically increase the SNR,

reducing the noise variance. The ETKEO, with its time-lags > 1, likely leads to weight

more the uncorrelated nature of the noise, eventually lowering the baseline variance while

the TKEO, being a more local descriptor of the signal, seems to be less suitable when used

together with the CUSUM algorithm [37].

Regarding PROLIFIC algorithm, significant differences between ETKEO and TKEO errors

were observed for the whole dataset (Table 3.3), considering that the improvements obtained

through ETKEO signal preconditioning rather than TKEO is about 60%. However, for

SNR≤2 dB, the ETKEO carried out the lowest improvement of 7.2%. The latter underlines

two relevant aspects: firstly, this supports the usefulness of ETKEO preconditioning when

dealing with poor quality sEMG signals [29]. On the other hand, the use of ETKEO, originally

tuned for a threshold detector, appears still able to enhance the performances of a robust

and widely tested technique such as a PLM-like detector [9].

A possible partial explanation of this aspect could ground on the assumptions underling

to PROLIFIC algorithm, where the PDFs of baseline and activation patterns were modeled

as Laplace distribution [4, 9]. Therefore, comparing through Q-Q plot representation the

Laplace distribution versus the PDF of both the baseline and activation patterns, for a

representative sEMG signal (SNR range 4÷6 dB, Fig. 3.3), emerges that a more markable

divergence from the straight line was presented when TKEO preconditioning is applied. This

indicates that ETKEO provides a PDF with a shape closer to a Laplace distribution, and

thus it better meets the assumptions behind the PROLIFIC algorithm [4, 9].

In particular, the PDF characteristics of the preconditioned signals seem to play a role

also in the improvements of the TP algorithm, despite its different nature with respect to

a PLM-based method. Since the former does not foresee any a priori knowledge of the

signal PDF, in TP algorithm it is important to have a limited number of outliers in the
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Figure 3.3: Q-Q plots of two patterns of a signal belonging to the range 4≤SNR≤6 pre-
conditioned with TKEO and ETKEO against Laplace distribution. Plot (a)
corresponds to the sEMG baseline preconditioned with ETKEO, plot (b) assumes
the same signal precondition, but accounting for the activation pattern. Plot (c)
and (d), instead consider the TKEO signal preconditioning procedure.

rough binary signal, in order to render the algorithm less prone to produce false transitions.

Considering the PDF of a signal, a low number of outliers is mirrored by a reduced thickness

of the tails. The latter feature of PDF was evaluated for the whole dataset and quantified by

means of the kurtosis [56], an index related to the thickness of the tails of a distribution, i.e.

the higher kurtosis is the heavier the tail is. The PDF relative to TKEO showed a slower

decay with respect to the ETKEO (Fig. 3.4), and the average kurtosis resulted 23.3±11.2 for

ETKEO and 33.1±20.9 for TKEO with a statistically significant difference (p<10−6). This

could partially account for the reduced outliers percentage of ETKEO (Fig. 3.2), supporting

that the reason behind improvements grounds on a lower outliers percentage in the signal

provided to the post-processor.

A tendency toward a reduction of outliers seems to guide the GAL logic, despite in the

optimization procedure, a simple TP algorithm was employed, without any requirement

regarding the properties of the signal PDF. However, some considerations about the searching

procedure for the optimal ETKEO time-lags can be pointed out. Considering the aim of the

study, searching the optimal ETKEO time-lags through an optimization based on the TP

algorithm represented a natural option. However, given the results reported in Table 3.3,

where the PROLIFIC method showed the best performance in terms of detection accuracy
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for the whole dataset (54.9 ms), one can argue whether performing the optimization by

the latter could lead to a more refined tuning. Therefore, as a representative case, the

optimization of the Ta.e. term (see Eq. (3.17)) was performed with respect to the ETKEO

time-lags, by using 100 synthetic signals (SNR range 2÷4 dB) and the PROLIFIC algorithm

in a different global optimization framework, i.e. a Bayesian approach [57]. From the 3D

map of the expected improvement (Fig. 3.5) it is possible to appreciate that the parameters

selected by using the thresholding method (Table 3.1) drop in a region of maximum expected

improvement of the Ta.e., i.e. m = 10 and s = 9. This seems to indicate that the optimal

parameters obtained through PROLIFIC are in line with those obtained by the threshold

method, highlighting that they were poorly affected by the particular detection algorithm

and by the global optimization technique. It should also be noted that the Ta.e. term could

suffer from oscillations, presenting multiple regions of maximum (Fig. 3.5). The latter issue

can be avoided or at least limited by introducing constraints and regularizations terms, as

done for the optimization function adopted in the present study.

Figure 3.4: Figure shows the smoothed empirical PDF of one sEMG signal, belonging to
the range 4 ≤SNR≤ 6dB after rectification, considering both ETKEO (blu line)
and TKEO (red line) preconditioning. On the x-axes is reported the value of the
scaled signal, on the y-axes the PDF value. Kurtosis of the two distribution are
reported in the textbox.

As a final remark, it is important to underline that the ETKEO preconditioning appears

able to improve the accuracy of different onset detection algorithms, also based on different

approaches. In particular, the extended version of the TKEO enhanced the performances of a

simple threshold detector, reaching accuracy results at least comparable with those provided

by different algorithms, which rely conversely on stochastic or physical models of sEMG

104



3.6 Discussion

Figure 3.5: Representative case of expected improvement for the Ta.e. term obtained with
100 synthetic data with SNR in the range 2÷4 dB through Bayesian optimization
framework and PROLIFIC algorithm used for onset detection.

signal and on a priori assumptions on signal distribution. This study entails some ways for

possible future developments. As first, despite the d ETKEO parameter was set at a fixed

value, it could be involved in the parameter selection procedure, representing a further degree

of freedom in the preprocessing step. Eventually, few words deserve to be spent about the

dataset sample size and its statistical value. Although the original dataset [5] encompassed

103 sEMG signals, the SNR band analysis led to an obvious reduction of the available data,

particularly enhanced for the lower ranges. For this reason the statistical comparisons have

been made taking into account the whole dataset with SNR<8 dB, i.e. 52 signals. Thus,

future studies should evaluate the significance of the results using dataset with larger and

possibly uniform sample size for each SNR band.
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Chapter 4

Motion Intention Detection through EMG

4.1 Introduction

In the previous chapter, an overview of the main methodologies employed for muscle onset

detection were introduced. Such procedures allow to know when muscle pass from relaxed to

contracted state, and vice versa, giving the basis for segmenting surface electromyography

(sEMG) signal, eventually providing a rudimental form of information. Indeed, through

signal change point detection techniques one can only take into account that muscle con-

traction/relaxation is occurring. However, many applications involving sEMG in medicine,

assistive robotics, and virtual reality might require the extraction of a more refined form of

information from the sEMG signals [1, 2, 3]. This should not be surprising, indeed sEMG

constitutes a rich source of information upon which design smart human-machine interfaces

in order to control or interact properly with machines or robots [4].

A typical example that guaranteed the growth of myoelectric interfaces for devices control

is the prosthetic hand [5, 6, 7]. As literature highlights [8, 9], it is possible to recognize two

main myoelectric control architectures: the first based on pattern recognition (PR) models,

which can be trained in order to predict a set of gesture, movements that can be mapped at

the lower control level through predefined actuation policies [7]. The second instead, works

upon regression based logic. This latter is referred in general to proportional myoelectric

control and employs sEMG data in order to predict the time course of joints kinematic

quantities [9, 10]. These methodologies should be useful to make more natural and interactive

the control of the external device [11].

However, proportional architectures may present issues due to the data acquisition step.

Indeed, sEMG and kinetic data have to be acquired to generalize an input/output map
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through training, testing and validation of a chosen regression architecture [9]. However,

the level of patient disability could prevent the technical development of a proportional

myoelctric control solution, since the patient could be as weak in certain muscles so that even

starting a movement can be difficult [12, 13]. This aspect can be encountered in rehabilitation

robotics [3], but also in prosthetic control for amputees, hampering the use of proportional

myoelctric architecture [14, 15]. Moreover, the offline and online control performances of such

architectures still present poor correlation. Thus, despite good performances of kinematic

forecasting can be obtained from offline data, online performances are substantially different

from the former [15]. For this reason, pattern recognition control (PRC) architectures results

still appealing to eliciting assistive devices for the upper limb such as end-effector robots,

exoskeletons or prosthesis [12, 16, 17, 18, 19].

PRC techniques permit to retrieve and handle a higher level of information from sEMG,

that results fundamental for the purposes stated above. Indeed, in such framework the

sEMG signals commonly undergo through features extraction step after preprocessing, then

dimensionality reduction and model training can be consiquently perfromed [7, 6].

Despite the hand gesture recognition is one of the largest application field of myoelectric

PRC, the latter can be employed also in motion intention detection (MID) problems. A

crucial difference between MID and other myoelectric pattern recognition problems ground

on the signal windowing used to extract the features, and on the type of application. Actually,

MID problems are in general encountered in the assistive device triggering for rehabilitation

robotics [16, 17, 3, 12], and transient sEMG signals epochs were employed to compute features

[16, 17]. This opens different perspective regarding the assessment of PRC architecture

specifically tuned for dealing with such kind of transient sEMG behavior [13]. Moreover, if

compared to PRC used for hand gesture recognition, the signals epochs are shorter resulting

in a limited amount of data points extracted for training and testing [16, 17, 13]. Indeed

in the former case, windows that capture the sEMG signal in a steady-state condition is

in general considered since transient data tends to be less prone to be easily classified [20].

However, literature highlights the importance of including dynamic data in the design of

sEMG PRC in order to improve the performances of the architectures [21, 22, 23]. This can

be further recognized in triggering assistive devices [17], where the real time applicability is

a crucial aspect, and decision delay should be reduced as much as possible [24].

In this work, MID problems of the shoulder joint using PR approaches were taken into

account. The main reasons behind the study grounds on the fact that the shoulder plays
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a fundamental role for the development of assistive technologies involving the upper limb,

ranging from the rehabilitation robotics to full-limb prosthesis [3, 17, 25]. However, if

compared to other upper extremity joints, i.e. elbow and wrist, the shoulder was less

studied under PR framework. A possible reason behind this could be found in the inherent

complexity of the shoulder, which embodies a high number of degrees of freedom (DoF) to

be decoded [26, 27]. Furthermore, translate the knowledge from classical myolectric PRC

approaches to shoulder MID problems constitutes per se an aspect that deserves to be

investigated and it was considered in this study. Indeed, several feature-sets involving time

and frequency representation of sEMG signal have been employed through the hand gesture

recognition literature [28, 19], however, the evaluation of the above reported features were

not systematically performed for the shoulder joints as well as for MID problems involving

dynamic data. In [26], for instance shoulder gesture recognition was performed employing

steady-state portions of sEMG data for the feature extraction step. While in [25], a limited

number of sEMG features were extracted from relatively long signal epochs.

On the contrary, in this work attention was given to the sEMG feature commonly used in

pattern recognition problems, but extracted from transient EMG signals. Both time and

frequency domains features have been investigated, firstly by analyzing their behavior for

synergistic (latent) muscles pattern recognition in four kind of four shoulder movements.

Then, time and frequency domain features were treated in a more complex MID problem

involving eight shoulder movements. In case accounts also the study of the feature reduction

step through principal component analysis (PCA) [7]. To deal with these experiments, a

public available sEMG dataset was employed [29]. Thus, in the next section of the chapter

the latter dataset is introduced. Then, some aspect related with sEMG signal windowing,

feature extraction together with the PRC architectures employed are presented [30, 13]. The

experiments and the metrics for assessing the feature stets and PRA performances have been

accordingly described. Results are eventually reported and discussed.

4.2 Methods

4.2.1 Dataset presentation, signal preprocessing and segmentation

The dataset employed for this study was presented in [26] and public available at [29].

Authors recorded the sEMG signals and the shoulder angles of eight subjects (four males

and four females) aged 25 ± 1.8 years underwent to eight shoulder movements, each of them
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repeated ten times. In particular: shoulder flexion (FL) by 45◦, 90◦, 110◦; hyperextension

(HY) by −30◦; abduction (AB) by 45◦ and 90◦ and shoulder elevation (EL) by 45◦ and 90◦

in a 45◦ externally rotated plane [26]. Electrodes were placed over the following muscles:

clavicular and sternal heads of pectoralis major, serratus anterior, trapezius descendent,

trapezius transversalis, trapezius ascendent, infraspinatus, and latissimus dorsi. Data were

acquired with a sampling frequency of 1 kHz, the muscle taken into account are commonly

recognized as crucial for synergistic activation and generation of the upper-limb movements

[31]. Given the availability of kinematic data, the dataset resulted particularly useful for

assessing shoulder MID [13]. Indeed, it is possible to take a sEMG signal epoch that fell

within a MID window of 300 ms centered at the movement onset, thus spanning 150 ms

before and after the beginning of the motion [16, 17, 13]. To be noted, the MID windows are

essentially obtained starting by the knowledge of the movement onset [32], for this reason the

kinematic data together with an accurate visual inspection of the sEMG signals is of great

importance to capture the sense given by the synergistic patterns present in the transient

data that generates the upper limb movements [23]. To better clarify these aspects, reader

can refer to the example showed in figure 4.1. As said, the sEMG data present a dynamic

Figure 4.1: Example of sEMG signal windowing. First six seconds of shoulder angle (gray
dashed line) and trapezius descendent sEMG signal (blue trace) for the first
subject are represented. Both time-series were range-normalized for a better
visualization. The MID window of 300 ms (violet box) is centered on the onset
of the movement and it highlights the signal epoch taken in this case.

behavior during the MID window (figure 4.1) and muscles might not be in fully contracted

state.

For each subject all the sEMG signals were band-pass filtered between 30 and 450 Hz

with a fourth order zero-phase filter [13, 32]. After that, signal epochs can undergo through
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feature extraction process. It could be helpful to realize that at this stage for each subject a

number of 8 (muscles) × 8 (movements) × 10 (repetitions) of signal epochs were potentially

available for extracting features.

4.2.2 sEMG feature extraction

In this section the sEMG feature employed in this study are reported, the literature highlights

many different features used for myoelectric PR approaches [28, 33, 19]. Table 4.1 shows

those that were analyzed and used for the study.

Table 4.1: Features extracted for both time and frequency domains. More information
regarding their computation can be found in [33, 30, 34].

Type Feature Name Abbreviation

Time Domain features

Mean Absolute Value MAV
Variance of sEMG VAR
Root Mean Square RMS
Waveform Length WL

Difference Absolute Mean Value DAMV
Difference Absolute Standard Deviation Value DASDV

Zero Crossing ZC
Myopulse Percentage Rate MYOP

Willison Amplitude WAMP
Slope Sign Change SSC
Fuzzy Entropy FuzEn

Permutation Entropy PermEn
Histogram of EMG, 10-bins HIST

Auto-Regressive Coefficients, 4th Order AR

Frequency Domain features

Mean Frequency MNF
Median Frequency MDF
Peak Frequency PKF
Total Power TTP

1st Spectral Moment SM1
2nd Spectral Moment SM2
3rd Spectral Moment SM3

Frequency Ratio FR
Power Spectrum Ratio PSR

Variance of Central Frequency VCF

As one can observe in table 4.1 two domains of signal representation were taken into

account, that is time and frequency domain (TD and FD respectively), this subdivision is

recognized also in other studies as in [28, 19, 13], and it constitutes a robust framework in
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order to highlight pattern in multi-channel sEMG data.

Let now introduce the TD features, which are commonly employed in medical and engi-

neering applications since they are fast to be computed and they do not require any signal

domain transformation [28, 33]. This was recognized in many different papers [17, 3, 23].

Despite non-stationarity of the signal in transient condition might lead to large variations,

features of this group showed good classification performances [28], thus making their use a

gold-standard in the field.

Given a discrete signal xi of N samples, where N is related to the window time length

used to compute the features, with reference to table 4.1 one can define the MAV as:

MAV = 1
N

N∑
i=1
|xi| (4.1)

the VAR can be computed as an average of square values of the deviation of that variable.

However, mean value of sEMG signal is in general close to zero, thus accordingly with [28]

VAR can be defined as:

VAR = 1
N − 1

N∑
i=1

x2
i (4.2)

RMS is modeled as amplitude modulated Gaussian random process whose give information

related to constant force and non-fatiguing contraction [35, 28], formally it is defined as:

RMS =

√√√√ 1
N

N∑
i=1

x2
i (4.3)

the next feature is the WL, which is a measure of the sEMG epoch taken into account. It is

defined as the cumulative length of the EMG signal over the time segment:

WL =
N−1∑
i=1
|xi+1 − xi| (4.4)

similar to the WL one can compute the DAMV [36], which introduces an averaging term

that contribute to the feature stabilization, more formally:

DAMV = 1
N

N−1∑
i=1
|xi+1 − xi| (4.5)

following the same line, Kim and colleagues [36] introduced also an RMS-like feature, namely

DASDV, which is a standard deviation value of the wavelength the latter can be computed
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as reported below:

DASDV =

√√√√ 1
N − 1

N−1∑
i=1

(xi+1 − xi)2 (4.6)

another classical TD feature is the ZC [7, 6], it is basically a measure of the frequency

information of the sEMG window considered. Its estimation can be obtained using time

domain signal representation through two approaches. One way employs the estimation of

spectral moments of second and fourth order [34]. The other, which was adopted in this

study is the following:

ZC =[
N−1∑
i=1

f(xi+1 · xi) ∩ |xi+1 − xi| ≥ threshold];

f(x) =


1, if x ≥ threshold

0, otherwise

(4.7)

in a similar fashion one can define the MYOP, WAMP and SSC, such features basically

accounts for frequency information of the sEMG signal defied in time, their formal definitions

are reported below:

MYOP =
N∑
i=1

[f(xi)] ≥ threshold;

f(x) =


1, if x ≥ threshold

0, otherwise

(4.8)

WAMP =
N−1∑
i=1

[f(|xi+1 − xi|)] ≥ threshold;

f(x) =


1, if x ≥ threshold

0, otherwise

(4.9)

SSC =
N−1∑
i=2

[f(|xi+1 − xi|) · f(|xi−1 − xi|)] ≥ threshold;

f(x) =


1, if x ≥ threshold

0, otherwise

(4.10)

Literature showed different suitable values for the threshold employed in ZC, MYOP, WAMP,

and SSC computation. Values range from 50 µV to 100 mV. However the threshold should be

defined knowing the background noise properties. If the sEMG activation shows a magnitude
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order much greater than noise, one can put the threshold value to 0.

In table 4.1 are reported also two features that deal with the estimation of the complexity

of the given sEMG time-series. More specifically, FuzEn and SampEn were employed in this

study [30, 13].The FuzEn was proposed as a measure of time-series complexity, providing

the conditional probability that two vectors recognized similar for m samples remain similar

also for the next m+ 1 samples [37]. Given the sEMG signal epoch xi i = 1 . . . N and an

embedding dimension m, (N −m) embedding vectors are constructed as follows:

zmi =
[
xi, xi+1, . . . , xi+m−1

]
− x0(i) i = 1, . . . , N −m+ 1 (4.11)

where x0(i) is a scalar value representing the baseline:

x0(i) = 1
m

m−1∑
j=0

xi+j (4.12)

Each embedding vector zmi contains m consecutive samples of the original time-series xi and

the distance value di,j is computed as the distance between zmi and zmj , using the Chebyshev

metric [37]:

di,j = max |zmi − zmj | i ≥ 1 j ≤ N −m+ 1 (4.13)

The degree of similarity Γmi,j between zi and zj is derived through an exponential function

ψ(di,j , r, n):

Γmi,j = ψ(di,j , r, n) = exp
(
− (di,j)n

r

)
(4.14)

Through Γmi,j , the Φm(r, n) is defined as follows:

Φm(r, n) = 1
N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j=1

Γmi,j

)
j 6= i (4.15)

Then, constructing the embedding vectors for an embedding dimension of m + 1, the

Φm+1(r, n) function is derived according to (4.15) and the FuzEn is finally obtained as the

natural logarithm of the ratio between Φm(r, n) and Φm+1(r, n):

FuzEn(m, r, n) = ln Φm(r, n)− ln Φm+1(r, n) (4.16)
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It is clear from (4.11) and (4.14) that the FuzEn depends upon three parameters: the

embedding dimension m, which defines the length of the embedding vectors to be compared,

the width, and the gradient of the ψ(·) function boundary [37], i.e. r and n.

The main difference between FuzEn and more classical time-series complexity measures

(approximate and sample entropy) is the function used for assessing similarity, which in

the latter case is the Heaviside step function [38], whereas for the FuzEn is the exponential

function (4.14). The use of (4.14) allows to avoid abrupt changes in similarity, due to

the continuous property of the exponential, ensuring to obtain the maximum degree of

self-similarity, since the exponential function is convex [37].

The above mentioned entropy measures are all based on evaluating the distance between

sub-series, using a certain distance metric. In more recent years, different measures for

evaluating time-series complexity have been proposed, relying on a mapping on ordinal or

probability patterns of neighboring points [39, 40]. In particular, the PermEn [39] uses

ordinal descriptors instead of distance metrics. Considering a N -length time series xi, its

embedding representation has the following form:

zd,τj =
[
xj , xj+τ , . . . , xj+(d−1)τ

]
j = 1, 2, . . . , (N − (d− 1)τ) (4.17)

where d is the embedding dimension and must be ≥ 2 and τ ∈ N is the embedding delay, i.e.

the time separation between time-series samples and is commonly set to 1. The elements of

each sub-series of length d are mapped into an ordinal pattern, based on their ranks. For

instance, choosing d = 3 and with an embedding vector equal to
(

7, 2, 9
)
, its ordinal

pattern results
(

1, 0, 2
)
. Then, the relative frequencies of all the possible permutations

πi are computed, obtaining an ordinal pattern probability distribution (note that the number

of possible permutation is equal to d!):

P = {p(πi)} i = 1, 2, . . . , d! (4.18)

Eventually, the PermEn can be obtained as a function of P:

PermEn = −
d!∑
i=1

p(πi) ln
(
p(πi)

)
(4.19)

A common procedure is to normalize the PermEn value [41] by a factor equal to ln(d!), so
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that it ranges within the set
[
0, 1

]
. Based on previous results [30], the triplet

(
m, r, n

)
=

(2, 0.2, 1) for the FuzEn computation was adopted, while for computing the SampEn the

couple
(
m, τ

)
= (3, 1) was employed.

Up to now, all the features described present a dimension not greater than one. On the

other hand, the last two TD features employed in this work are multidimensional features.

The HIST and AR coefficients can be treated as ten and four-dimension feature vectors

respectively. The HIST is an extension version of the ZC and WAMP features [35, 28]. While

the above mentioned features applied a single threshold, the HIST equally space the sEMG

data point in B number of bins and returning the number of samples per bin, here B=10 was

employed. The AR coefficients instead try to model the sEMG epoch as an autoregressive

process, this can also be appreciated in [42], where guidelines for modeling sEMG through

AR process were discussed. Essentially the AR model describes each sample of the EMG

signal as a linear combination of the previous samples xi−p with an additive white noise

term wi. More precisely:

xi =
p∑
k=1

akxi−k + wi (4.20)

the term p indicates the order of the AR process, which in this study was set p =4 [19, 13].

The coefficient ak instead constitute the feature vector to be estimated. To do this a classical

linear method such as Yule-Walker estimation procedure can be applied.

Regarding the FD features, they are commonly employed for the characterization of

muscle fatigue status, but also in the context of sEMG pattern recognition for hand gesture

characterization where they provided good results [34, 19]. The first feature analyzed was

the MNF which can be computed as follows:

MNF =
M∑
j=1

fjPj

/ M∑
j=1

Pj (4.21)

where fj and Pj represent the frequency of the spectrum at frequency bin j and the power

spectrum at frequency bin j, respectively. M is the length of frequency bin [28]. Another

feature widely employed is the MDF, which can be computed considering its definition. MDF

is the frequency at which the spectrum is divided into two regions wit equal amplitude. More

precisely:
MDF∑
j=1

Pj =
M∑

j=MDF

Pj = 1
2

M∑
j=1

Pj (4.22)
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Another feature that was taken into account was the PKF defined as:

PKF = max(Pj), j = 1 . . .M (4.23)

The next set of FD features related to the energy content of the signal, accounting also for

the statistical properties of sEMG signal. They are the TTP (or Spectral moment of order 0),

SM1, SM2, and SM3 and were analyzed in different papers [43, 28, 34]. It is also important

to note that the even order moments can be directly computed without any change of signal

domain by using Parseval’s theorem [34]. Thy are defined as following:

TTP =
M∑
j=1

Pj (4.24)

SM1 =
M∑
j=1

Pjfj (4.25)

SM2 =
M∑
j=1

Pjf
2
j (4.26)

SM3 =
M∑
j=1

Pjf
3
j (4.27)

The last three FD features are defined as ratios between power spectral quantities, they

are the FR, PSR and VCF. The former is computed as the ratio between the low and high

frequency components of the EMG signal [44, 28], to select the upper and lower frequency

bands MNF can be employed [28], thus resulting:

FR =
MNF∑
j=1

Pj

/ M∑
j=MNF+1

Pj (4.28)

The PSR can be viewed as an extension version of the PKF and FR [28]. The PSR is defined

as the ratio between P0 wich is the sum pf the signal power content closed to the maximum

value of the sEMG power spectrum and the TTP:

PSR =
f0−n∑
j=f0−n

Pj

/
TTP (4.29)

here n is set to 20 according with [28]. Finally the VCF is an important characteristic of the
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EMG power spectral density [43], it can be defined using the spectral moments of order 0,1

and 2:

VCF = SM2
SM0 −

(
SM1
SM0

)2
(4.30)

Another aspect that deserves to be mentioned regards the time window and window

overlapping length used to extract the above mentioned features. The milestone study

provided by Smith and colleagues [24] highlighted that an optimal window length of sEMG

signal for feature extraction ranges between 150 to 250 ms. Thus in this study, the MID

sEMG epochs underwent to sub-windowing through windows of 150 ms with an increment of

75 ms (50% overlap) [13, 19]. This should increase the amount of data for estimating the

decision boundaries and reducing the delay of the PRA [24, 19].

4.2.3 Models for myoelctric pattern recognition architectures

In this section, the three machine learning models employed for training the PRA used in

this thesis are introduced. In particular, attention was given to three commonly used PR

schemes that are currently adopted in practical scenarios, that is:

• linear discriminant analysis (LDA);

• support vector machine (SVM);

• multiclass logisitc regression (MLR);

Despite nonlinear techniques based on neural-network (NN) approaches are widely used for

research applications [45, 46, 47], linear architectures such those above mentioned result widely

used in the practice [24]. That choice grounds on the fact that within-subject classification

problems involving EMG PR approaches showed good levels of accuracy when faced with

LDA, SVM and MLR. Moreover, a non significant advantage of using NN architectures

with respect to LDA was observed in terms of external device controllability [48, 24]. This

rendered linear PRA still used for assistive technology design and analysis [3, 12, 49, 19].

However, for completeness, it should be mentioned that deep-learning techniques, such as

adaptive domain NN [50], seem to be suitable when dealing with cross-user myoelectrc control

problems. Hence, since cross-usability remains a key aspect for the enhancement of sEMG

based human-machine interfaces, deep learning or more in general NN architectures should

not be completely disregarded, although their investigation was beyond the scope of this

work of thesis.
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In order to design multi-class LDA, SVM and logistic regression classifiers, the error-

correcting output codes method (ECOC) was used [51]. Such methodology implies the

treatment of a multiclass classification problem through a specific number of binary classifiers

opportunely aggregated [52, 53]. Hence, ECOC is here introduced since it constituted the

basis for building multi-class PRA used in this work. LDA, SVM and MLR binary classifiers

then characterized the ECOC structure above mentioned. In general ECOC methodologies

work in two steps [52, 54]:

1. The coding step, in which a set of B different bipartitions (groups of classes) of the

class set {c1, c2, . . . cL} are constructed. Then B binary classifiers h1, h2, . . . , hB are

trained over the partitions.

2. The decoding step, where given an instance of the dataset, a code-word is generated

using the outputs of the B binary classifiers. Then, the code-word is compared with

the base code-word of each class, and based on a similarity function (distance), the

instance is attributed to the class with the most similar code-word.

Essentially two coding design frameworks are recognized, that is, the binary or the ternary

ECOC coding schemes [52, 54]. For the binary coding, the partitions of class set are specified

by a coding matrix M ∈ {−1,+1}L×B. In the ternary scheme the element 0 is introduced

to mean that for a certain classifier a particular class is not considered. Hence the class

set are mapped in a coding matrix of the form M ∈ {−1, 0,+1}L×B. One can intuitively

infer that one-versus-all class partitioning ground the basis for a binary coding, while the

one-versus-one is commonly considered for the ternary coding [52, 54]. However, it should

be noted that the framework of ECOC multi-class classifiers accepts other binary or ternary

coding schemes. Regarding this aspect, the interested reader can find further information in

[54].

Concerning the decoding schemes, literature highlights different strategies that can be

applied respectively for binary and ternary coding schemes [52, 54]. For the ECOC models

employed in this work, the one-versus-one ternary coding scheme with a loss-weighted

decoding strategy was employed since it should improves classification accuracy [54, 55]. The

predicted class (for a given observation) k̂ can thus be decoded trough:

k̂ = arg min
k

∑L
j=1 |mkj |g(mkj , sj)∑L

j=1 |mkj |
(4.31)
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where mkj is the (k, j) element of the coding matrix M, that is the code corresponding to

class k of the binary learner j, sj is the score given by the j−th binary classifier for an

observation, while g(·, ·) is a loss function [55]. For ternary coding matrices many different

loss functions were potentially available [55, 56]. For the binary learners employed the hinge

loss function g(mkj , sj) = max(0, 1−mkjsj)/2 was considered [56].

4.2.4 The LDA

As previously introduced, linear binary classifiers were aggregated through ECOC. However

it is important to stress the meaning of the term “linear” used for PR applications [57]. Let

suppose a binary classification problem between two classes C = {c1, c2}, here one has to find

a decision surface that permits to attribute at any given data point x the class it belongs to.

In this case with “linear” is meant that the decision surface is a linear function of the input

vector x and hence is defined by (D − 1) dimensional hyperplane, where D is the dimension

of the input space. For binary classification classes should be represented in discrete forms

within the mathematical formulation of the problem. A common procedure is to represent

the classes with a target variable t ∈ {0, 1} that code the classes, namely t = 1 represent class

c1, while t = 0 represents class c2. In this way it is possible to interpret the value of t as the

probability that the class of x is c1, with the values of probability taking only the extreme

values of 0 and 1. Then, by approaching the problem through a probabilistic perspective,

one can infer the probability distribution p(ck|x) and use the inferred such probability and

use the model to make prediction [53, 57]. A possibility is to employ a parametric model

for the aforementioned conditioned probability p(ck|x), for which its parameters are learnt

(optimized) from the training data. To predict a discrete class, one would infer a posterior

probability that lie in the range of (0, 1), this can be achieved introducing a link function of

the form[57]:

y(x) = f
(
wTx + w0

)
(4.32)

where w are the parameter vector, w0 is a bias term, and f(·, ·) is a selected function to model

the conditioned probability. In any case, the decision surface correspond to y(x) = constant,

such that wTx +w0 = constant, and thus the decision surface are linear function of x even if

the f(·, ·) is nonlinear, For this reason the models described by (4.32) are called generalized

linear models [57]. In the following it is possible to observe that the linear discriminant

trained for the LDA binary classifier is a particular case of (4.32). The discriminant is

128



4.2 Methods

defined as a function that takes input vector x and assigns it to a certain class within the set

C, the simplest for of a liner discriminant is a function of the form

y(x) = wTx + w0 (4.33)

one can note that (4.33) is a specific case of (4.32), the term w0 is the bias and its negative

value is called a threshold and it determines the location of the decision surface in the feature

space [57]. It is easy to demonstrate that the weighted vector w characterizes the orientation

of the decision surface since it is orthogonal to every data point lying on surface itself [57].

Based on these concepts, Fisher developed the LDA, which is essentially a dimensionality

reduction tool that can be thought as a classifier. Let consider a binary classification problem,

then let tale the D-dimensional input vector and project it down to one dimension by the

following relation:

y = wTx (4.34)

if a threshold on y and classify y ≥ −w0 as class c1, and otherwise c2 one obtain the

classifier described above. However, the projection onto a one dimension generally implies

a considerable loss of information. Hence, classes that were easily separable in the D-

dimensional feature space may become strong overlapping in one dimension. In, any case, it

is possible to tune the vector w so that the projection maximizes the class separation [57].

If one consider a problem in which N1 points belong to c1 and N2 to c2, so that the mean

vectors of the two classes are given by

m1 = 1
N1

∑
n∈c1

xn, m2 = 1
N2

∑
n∈c2

xn. (4.35)

Thus, the simplest way is to find w such that maximize the distance:

m2 −m1 = wT (m2 −m1) (4.36)

however the simple measure given in the last equation results in an ill-posed formulation

for the reason reported in [57]. Fisher proposed a better formalization of the problem, that

is, find the w that guarantee the largest separation between projected class mean while
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minimizing the class overlapping. The functional to be minimized hence results

J(w) = wTSBw
wTSWw (4.37)

where SB and Sw are the between-class and the within-class covariance matrix respectively.

They can be computed as follows:


SB = (m2 −m1)(m2 −m1)T

Sw =
∑
n∈c1(xn −m1)(xn −m1)T +

∑
n∈c2(xn −m2)(xn −m2)T

(4.38)

By deriving the (4.37) with respect to w is possible, through mathematics, to obtain the

following result[57]:

w ∝ S−1
w (m2 −m1) (4.39)

Such result is known as Fisher’s linear discriminant, though actually it is a specific projection

direction rather than a discriminant in the sense previously reported. It is important to note

that up to now no hypothesis related to the gaussianity of the data for the development of the

LDA was required [53, 57]. However the introduction of gaussianity of the data eventually

permits to model the class-conditional density p(ck|x). Indeed by using the maximum

likelihood approach, it is possible to estimate in closed form the parameters characterizing

the distribution and the optimal threshold for the LDA classifier[57, 53].

4.2.5 The SVM

The second binary classification algorithm employed is the SVM, such technique was in-

troduced by Vapnik as a kernel based ML algorithm, and it found application in many

classification and regression problems [57, 58]. Due to its strong mathematical foundations

and its good generalization capacity [58], such learning machine resulted extremely useful in

the filed of pattern recognition, and it was constantly cited in the filed of sEMG myoelectric

control[7, 19, 18]. Differently from other machine learning techniques, SVM formulation

makes an extensive use of the Lagrange multipliers in order to translate the learning problem

to a convex optimization problem, which can be solved to determine the model parame-

ters [57]. The approach is thus different with respect to more classical statistical learning

techniques such as LDA or logistic regression, although a common perspective behind such

different methods exists [53, 57].
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In the following the SVM is introduced for the binary classification problem as kernel

machine with linear kernel since the latter was used in many different studies [18, 16, 19].

Indeed, for the problems commonly encountered in sEMG patter recognition, the feature

space dimension generally results quite large that the data points are linearly separable, or

can be separated consistently through soft margin hyperplanes. However, for completeness,

the reader interested to a more general formalization of kernel machines is remanded to

[57, 58]. To begin with, let consider the simplest case of linearly separable data as reported in

figure 4.2. As one can observe, several hyperplanes can perfectly separates the two classes of

Figure 4.2: Example of 2D feature space presenting linearly separable data. Figure has been
taken from [58]

points. However, the generalization properties of the machine depends on the location of the

decision hyperplane and on the margin [58]. The latter represent the distance between the

hyperplane and the training data closed to the hyperplane [57]. SVM based its formulation

upon the margin maximization. To better formalize the problem let assume the training data

comprising N data point x1, . . . ,xN , each corresponding to a certain target value t1, . . . , tN

where tN ∈ {−1, 1s} and a linear model of the form:

y(x) = wTφ(x) + b (4.40)

where φ(x) denotes a fixed feature space transformation and b is the bias term. Note that

φ(·) should also be the identity multiplied byx, making (4.40) in the same form of (4.33).

This corresponds to eventually assume a linear kernel for the SVM [57]. The data points

discrimination can be based on the sign of y(x), hence having assumed linear separable
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data points, there exist at least one choice of the parameters w and b so that (4.40) satisfy

y(xn) > 0 for the points labelled with tn = +1 and y(xn) < 0 for those points having tn = −1

[57].

As previously said, there may exist many solutions that perfectly separate the two classes

(see figure 4.2). If there are multiple hyperplanes, then it is possible to find the one that will

give the smallest generalization error. The SVM face such problem by maximizing the margin.

In figure 4.3, it is reported a sketch of the described situation. Given the decision hyperplane

Figure 4.3: Hyperplane selection through margin maximization. Support vectors lie on H1
ans H2 hyperplanes parallel to the decision boundary H. Figure has been taken
from [58]

made by y(x) = 0, the distance of the point x from such plane is given by |y(x)|/‖w‖ [57].

Moreover, considering a perfect classification, for all data points the inequality tny(x > 0)

holds. Thus the distance of a point xn to the decision surface assume the following expression

tny(xn)
‖w‖ = tn(wTφ(x) + b)

‖w‖ (4.41)

The margin is given by the perpendicular distance to the closest point xn, thus it is required

to find a solution to the following problem:

arg max
w,b

{
1
‖w‖ min

n
[tn(wTφ(x) + b)]

}
(4.42)

where the factor 1/‖w‖ has been taken outside of the optimization over n since it does not

depend on n. As highlighted in [57], a direct solution of the aforementioned problem would

be very complex. Thus it should be converted in an equivalent problem easier to handle.
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This can be done by rescaling the parameter w and b so that for all the points in the dataset

the following inequality holds:

tn(wTφ(xn) + b) ≥ 1 ∀n = 1 . . . N (4.43)

This is referred in literature as the canonical representation of the decision hyperplane [57, 59]

(see figure 4.3). For those points for which the equality in (4.43) holds, the constraints are

said to be active while for the other points they are said to be inactive. By definition there is

always one active constraint, because there is always a closest point to the hyperplane, and

when the margin is maximized there are at least two points that satisfy the active constraint.

In this way it is possible to reduce the problem stated in (4.42) to the maximization of 1/‖w‖

which is equivalent to minimizing ‖w‖2 [57]. This can be pointed out more formally through

the following quadratic programming problem [58, 57]:

minimize
w, b

‖w‖2

subject to tn(wTφ(xn) + b) ≥ 1, n = 1 . . . N

Lagrange multipliers an ≥ 0 can be introduce to solve the above mentioned problem. Thus,

the following Lagrangian function can be used:

L(w, b, an) = 1
2‖w‖

2 −
N∑
n=1

an

[
tn(wTφ(xn) + b)− 1

]
(4.44)

The dual representation can be obtained in two steps [57, 58]. First by taking the derivative

with respect to w and b and put them equal to zero, obtaining:

w =
N∑
n=1

antnφ(xn) (4.45)

0 =
N∑
n=1

antn (4.46)
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then, substituting back in (4.44), w and b are cancelled out obtaining the dual problem:

maximize
an

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmK(xn,xm)

subject to an ≥ 0, n = 1, . . . , N,
N∑
i=1

antn = 0

where K(·, ·) is is the kernel function defined as the dot product K(x1,x2) = φ(x1)Tφ(x2).

Kernel functions have to respect certain mathematical properties as reported in [58], the

linear kernel is simply the dot product between the two vectors. Despite the dual problem

could appear disadvantageous, it allows to reformulate the initial problem making use of

kernels, thus maximum margin classifiers can be applied efficiently to feature spaces whose

dimensionality exceeds the number of data points[57].

To be noted the optimization problem proposed satisfies the Karush-Khun-Tucker condi-

tions, that in this case resulted in:


an ≥ 0

tny(xn)− 1 ≥ 0

an{tny(xn)− 1} = 0

(4.47)

Such conditions permit to highlight a practical important aspect for the SVM in terms of

application, indeed only those data points that in the sum of the dual problem presented

a corresponding an > 0 contributed to the identification of the decision hyperplane and

those points are called support vectors (see figure 4.3). Hence, once the model is trained a

consistent portion of the data can be discharged, limiting the the memory and computation

burden to predict new data point. In fact, the prediction can be performed by evaluating

the sign of the model (4.42), the latter parametrized with respect to the learnt an of the

support vectors as reported in [57]. Linear SVMs were trained and aggregated through

ECOC procedure as previously reported, state-of-the art training procedures were employed,

further details regarding the dual problem solution can be found in [56, 60].

134



4.2 Methods

4.2.6 The Logistic Regression

The latter architecture employed is the logistic regression for binary classification. Similar to

LDA, such technique approaches the PR problem in a probabilistic discriminative way[53, 57].

Let consider the two class problem stated for the LDA, It is possible to model directly the

class-conditional density p(x|ck), as well as the class priors p(ck) and use theme to compute

the posterior probabilities p(ck|x) through Bayes’ theorem [53, 57]. Thus for the class c1 one

can write:

p(c1|x) = p(x|c1)p(c1)
p(x|c1)p(c1) + p(x|c2)p(c2) (4.48)

defining

a = ln p(x|c1)p(c1)
p(x|c2)p(c2) (4.49)

it is possible to rearrange (4.48) in he following way:

p(c1|x) = 1
1 + exp(−a) = σ(a) (4.50)

where σ(a) is named logistic sigmoid function. The inverse of the logistic sigmoid function is

the logit and can be expressed through:

a = ln
(

σ

1− σ

)
(4.51)

the latter represents the log of the ratio of the probabilities ln[p(c1|x)/p(c2|x)] for the two

classes, also known as the log odds [57]. What is convenient now is to model a as a linear

function of x, this grounds the base for the logistic regression model. Let thus consider

a(x) = wTx + w0 (4.52)

if the bias term w0 would be characterized it is possible, just for convenience, to extend each

vector xn with the last term equal to 1. Hence, the idea is to employ a maximum likelihood

based estimation procedure to learn the parameters of the model.

Let consider the dataset with the target used for describing the LDA. The likelihood

function can be written as following:

p(t|w) =
N∏
n=1

ytnn {1− yn}1−tn (4.53)
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where yn = p(c1|xn) = σ(wTxn) where σ(·) is the logistic sigmoid function. Using the

cross-entropy error function:

E(w) = − ln p(t|w) = −
N∑
i=1
{tn ln σ(wTxn) + (1− tn) ln(1− σ(wTxn)} (4.54)

taking the gradient of the error function and using the following property:

dσ(a)
da = σ(1− σ) (4.55)

one eventually obtains that the gradient of E is of the form:

∇E(w) =
N∑
i=1

(yn − tn)xn = XTXw−Xt (4.56)

where X is the matrix which rows correspond to the data points xTn . It deserves to be noted

that such gradient takes the same form of the gradient of the sum of square error function

for the linear regression model [57]. Indeed, Bishop demonstrated that the cross-entropy

error function (4.54) is still convex, thus admit an unique minimum [57]. Moreover, despite

a closed form solution in the case of logistic regression cannot be found, an efficient iterative

Newton-Raphson optimization scheme can be used to obtain a solution, as well as learn

the model parameters w. Such procedure makes use of a local quadratic approximation of

the log-likelihood function E(w) by introducing its Hessian. The updating equation can be

synthetically expressed in this way:

w(new) = w(old) −H−1∇E(w) (4.57)

where the matrix H is the Hessian of E, and can be computed using the derivative rule for

σ, previously used also for getting ∇E:

H = ∇∇E(w) =
N∑
i=1

yn(1− yn)xnxTn = XTRX (4.58)

where R is a N ×N diagonal matrices whose Rnn element corresponds to yn(1− yn). The

equation (4.57) can thus be rewritten making explicit use of (4.56) and (4.58):

w(new) = (XTRX)−1XTRz (4.59)

136



4.2 Methods

where z is an N-dimensional vector with elements

z = Xw(old) −R−1(y− t) (4.60)

It emerges from (4.59) that the R matrix is not constant, but it depends on the parameters

vector w. Hence, at each step of iteration such matrix need to be renewed, this is the reason

why that this form of Newton-Raphson method is also named as iterative reweighted least

squares (IRLS), and it is particularly useful for fitting logistic regression classifiers [53, 57].

IRLS results useful to understand the mathematics behind the learning of logistic regression

model, however software libraries available in MATLAB or Python make an extensive use

of stochastic gradient descent (SGD) to train logistic regression classifiers since it results

fast and reliable [56]. Thus, in this study the SGD is adopted to train the binary logistic

regression models.

4.2.7 Description of the myoelectric pattern recognition experiments

performed

The first objective of the work is to highlight which features among that reported in 4.1

presented reliable properties of class-separability for the early recognition of shoulder MID.

For this reason, four basic movements classes are considered disregarding the different degrees

of motion highlighted in paragraph 4.2.1. In particular, shoulder FL by 45◦, HY by −30◦,

AB by 45◦ and EL by 45◦ are considered at this stage. As first, feature-sets made by the

same feature over the eight muscles are min-max normalized and their class separability is

assessed [19, 35]. Then, MLR and SVM models are trained by splitting the same feature-sets

in 70% of data for training and 30% for testing. Within-subject classification accuracy (WSA)

obtained in testing is used as another metric for quantify the goodness of the feature spaces

taken into account [19, 28].

In the second experiment those features that presented a mean accuracy among the subjects

greater than 90% for both PRA are selected. For such features, multiple models are trained

by successively holding out 40%, 50%, 60%, and 70% of the data for the testing phase. This

experiment aims to asses the robustness of the selected features in order to train classifiers

when few training data are available. This mirrors cases that occur in real practice, when

patients cannot undergo to long lasting trials for data acquisition [16]. Also in this case,

WSA obtained in test is used to investigate the effects of reducing the amount of training
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data. For both experiments, hyper-parameter tuning of MLR and SVM architectures were

performed through Bayesian optimization using MATLAB 2020b [19, 32]. Kruskal-Wallis

non-parametric test is employed to evaluate whether changes among the WSA for the same

PRA are statistically significant (significance set at 0.05).

The first two experiments are set to highlight the role of the features and their robustness

in terms of pattern recognition. However, it may be interesting to understand how TD and

FD features work as ensambles in more challenging MID problems. This can be encountered

when, within each shoulder motion, a different final arm configuration would be reached by

the subjects [26]. To do this, in the third experiments, all the eight shoulder movements

previously presented (see section 4.2.1) are taken into account. Rather than SVM, in this

case LDA is used since it seems one of the preferred choice in the real practice [12, 3, 61]. As

reported in [13], WSA is evaluated for both classifiers by a five-fold validation method, using

four different feature sets. In the first and second case, the classifiers were fit employing TD

and FD features and their average accuracy is statistically (t-test). PCA retaining 95% of

explained variance (PCA95) is applied to the whole feature set (TD+FD) to assess how a

common feature reduction technique can impact on both LDA and MLR classifiers.

For completeness, the class separability metrics and the role of PCA in myoelectric pattern

recognition are defined respectively in the next two sections. They are widely encountered in

the literature, thus they deserve to be at least properly introduced in this thesis. Moreover,

these tools are also employed in the next chapter, when the problem of handwriting recognition

is faced through sEMG.

4.2.8 Class separability metrics

In myoelectric based pattern recognition, goodness of the feature spaces can be evaluated a

priori by means of opportune metrics [62, 16, 49]. A well acknowledged indicator is the DB

index, which is generally used to quantify how significantly a cluster overlaps its neighbors

[16], representing a measure of movement class separability [19, 16]. Following [35], to

compute such index one should proceed by defining the cluster similarity measure as:

Ri,j = Si + Sj
Di,j

(4.61)

where Si and Sj represent the dispersion of the ith and jth cluster respectively, and Dij is

the distance between their mean values [35]. The dispersion of a general cluster k can be
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computed as the standard deviation of the distance of cluster samples with respect to their

cluster center [16, 62]. More formally:

Sk =
{

1
Nk

Nk∑
l=1

(xl −mk)T (xl −mk)
} 1

2

(4.62)

where Nk is the number of data points (vectors) in the cluster k, xl is the l-th data point in

the cluster, while mk is the cluster centroid. The last term, namely, the distance between

two cluster centroids k and p can be computed through the euclidean distance, hence:

Dk,p =
{

(mk −mp)T (mk −mp)
} 1

2

(4.63)

Thus, the DB index is defined as the mean of the similarity measures of each cluster with its

most similar cluster [16]:

DB = 1
K

K∑
i=1

max(Ri,j) with i 6= j (4.64)

From the measure definition it follows that the greater is the class separability in a given

feature space, the lower is the DB index [19].

Although the DB index represents one of the main employed metrics, literature highlight

other type of descriptors able to quantify the data clustering properties in a given feature

space. In particular, the separability index (SI) has been employed to quantify the distance

between different movement classes within an EMG feature space, such metric can be

computed as in [49]: given the covariance matrix of class j, namely Σj , and the covariance

matrix of its most conflicting class, ΣCj , we can compute Σ as:

Σ = Σj + ΣCj
2 (4.65)

then, the SI is obtained as follows:

SI = 1
K

K∑
j=1

(
1
2

{
(mj −mCj)TΣ−1(mj −mCj)

} 1
2
)

(4.66)

where K is the number of cluster as for the DB formulation, mj represents the mean of

the jth cluster data points and mCj is the mean of the most conflicting cluster data points

with respect to the jth cluster [49]. It deserves to be noticed that the SI metric reflects the

139



Chapter 4 Motion Intention Detection through EMG

distances between classes in the feature space, hence the greater is the SI the better is the

mapping of the different movements in the given EMG feature space.

The last metric considered is the mean-semi-principal axis (MSA), which was introduced

to quantify the intra-class variability [49]. Each cluster is modeled as a hyper-ellipsoid in the

feature space. Thus, the size of the cluster can be approximated through the singular value

decomposition of the data within each cluster and then averaged by the geometric mean of

the singular values:

MSA = 1
K

K∑
j=1

(
P∏
p=1

ajp

) 1
P

(4.67)

where ajp is the pth singular value of cluster j and P is the dimension of feature space. The

MSA mirrors the agglomeration properties of each cluster and by definition the lower is MSA,

the more the cluster are compact.

4.2.9 Principal Component Analysis: applications in sEMG pattern

recognition

The PCA is a linear feature projection method which is commonly employed in the human

movement analysis to reveal patterns in data of various kinds, including kinematics, kinetics,

electroencephalography and EMG data [63]. In principle PCA aims to compute a smaller

set of basis vectors,namely the principal components (PCs), that defines a low-dimensional

space in which the original data can be projected, preserving most of the relevant initial

properties in terms of variance. Indeed, by means of PCA, the axes of the original feature

space are rotated such that the new coordinate system targets to the directions of highest

data variance [63, 64]. Furthermore, from a practical point of view, the use of dimensionality

reduction allows to simplify the design of the PRA, significantly reducing the computational

cost [63, 65].

As highlighted in [63], there are two commonly used procedures to perform PCA: the first

way is to compute the eigenvalue decomposition of the data covariance matrix, alternatively

one can undergo to the singular value decomposition (SVD) of the centered data matrix,

where centered here means that the mean of each variable is equal to 0.

Let thus consider the m×n centered data matrix X, where m is the number of observations

an n is the number of variables, with m > n. The covariance matrix of X is given by the n×n

symmetrical matrix C = XTX/(m− 1). The first method above mentioned diagonalizes C

to yeld VΛVT , where the columns of V and the diagonal elements λi, i = 1 . . . n of Λ are
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respectively the eigenvectors and the eigenvalues of the covariance matrix. Note that the

eigenvalues of C are arranged in a decreasing order along the main diagonal of Λ and each

of them are in correspondence with a column vector of V. This induces a natural ordering of

the PCs the are expressed as the column of XV, whose variances are in the decreasing order

as well [63].

On the other hand, the use of SVD of X allows to obtain the decomposition X = USVT ,

the main diagonal elements si, i = 1 . . . n of S are named singular values. A relation

between C and S can be pointed out considering that λi = s2
i /(n− 1), the PCs instead can

be obtained as in the previous case, thus USVTV = US.

It is important also to notice that PCA, can be used to give a measure of the features

importance in terms of how much each feature impacts on the PCs [13]. Indeed, each PC

presents a vector size equal to the dimension of the original feature space since it can also

be interpreted as a projection with respect to the original axes. The higher the value of

such projection, the more is the original feature important to determine the PCA component

under consideration. Thus, if PCA components altogether have little projection on one of

the original feature axis, then this one would be considered less important than other axes

for which the overall projection is higher [13]. To formalize this concept, it is reasonable to

consider the absolute value of all PCs components, and then make their vector sum. Indeed,

by taking the modulus allows to highlight coordinates with both positive and negative

projections, preventing such quantities to cancel out. Therefore, the outcome of these

operations is a single vector containing the overall projections. In order to assign to the latter

an importance score, each of them is divided by the total sum of all overall projections. This

would allow to quantify feature importance as a percentage. These aspects can be better

understood in the example shown in figure 4.4.

Such approach based on PCA is used to evaluate the feature importance when all the

TD+FD features are employed in the eight-class shoulder MID problem described in section

4.2.7.
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Figure 4.4: Assume that {û1, û2, û3} are the PCA components of the new reference frame O−
U1U2U3, starting from the initial reference frame O−XY Z (each axis underlines
a feature). In this case, the angles between the original and new reference
axes are respectively: θ1 = 45◦, θ2 = 5.06◦ and θ3 = 45.25◦. As such, PCA
components with respect to the initial reference frame are û1 = (0.71, 0.06,−0.70),
û2 = (0, 0.99, 0.09) and û3 = (0.71,−0.06,−0.70).The overall projection vector
is (0.35, 0.28, 0.37). From this outcome, Y has the least importance in defining
PCA components. This is quite intuitive, since 2 out of 3 components project
mainly on X and Z axes, making these latter two the more relevant features.

4.3 Results

4.3.1 TD and FD features reliability in the four-class shoulder MID

problem

Table 4.2 summarizes the results relative to the first experiment in 4.2.7 together with the DB,

SI and MSA values obtained for the considered feature-sets. Among the TD features, MAV,

RMS, WLm DAMV and DASDV showed good clustering properties (Table 4.2). However,

only DAMV and DASDV overcame the median WSA threshold of 90% for both SVM and

MLR (see 4.2.7). On the other hand, AR showed greater DB values among the subjects, but

it revealed good performances with both PRA. Thus the TD features selected for the second

experiment were the DAMV, DASDV and AR.

Concerning the FD features, SM3 presented the best clustering properties (table 4.2), while

SM2, SM1 and TTP showed a slightly superior DB index, indicating a sparser representation

of the clusters. However, the latter mentioned features showed good performances in terms

of classification for both MLR and SVM. Furthermore SM1 and SM2 presented the two

lowest interquartile ranges (IQR) in terms of accuracy, hence confirming a certain degree
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of repeatability among the subjects. Following the criterion reported in section 4.2.7, three

features for the FD were selected, that is, TTP, SM1 and SM2.
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Table 4.2: Table shows the DB, SI, MSA, and the accuracy for the TD and FD features considered. WSA percentage (median and interquartile range
(IQR)) for both SVM and MLR referred to the first experiment in section (4.2.7). In bold we highlighted the six features that presented a
median WSA% greater than 90%.

Feature Name DB SI MSA MLR (WSA%) SVM (WSA%)
median IQR median IQR median IQR median IQR median IQR

MAV 2.07 0.57 1.54 0.51 0.78 0.21 90.39 7.29 89.89 5.05
VAR 2.27 0.45 1.38 0.34 0.58 0.27 86.40 17.01 86.27 16.51
RMS 2.05 0.52 1.59 0.47 0.77 0.23 88.06 8.27 85.93 8.43
WL 2.02 0.52 1.72 0.40 0.77 0.28 88.96 5.62 90.73 9.00

DAMV 2.02 0.52 1.72 0.40 0.77 0.28 91.07 6.37 92.67 7.19
DASDV 2.05 0.52 1.73 0.39 0.76 0.27 94.38 6.94 93.64 11.23

ZC 3.34 0.79 0.97 0.27 1.30 0.11 69.83 13.08 68.18 16.52
MYOP 2.48 0.88 0.78 0.25 0.12 0.02 72.84 18.82 72.04 12.06
WAMP 3.28 2.72 0.56 0.32 0.14 0.01 54.36 17.07 55.58 18.05
SSC 2.87 0.71 1.11 0.39 1.27 0.15 73.34 8.00 71.66 8.85

PermEn 2.92 0.49 1.01 0.35 1.27 0.17 70.69 12.31 69.24 12.20
FuzEn 2.84 0.71 1.10 0.41 1.24 0.10 70.48 18.10 71.36 15.60
HIST 5.70 0.99 3.42 2.17 0.97 0.11 65.11 6.58 64.87 5.21
AR 3.19 0.50 3.66 0.90 0.41 0.08 92.52 8.82 91.71 9.20
MNF 2.79 1.13 1.17 0.46 1.20 0.20 69.96 16.31 70.87 17.58
MDF 3.67 1.34 0.92 0.35 1.25 0.35 64.30 22.50 59.50 27.52
PKF 2.84 0.36 1.00 0.21 0.55 0.22 80.91 8.58 80.91 10.58
TTP 2.27 0.48 1.39 0.34 0.58 0.27 90.33 11.39 91.27 12.72
SM1 2.29 0.70 1.51 0.35 0.57 0.29 91.14 3.95 90.61 4.28
SM2 2.20 0.56 1.48 0.32 0.60 0.35 90.62 4.75 91.35 4.56
SM3 2.18 0.80 1.32 0.37 0.66 0.33 86.92 8.46 86.89 7.02
FR 4.56 2.44 0.67 0.27 1.26 0.07 54.69 22.47 53.20 20.38
PSR 4.61 1.24 0.66 0.18 1.33 0.13 46.68 14.92 46.41 15.85
VCF 2.73 0.53 1.25 0.35 1.30 0.14 75.43 7.91 75.43 12.28
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Figure 4.5 is showed how the WSA varied reducing the training data (increasing the

holdout percentage). Any significant drop of accuracy using the three FD descriptors with

the same PRA was detected (figure 4.5b, 4.5d, 4.5f). The same can be observed for DAMV

and DASDV (figure 4.5a, 4.5c). On the contrary, AR showed significant accuracy drops

passing from 40% to 70% holdout percentage in the case of MLR classifier (p= 2.1·10−2).

On the other hand, SVM significantly dropped the accuracy passing from 40% to 60% (p=

2.7·10−2) and from 40% to 70% (p= 3.3·10−3) of holdout percentage.

4.3.2 Performance of TD and FD feature in the eight-class shoulder MID

problem

Table 4.3 reports the WSA obtained in the third PR experiment, where eight shoulder

movements were considered. Both LDA and MLR provided good classification performances

exception made for the LDA in the TD+FD case. The latter architecture presented poor

accuracy scores with high variance (12.9%) among the subjects. By comparing both PRA

models, it emerged that MLR outperformed LDA within each dataset considered (table 4.3).

In addition, it is interesting to highlight that the dimensionality reduction of the TD+FD

feature set in the PCA95 set permitted to significantly boost the performances of the LDA

classifier, on the other hand, no significant drop or boost in the MLR was observed when

PCA95 was employed with respect TD+FD.

Table 4.3: Table reports the within-subject accuracy in percentage averaged among the eight
subjects. † symbol indicates p<0.01.

Classifier Feature Domain
TD FD TD+FD PCA95

LDA 86.9 ± 4.9 82.7 ± 5.0 63.8† ± 12.9 88.8† ± 3.3
MLR 91.8 ± 3.0 87.0 ± 5.3 93.0 ± 3.1 91.8 ± 3.4

Regarding the features importance (see section 4.2.9), they were averaged over channels in

order to obtain mean features importance on the core 36 features from the TD+FD set (Fig.

4.6).
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(a) (b)

(c) (d)

(e)
(f)

Figure 4.5: Figure shows how WSA, for both SVM and MLR, varied holding out an increased
amount of data retained for testing (see section 4.2.7). DAMV, DASDV and AR
feature-space (panel 4.5a, 4.5c, 4.5e respectively) are reported on the left side.
Right side reported the remained three FD features selected in the experiment
2, namely TTP, SM1 and SM2 (panel 4.5b, 4.5d, 4.5f). Significant comparison
obtained through Kruskal-Wallis are indicated with * (0.01 <p< 0.05) and with
** (p< 0.01)
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Figure 4.6: Feature importance, averaged over channels, for TD (in blue) and FD (in green)
features.

4.4 Discussion

4.4.1 Role of TD and FD features in myoelectric MID

In this work, the problem of detecting the subject movement intention of the shoulder joint

was faced. Such joint resulted less studied in literature from a myoelectric control viewpoint

if compared for instance with the distal segments of the upper-limb, i.e. elbow, wrist, and

the hand [26, 25]. However, shoulder plays a key role in many motor tasks, such as reaching

or grasping, since it is sinergistically involved by the central nervous system to cooperate

with the other proximal joints [31]. This justifies the increasing interest in the development

of myoelectric control solutions either to guide rehabilitation robots and exoskeleton, or to

study possible control solutions for full-limb prosthetic replacement [18, 3, 26, 25]. Thus, in

this context, the problem of upper limb MID was further analyzed since it constitute a key

step in the real rehabilitation scenarios [16, 17]. Indeed, particular importance was given to

those movements, namely shoulder FL, HY, AB and EL that involve joint degrees of freedom

that are naturally accounted in robotic-based therapeutic contexts [66, 67].

To be noted, differently from other studies where only TD features where considered for

the upper limb MID [17, 16, 3], the possible role of a wide range of FD features was here

investigated[13, 33]. The main reason behind the preference of TD features over FD ones in

such kind of problems lies on the computational cost of changing the signal representation

domain [28].However, for many FD features, it is not required to change signal domain by
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computing FFT [34, 68]. This is of great importance in real time application scenario, where

fast feature computation is required to reduce the global decision delay of the PRA for

working on-line [17, 24]. Moreover, the investigation of FD featured for the shoulder MID

problem seemed to be partially justified also by the results reported in table 4.2 (section

4.3.1), where DB index highlight clustering properties of the FD features comparable to

those expressed in the TD. This is also strengthened by the SI and MSA obtained, which

support the goodness of data clustering of the aforementioned features.

Concerning the first experiment, six features, three in TD and three in the FD, overcame

the median accuracy threshold set at 90% for both PRA. Among the TD features, only

DAMV and DASDV presented the requirement needed to be further analyzed in the second

experiment. In particular DASDV exhibited the best performances in terms of accuracy

among the other features (table 4.2). The strength of this feature in myolectric PR was

confirmed in many different works, where architectures trained with DASDV resulted among

the best performing [36, 28, 19]. This suggested that the DASDV can be a valuable feature

also in the field of shoulder MID, where few but significant features have to be retrieved

for each sEMG channel in order to fast the computation. The last feature that filled the

requirement to be analyzed in the second experiment was the 4-th order AR coefficients,

which is also largely employed alone or with other TD features in works facing MID problems

[16, 3]. Despite this feature worked fine in the above mentioned studies, it tends to generate

large feature space due to four coefficients obtained for each employed sEMG channel. This

aspect can be an issue when the amount of sEMG data is limited as could happen in MID. In

fact, when one reduces the windowing of sEMG data in the transient stage, a lower amount

of data points in the feature space can be retrieved if compared to the static phase of muscle

activity, where 3 to 5 seconds of signal epochs can be employed[13, 21, 69]. The reduction of

the signal epoch may lead to small amount of data for training and testing entailing poor

generalized and over-fitted models [70].

Furthermore, it should be noted that, within the TD feature set, MAV, VAR, RMS, and

WL presented remarkable clustering properties (DB < 2.3) and classification performances

(not below 85%), highlighting once more the expediency of TD features in myoelectric based

MID, and in general for EMG pattern recognition [12, 18, 33].
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4.4.2 TD and FD feature reliability for pattern recognition

Also the second experiment provided confirmation on the FD features suitability and reliability.

As one can appreciate in figure 4.5, TTP, SM1, and SM2 (panel 4.5b, 4.5d, 4.5f) were able to

maintain a good inter-class distinction by reducing the amount of trained data for both MLR

and SVM. As a matter of fact, the accuracy obtained presented median values always greater

than 85%. Here, it is important to highlight that the WSA were computed upon the holdout

percentage of data, while the remaining part was used to train the PR models. The features

that did not present any significant drop of accuracy (Figure 4.5) can be ascribed as robust.

Indeed, in practical scenarios, small datasets for training PRA are generally available, since

patients cannot undergo through prolonged data acquisition sessions [16].

In the same way one can observe that DAMV and DASDV (panel 4.5a and 4.5c respectively)

did not present any significant drop of accuracy, while AR showed significant drops of WSA

(panel 4.5e) which can be attributed to over-fitted models. In fact, the sub-fold division of the

AR training set, during the hyperparameter tuning, led to folds that presented an amount of

data comparable with the dimension of the AR feature spaces. This produced detrimental

effects that grew with the increase of the hold out percentage. This can be explained also

as follows: the dimension of the AR feature space remained invariant (4 coefficients × 8

channels) but the amount of fold data was progressively reduced, eventually providing poorer

generalized models [70].

The other descriptors analyzed in the second experiment presented feature-spaces dimension

equal to 8 (one feature for each channel) and the trained models did not report over-fitting.

This indicates that a multichannel sEMG approach with smaller dimension feature-spaces

made by reliable features are preferable when it is not possible to collect a large amount

of data. Indeed, the hold-out testing performed aimed to assess the performances of the

features in a real scenario, since it is a common procedure to carry out hyper-parameters

optimization, splitting the training dataset through k-fold validation [19].

4.4.3 Features ensambles evaluation

Let now consider the third experiment,in which all the eight shoulder movement classes

reported in the public available dataset were considered [29]. As already mentioned in section

4.2.1, the dataset comprises shoulder movements that offered a certain range of motion for

the final limb configuration. For instance, concerning the shoulder AB, it was performed
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by 45◦ and by 90◦, potentially resulting in two additive classes for PR problem [26]. In

the first two experiments this aspect was not considered, since the primary aim was to

verify the feasibility of using TD and FD features for solving shoulder MID. Thus, with the

third experiment, an additive level of complexity was added to investigate whether one can

recognize finer intention the final limb configuration from transient sEMG data.

To be noticed, this tends to steer the MID problem toward the more classical myoelectric

PR problems encountered in the literature. Indeed, the number of classes involved are

comparable with those one can find in hand gesture recognition [19, 33, 23]. Thus, the

motion intention could be viewed as a particular synergistic muscle activation pattern that

can be recognized in an opportune feature space with an adequate dimension, that can be

obtained through a proper sEMG spatial covering [13]. Thus, rather then facing this aspect

with the “each-feature” approach taken in the past experiments, the entire TD, FD and

TD+FD domains where considered, since the whole amount of data (number of instances)

was grater due to the eight movement classes taken into account. Moreover, when possible,

computing more features permits to avoid possible loss of information a priori, which can

be instead preserved by using ad-hoc dimensionality reduction schemes such as PCA [7].

This justifies the methodological choice of use wider ensambles of features as done in [13].

Further, although the use of the aforementioned feature sets (TD,FD, TD+FD and PCA95)

on transient data might negatively impact on the classification accuracy [26, 20], both LDA

and MLR classifiers reported good WSA, supporting the use of such models for solving MID

problems [12, 16, 17, 3].

The feature importance assessed by means of the methodology proposed in section 4.2.9,

seems to be in contrast to the single feature evaluation provided in the second experiment (see

figure 4.6 and table 4.2). Indeed, the feature that obtained the best classification accuracy

when used by themselves, both in TD and FD, contributed less in the PC95. The latter

instead was particularly affected by the HIST components for the TD, whereas for FD the

most important features identified were the MDF, FR, PSR and VCF. However, this result

should be read under the metric employed for assessing the feature importance which is

the variance of the feature. However, a feature that shows great variance does not imply

that it is able by itself to provide good classification performances. On the contrary, the

results suggest that such features can be mixed or “fused” through PCA. In this case feature

variance can be exploited to retrieve a compressed and meaningful representation of the

data, whereas feature such as DAMV, DASDV, AR and TTP, SM1, SM2 seem to be able in

150



4.4 Discussion

highlighting myolectric patterns through spatial muscle covering.

Thus, despite the results pointed out through experiment two and three seem to be

competing, they reveal two different strategies to develop myolectric pattern recognition

architectures. From one side, one can approach the problem with features that map in

distinct patterns the multiple muscles without the need of data compression. On the other

hand, one can proceed by initially extracting a variety of features and leave to an opportune

dimensionality reduction procedure the burden of collapsing the useful information. The

latter way of reasoning can be particularly suitable when no a-priori knowledge of the process

is available or when a myolectric PRA works in an inter-subject scenario. Despite this was

beyond the aim of this study, one can recognize such processing pipeline in different studies

[7, 71, 72].

From a neuromuscular control perspective, the results provided by the third experiment

may indicate the presence of a fine selective anticipatory action in the upper limb control.

Indeed, despite only transient data features were used, the PR architectures were able to

successfully predict a class that characterize the final limb configuration. This suggests

that a consistent amount of motor planning information can be retrieved from sEMG data

slightly before the start of the arm movements. This agrees with the aspects pointed out

in [21], where the use of transient data in conjunction with static sEMG windows boosted

the performance of the classifiers involved in hand gesture recognition for prosthetic control.

Confirmations of the above-stated aspect can be observed from the neurophysiology of the

motor planning, where evidences suggests that in time-windows of 150 ms are enough for the

nervous system to perform both action selection and movement specification [73].
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Chapter 5

Myoelectric-based handwriting recognition

5.1 Introduction

The problem of motion intention detection faced through surface electromyographic signals

(EMG) allows to better appreciate the potential role that myoelectric-based pattern recogni-

tion architectures (PRAs) can have in many different fields. As already mentioned, robotics

and prosthesis are affine fields over which the EMG signals can be used to retrieve the neuro-

muscular information useful for control purposes [1, 2]. As a matter of fact, the literature

involving myoelectric control is currently receiving many attentions, as also confirmed by the

increasing number of publications per year [3].

A further field in which EMG signals are finding application is the human-machine

interaction (HMI), indeed, the use of such signals permit the user to interact with a certain

program, also in a virtual or augmented reality scenario [4, 5, 6, 7], for gaming or medical

diagnosis aims [3, 8]. Despite simple hand gesture can be used to interact with a machine in

a satisfactory way [9], it is desirable to enlarge the range of commands making more reach

the HMI experience. This opens to the possibility to include more fine gestures of the hand

in addition to the commonly used set of grasps, fingers, and wrist movements [10, 11, 12].

Such tendency can be observed in recent studies where a a large number of gestures and

multiple dataset were taken into account [13, 3].

The recent technological advancement observed in the field of consumer devices have given

the attention to wearable devices i.e. Myo armband, Gforce+ [3, 10], that can be placed

either on the forearm, or on the wrist which appeared to be promising for HMI, so much that

Facebook has recently developed a wrist-armband that acquires also myoelectric activity. The

interest to change the focus from forearm to wrist in the development of EMG-based HMI

161



Chapter 5 Myoelectric-based handwriting recognition

was confirmed in [3]. Indeed, the PRAs trained on wrist data provided similar or superior

performances with respect to PRAs designed upon forearm EMG signals, considering a

number of seventeen gestures in the global case [3]. The aforementioned change of perspective

from forearm to wrist can be justified not only by the goodness of the results obtained, but

also by the needs behind the development of minimally cumbersome interfaces [3]. Hence,

the assessment of PRAs based on wrist EMG data deserves to be further investigated to get

a deeper awareness of the potential role that such joint, with its muscular structures, can

play for the above mentioned purposes.

To understand whether the wrist can be a reliable landmark for EMG based PRA it is

important thus to consider also challenging motor tasks that can be encountered in daily

life activity and that can be useful for HMI. For this reason, in this thesis, the assessment

of EMG-based handwriting recognition was taken into account. Indeed, the handwriting

constitutes, among all human gestures, one of the most complex task to be accomplished,

since it requires a hierarchical activation of the forearm and hand muscles [14, 15]. As

observed in [14, 16], the central nervous system integrates visuo-spatial information and

regulates all the fine contractions of muscles in order to adjust the movement to finally map a

graphical sign into a 2D orthographic representation. As a matter of fact, it has been observed

that the handwriting requires the synergistic activation of different brain areas in order to

coordinate muscles for writing and performing other classical actions that go along with

writing, such as reading, elaborating sentences and understanding the meaning of phrases

[15, 16]. For this reason, it is difficult to establish which specific brain area is responsible for

the pure writing. Indeed, one can observe through brain imaging techniques that the more

common areas activated during writing are the left superior frontal sulcus/middle frontal

gyrus area, left intraparietal sulcus/superior parietal area and right cerebellum, whereas

others zones are related to non-specific motor (primary motor and sensorimotor cortex,

supplementary motor area, thalamus, and putamen) or linguistic processes (ventral premotor

cortex, posterior/inferior temporal cortex) [14, 17].

A further aspect that deserves to be pointed out regards the intrinsic variability in

handwriting styles over individuals, which can depend on the writing method picked up as a

kid, but also on personal preference, the copying of style variants from peers in adolescence,

and later in age, by the amount of writing experience [18], in any case such variability

encompasses static and dynamic properties. A static variation may occur in the size or in the

shape of written symbols, thus same letters may present different height or width, while a
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dynamic variation can occur in sequence of strokes or in writing pattern. Indeed, the degree

of variation depends on the style and speed of writing, with fast writing usually showing

less legibility and greater variation [19, 20]. Moreover, although the highest variability is

mostly observed between different subjects, the handwritten track can significantly vary also

intra-subject [18]. Indeed, personal writing style is strongly affected by external environment

conditions e.g. light conditions and location, and internal condition such as emotional state

[18]. These aspects unavoidably affect the characteristics of the EMG signals of the upper

limb, showing pattern differences among subjects, but also within each subject [21]. The

latter point found a physiological interpretation by considering the redundancy of the human

musculoskeleltal system [21].

From a biomechanical point of view, one can recognize three main muscle groups that

actuate the movement of the pen during handwriting [22, 23]. As first the muscles in

the superior part of the forearm, e.g. Extensor Carpi Radialis Brevis, Extensor Carpi

Ulnaris, Extensor/Flexor Digitorum and Flexor Carpi Radialis; Radial Abduction and Ulnar

Abduction of the wrist joint are commonly used in giving letters width [23]. Moreover it

should be noted that, in the case of left-handed writers, those writing with the hand in

a hooked position above the line of writing exchange the roles of thumb/finger and wrist

movements, so that the latter is responsible for letter height [23]. The second muscle group

encompasses the muscles of the hand: Opponens Pollicis, First Dorsal Interosseus, Medial

Slip/Lateral Slip, Abductor Pollicis Brevis. Flexion and extension of thumb, index, and

second fingers are usually used to give letters their height. The last group involves large

upper limb muscles closed to the shoulder, these muscles are for instance responsible of large

movements of the pen across the pages [23]. However, it is difficult to treat each muscle

group separately when one deal with the hand movements during the handwriting task since

the muscles of the hand are intimately connected with the wrist and the forearm muscles, so

that it is reasonable to approach the study of the aforementioned motor task through the

muscles synergy perspective [24]. On the other hand, from a practical point of view, the

use of a limited number of sEMG probes are unavoidably necessary if one would to render

the user experience, and thus the movements, as much as possible fluent. For this reason,

a typical spatial covering of the forearm and the wrist can be adopted as observed in the

literature inherent to the hand gesture recognition [3, 25, 26].

This also permits to test possible limits that the typical sensing approaches used in

myoelectric-based hand gesture recognition can carries in a complex motor task such as the
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handwriting. Indeed, the problem of automatic recognition of hand-wrote characters was faced

using architecture which inputs are traces images [27], or kinematic data [28, 29], whereas,

the use of sEMG pattern recognition architectures is new and deserves to be substantially

investigated since only two solutions were found in the literature when sEMG signals have

to be used for solving problems related to the handwriting recognition. The first technique

proposed by [30] consists in creating a template (averaging the EMGs over all detected

epochs yielding a generic template) that is entered in the template matching analysis where a

sliding window is moved along the EMG recordings. In this way the EMGs and the template

are continuously correlated in order to refine the EMG epochs, that are further recognized

using proper classification algorithms such as the linear discriminant analysis (LDA). On

the other side, in [31] a novel sEMG based handwriting recognition method was proposed.

Dynamic time warping (DTW) algorithm was introduced to align two sEMG time series in

the time axis. Two timeseries, which have approximately the same overall waveforms, are

not close to each other in Euclidean distance. To overcome constraints imposed by geometric

distance, they used DTW algorithm to warp one time series non-linearity and calculate the

distance with the other time series in a more accurate way. These distance values represent

discriminating features extracted from the signal. DTW algorithm is particularly addicted

when dealing with sequences in which individual components have characteristics that largely

vary over time, and for which the simple linear expansion or compression of the two sequences

does not bring satisfactory results.

However, both previous two architectures based on a template matching are consistently

different with respect to the classical approaches employed in the hand gesture recognition

literature [25, 3]. In a more recent study [21], it was proposed a new approach where deep

learning (DL) architectures for feature extraction and sequence recognition are used. However,

despite the application of such architectures carried out promising results (94.8% overall

classification accuracy), DL approaches resulted more computationally expensive than typical

myoelectric based PRA, thus it might be practically more difficult to be applied in a practical

scenario [32].

Thus, a first aspect of this study is to understand whether it is possible to detect the

character wrote by a subject by means of pattern recognition architectures used in EMG

based hand gesture recognition [3, 25, 10], extending the methodologies already present in the

literature toward a not fully investigated motor-task. Moreover, for the reasons highlighted

above, a second crucial point is the evaluation of the role that the wrist have in the usege of
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new wearable EMG technologies. For these purposes, an opportune dataset was collected

taking into account 11 subjects that wrote the ten digits matching a given template.

Myoelectric activity was recorded through 8 sEMG channels and considering a good spatial

covering of the forearm and wrist as indicated in [3]. Further, a total of 27 features belonging

to the time, frequency and time-frequency domains were extracted. Similarly to what done

in the previous chapter, focused evaluations were conducted taking into account datasets

made by the same type of feature computed over the eight channels. In such experiment, the

clustering properties of the features and the accuracy obtained by gold-standard myoeoectric

PRAs were evaluated.

Then, in a second experiment features have been aggregated in order to study how

feature sets commonly employed in the literature behaves in the present context [33], thus

investigating PRA that can be potentially implemented in the real practice. In the following,

the Methods section introduces the experimental protocol and the signal processing steps

employed in this study, in particular the latter shares many aspect already reported in

the previous chapter, thus when possible, some concepts will be recalled briefly, whereas

the description of the classification experiments concludes the section. The results and the

discussion naturally follow.

5.2 Methods

5.2.1 Experimental protocol and signals preprocessing

Eleven healthy subjects, six men and five women aged between 21 and 50, took part to

this experiment. Two of them were left-handed, all the others were right-handed. Each

subject’ s wrist and forearm were instrumented with BTS Bioengineering FREEEMG surface

electrodes. Such probes trasduce myoelectric signal generated by muscle contraction into

electric digital signal that are digitalized and transferred to a computer through Wi-Fi

technology. In this way, connection cables are avoided, hence handwriting can be performed

in a more comfortable way. The EMG signals were acquired with a sampling frequency of

1000 Hz. A total of 8 electrodes were placed in such a manner that 4 probes were located in

the superior part of the forearm, surrounding its whole circumference, and the other 4 probes

were positioned at the level of the wrist, hence following the spatial covering proposed in [3]

(see Figure 5.2).

Forearm electrodes 1,2,3,4 were positioned circumferentially around the proximal forearm
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Figure 5.1: Number template. Red arrows indicate writing direction, small red numbers
indicate strokes, hence digit 1, digit 4 and digit 9 are double stroke (pen lifts
once), all other digits are single stroke (pen keeps attached to the sheet for all
the writing phase).

(Figure 5.2a). In detail, electrodes 1 and 2 were placed over the extensor digitorum (ED)

and flexor carpi radialis (FCR) respectively, proximal to the elbow joint, consistent with

the locations of maximum EMG signals from these muscles. The other two electrodes, 3

and 4, were equidistantly located between 1 and 2, covering brachioradialis and flexor carpi

ulnaris respectively, in order to achieve the widest spatial coverage. This forearm electrode

configuration was selected to be in line with common practices in literature [34, 35, 36]. Wrist

electrodes 5, 6, 7, 8 were positioned in such a way that electrodes 5 and 7 cover extensor

digitorum minimi and extensor digiti respectively (Figure 5.2a), on the posterior side of the

wrist proximally to the ulnar styloid process, and electrodes 6 and 8 were placed equally

but on the opposite anterior side of the wrist, over distal ending of flexor carpi radialis

in correspondence of the deep flexor pollicis longus and over flexor digitorum superficialis

respectively. Such wrist configuration facilitates the recording of EMG signals from bellies of

deep layer muscles, involved in the control of fine finger motion, coming to the surface at

the wrist level [37, 38]. The experimental EMG setup used within the Movement Analysis

Laboratory (UNIVPM) is reported in Figure 5.3.

All participants were asked to write numbers from 0 to 9 with their dominant hand, sitting

in a comfortable position and leaning the arm against desk to not feel fatigue during the

task. In order to standardize the writing pattern of every digit and facilitate the writer, a

template of numbers (Figure 5.1) was followed. As estabilished by pre-graphism rules, each

number was written 10 times. Subjects were asked to alternate a writing phase of 3 seconds

and a resting phase of 5 seconds for every number repetition. Approximately 80 seconds

were necessary to write down one single number, for a total duration of the task of about 15

minutes.
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(a)

(b)

Figure 5.2: Locations of forearm (1,2,3,4) and wrist (5,6,7,8) electrodes with anatomical
references of superficial (a) and deep (b) muscles. APL: abductor pollicis longus;
BRR: brachioradialis; ECRB: extensor carpi radialis brevis; ECRL: extensor
carpi radialis longus; ECU: extensor carpi ulnaris; ED: extensor digitorum; EDM:
extensor digiti minimi; EI: extensor indicis; EPB: extensor pollicis brevis; EPL:
extensor pollicis longus; FCR: flexor carpi radialis; FCU: flexor carpi ulnaris;
FDS: flexor digitorum superficialis; FPL: flexor pollicis longus; PL: palmaris
longus; PQ: pronator quadratus. Figure adopted by [3].

Signals were band-pass filtered between 30 Hz and 450 Hz[39] with a second order, zero

phase Butterworth filter. Then, signals amplitude was normalized with respect to the
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(a)

(b)

Figure 5.3: Figure shows the EMG setup employed in the experiment for a representative
subject. All the experimental data were recorded in the Movement Analysis
Laboratory at Università Politecnica delle Marche.

maximum amplitude value detected during period of contraction. Each new signal has a

shape identical to the original one, but resulting in an amplitude scaled to a reduced range

of 0 and 1. This method, namely peak dynamic method, is commonly adopted in EMG data

processing as observed in [40, 41]. After that, signals underwent to ON-OFF segmentation in

order to extract the ON segments related to the handwriting task, this was done to obtain

reliable signal epochs upon which extract features for pattern recognition. More precisely,

for every digit writing task, a total of 8 raw recordings is observed and, among them, the
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cleanest signal is chosen. From this signal, 10 successive ON values were extracted. The

OFF times were obtained adding 3 s to the ON times and checking that each portion of the

signals within such windows corresponded effectively to a true ON state of the muscle. In

this way, ten 3000 samples long windows (3 seconds) were extracted from a single signal.

The previously defined ON-OFF signals were used to cut the remaining 7 signals in order to

obtain activation windows for all the remaining channels (see Figure5.4). At the end of this

process, for each subject and for each class of handwriting movement, the signal epochs of

the active muscles were organized in a 10 repetitions × 8 channels array.

Figure 5.4: Example of segmented signals for a class of handwriting task

5.2.2 Feature extraction and datasets aggregation

Similarly to what done in the previous chapter, for each subject, sEMG features were

computed taking into account the signal epochs previously segmented (see 5.2.1). A total

of 26 features were taken into account, in particular 16 and 10 features were computed in

the time and frequency domain, respectively [3, 26, 42]. Moreover, in this case, also features

in the time-frequency domain were considered taking into account the extraction method

proposed by [43]. A list of the features employed in this case was reported in Table 5.1.

169



Chapter 5 Myoelectric-based handwriting recognition

Table 5.1: Features extracted for time, frequency, and time-frequency domains. More infor-
mation regarding their computation can be found in [25, 43, 42].

Type Feature Name Abbreviation

Time Domain

Integrated EMG IEMG
Mean Absolute Value MAV
Variance of sEMG VAR
Root Mean Square RMS
Waveform Length WL

Difference Absolute Mean Value DAMV
Difference Absolute Standard Deviation Value DASDV

Zero Crossing ZC
Myopulse Percentage Rate MYOP

Willison Amplitude WAMP
Slope Sign Change SSC
Fuzzy Entropy FuzEn

Permutation Entropy PermEn
Histogram of EMG, 10-bins HIST

Auto-Regressive Coefficients, 4th Order AR
Cepstrum coefficients of the 4th Order AR process CC

Frequency Domain

Mean Frequency MNF
Median Frequency MDF
Peak Frequency PKF
Total Power TTP

1st Spectral Moment SM1
2nd Spectral Moment SM2
3rd Spectral Moment SM3

Frequency Ratio FR
Power Spectrum Ratio PSR

Variance of Central Frequency VCF

Time-Frequency Domain

third-level approximation coefficient cA3
first-level detail coefficient cD1

second-level detail coefficient cD2
third-level detail coefficient cD3

It should be noticed that the integrated EMG (IEMG) and the cepstrum coefficnets (CC)

of the signals were added as features in the time domain with respect what employed in the

previous chapter [44, 25]. Just for conciseness, in this section is reported the description

of the features that has not been yet encountered, in particular the IEMG is defined as a

summation of absolute values of the EMG signal amplitude, which can be expressed as:

IEMG =
N∑
i=1
|xi| (5.1)
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where xi represents the EMG signal sample at a given time iand N denotes length of the

EMG signal window considered. On the other hand, the CC provide information about the

rate of change in different frequency spectrum bands of a signal and they can be computed

from the AR coefficients of the signal as shown in [44, 42]:

c1 = −a1 (5.2)

ci = −ai −
i−1∑
n=1

(
1− n

i

)
anci−1 (5.3)

where ai is the i-th AR coefficient, ci is the i-th cepstrum coefficient and i is the order of

the AR process. It deserves to be highlighted that, the estimation of CC here described

is notably faster with respect to those methodologies that require fast Fourier transform

[42]. Indeed, it does not require FFT application [45], and it is performed by not linearly

combining the AR coefficients as in (5.2). For such reason CC are commonly referred to be

time domain features [25, 44].

Regarding the time-frequency domain features, they were computed on the basis of the

analysis proposed in [43]. In particular, EMG signal epochs underwent to three levels of

decomposition using a discrete wavelet transform approach with Coiflet 5 as the mother

wavelets [43, 46, 47]. Then, the maximum absolute values of the detail coefficients at the

first, second and third level of decomposition (cD1, cD2, cD3 in Table 5.1), together with

the absolute maximum value of the third level approximation coefficients (cA3 in Table 5.1)

were considered as features [43].

When all the features were computed, they can be aggregated in datasets made by the same

feature for a certain set of channels, but also considering aggregation of different descriptors

as commonly done in the literature. Indeed, the latter presents different way to combine

features in order to train reliable PRA [33]. For this study, six state of the art feature sets

have been employed:

• Hudgin’s Feature Set (Hudgins)[48]: Mean Absolute Value (MAV), Waveform

Length (WL), Slope Sign Change (SSC) and Zero Crossing (ZC).

• Du Feature Set (Du) [49]: Integrated EMG (IEMG), Variance (VAR), Wilson

Amplitude (WAMP),WL, SSC, ZC.

• Phinyomark Feature Set 1 (Phinyomark 1) [50]: MAV, WL, WAMP, ZC, Auto-

regressive Coefficients (ARs), Mean Frequency (MNF) and Power Spectrum Ratio
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(PSR).

• Phinyomark Feature Set 2 (Phinyomark 2) [25]: Permutation entropy (PermEn),

Cepstrum Coefficients (CC), RMS and WL.

• Time Domain features combined with Autoregressive model coefficients

(TDAR) [51]: MAV, SSC, WL, VAR, WAMP, ARs, and ZC.

• Discrete Wavelet Transform Coefficients (DWTC) [43]: cA3, cD1, cD2, cD3.

It should be noticed that, based on the results obtained in [10], the sample entropy feature

in Phinyomark 2 was substituted with PermEn.

As introduced in the previous chapter, the class separability of each dataset can be

quantified through metrics that evaluate the clusters separability properties in the given

feature space. For this reason, the Davies-Bouldin (DB) index [52], the separability index

(SI) and the mean-semi-principal axis (MSA) were employed [32].

5.2.3 Pattern recognition experiments

The first experiment considered in this study regards the evaluation of the clustering properties

of each single feature. For this reason, feature sets made by the same feature computed over

the eight channels underwent through the DB, SI and MSA metrics computation. This kind

of evaluation was also performed for the aggregated datasets reported in the previous section.

In the second experiment, the aggregated datasets were used for training three PRAs

with a five-fold cross validation approach: support vector machine (SVM) with quadratic

kernel (QSVM), linear discriminant analysis (LDA), and random forest (RF). In addition,

aggregated datasets were further considered in relation to the forearm and wrist channels.

This was done to understand whether the wrist can be a viable alternative with respect to

the forearm for training robust EMG-based PRAs.

The SVM and LDA algorithms were already mentioned in the previous chapter and they

do not need further explanations. On the other hand, the RF has not yet been introduced

and it deserves to be pointed out. Such PRA is an ensamble method which is constructed

through decision tree models, hence, the RF predicts by taking the average of the output

from various trees that compounds the forest [53]. A given decision tree consists of split

nodes and leaf nodes, as shown in Figure 5.5. Each split node performs a split decision and

routes a data sample xi to the left child node or to the right child node. To let the tree
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Figure 5.5: Block scheme of Random Forest algorithm [53].

know where to address the decision, a set of rules is necessary. Rules are under the form

of numerical thresholds. The data sample xi is routed to the left child node if the value of

feature of xi is smaller than a threshold and to the right child node otherwise. All leaf nodes

store votes for the classes. Starting at the root node, the data is recursively split into subsets.

In each step the best split is determined according specific criteria, like Gini index or entropy

level, determining the information gain reached at the leaves of the tree [53]. Classification

in random forests employs an ensemble methodology to attain the outcome. The training

data is fed to train various decision trees. This dataset consists of observations and features

that will be selected randomly during the splitting of nodes. In this case, the output chosen

by the majority voting of the decision trees becomes the final output of the model. An

important advantage of using RF lies on the fact that it does not need any assumption of

linearity of the data, thus resulting in a good approach when facing with features presenting

non-gaussian distributions [54].

5.3 Results

5.3.1 Features class separability properties

Table 5.2 shows the clustering metrics calculated for each time-domain feature as average of

all 11 subjects. In bold are highlighted the features that presented the best class separability

properties. It should be noticed that MAV, RMS, WL, DAMV, DASDV and IEMG show SI

values higher than 1, hence indicating a great separation among classes. The same was done
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MSA SI DB
MAV 0.0074± 0.0015 1.06± 0.15 0.72± 0.16
VAR 0.0058± 0.0017 0.78± 0.11 0.58± 0.12
RMS 0.0084± 0.0014 0.99± 0.13 0.73± 0.16
WL 0.0068± 0.0012 1.15± 0.19 0.73± 0.15
DAMV 0.0067± 0.0017 1.15± 0.18 0.73± 0.16
DASDV 0.0075± 0.0014 1.09± 0.16 0.73± 0.15
IEMG 0.0074± 0.0014 1.06± 0.15 0.71± 0.17
ZC 0.0143± 0.0025 0.32± 0.14 0.71± 0.06
MYOP 0.0077± 0.0056 0.25± 0.15 0.65± 0.09
WILSON 0.0078± 0.0062 0.26± 0.16 0.63± 0.11
SSC 0.0119± 0.0041 0.30± 0.15 0.67± 0.10
PERMEN 0.0110± 0.0046 0.30± 0.16 0.66± 0.11
FUZZYEN 0.0113± 0.0021 0.35± 0.13 0.67± 0.08
HIST 0.0121± 0.0022 0.88± 0.21 1.22± 0.16
AR 0.0062± 0.0017 0.62± 0.18 1.36± 0.11
CC 0.0068± 0.0017 0.63± 0.24 1.33± 0.12

Table 5.2: Mean and standard deviation of MSA, SI and DB value of 11 subjects calculated
for time-domain features.

for the frequency and time-frequency domains, the results were reported in Table 5.3 and

5.4, respectively. In frequency domain, the first three spectral moments presented the best

separability properties among the ten writing tasks. On the other hand, in the time-frequency

domain the maximum absolute value of the first level detail coefficients seem to be the more

suitable to highlight class differences. Table 5.5 reports the metrics calculated for each

MSA SI DBI
MNF 0.0120± 0.0030 0.39± 0.12 0.68± 0.15
MDF 0.0155± 0.0031 0.34± 0.18 0.75± 0.19
PKF 0.0044± 0.0016 0.56± 0.21 0.43± 0.08
TTP 0.0058± 0.0017 0.78± 0.14 0.57± 0.19
SM1 0.0056± 0.0016 0.83± 0.16 0.59± 0.15
SM2 0.0051± 0.0013 0.89± 0.19 0.58± 0.11
SM3 0.0047± 0.0012 0.92± 0.22 0.56± 0.16
FR 0.0087± 0.0035 0.23± 0.21 0.58± 0.09
PSR 0.0069± 0.0044 0.34± 0.14 0.51± 0.08
VCF 0.0092± 0.0017 0.41± 0.29 0.64± 0.05

Table 5.3: Mean and standard deviation of MSA, SI and DB value of 11 subjects calculated
for frequency-domain features.

feature set. Note that a fair comparison is guaranteed if two feature set with equal dimensions

are to be compared.Hence, It is thus meaningful to compare TDAR with Pninyomark 2

set, Hudgins with DWTC set and Du with Phinyomark 1 set. In such comparisons, TDAR,

Hudgins and Phinyomark 1 presented respectively the best separability properties.
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MSA SI DB
cA3 0.0083± 0.0015 0.53± 0.11 0.55± 0.12
cD1 0.0084± 0.0009 0.70± 0.13 0.61± 0.10
cD2 0.0092± 0.0016 0.64± 0.19 0.63± 0.09
cD3 0.0099± 0.0021 0.59± 0.09 0.64± 0.08

Table 5.4: Mean and standard deviation of MSA, SI and DB value of 11 subjects calculated
for time-frequency domain.

MSA SI DB
Hudgins 0.0039± 0.0006 1.60± 0.28 1.37± 0.20
Du 0.0027± 0.0007 1.88± 0.38 1.57± 0.22
Phinyomark 1 0.0025± 0.0006 1.89± 0.29 2.00± 0.23
Phinyomark 2 0.0042± 0.0008 1.90± 0.31 1.89± 0.21
TDAR 0.0029± 0.0007 2.15± 0.24 1.87± 0.23
DWTC 0.0059± 0.0009 1.02± 0.19 1.20± 0.18

Table 5.5: Mean and standard deviation of MSA, SI and DB value of 11 subjects calculated
for all the aggregated feature sets.

5.3.2 Pattern recognition on aggregated datasets

Table 5.6 shows the results obtained for the classification of the aggregated datasets considering

all the eight channels of the forearm and wrist. The dataset presenting the best performances

among the three different architectures was TDAR. However, although made by few features,

Hudgins dataset presented results slightly inferior with respect to TDAR. However, it should

be highliighted that also Du, Phinyomark 1, Phinyomark 2, showed comparable results with

respect to TDAR, wheras DWTC dataset showed the lowest accuracy althugh it results

always greater than 90%. This aspect is confirmed also through the avarege precision obtained

among the PRAs and the dataset employed. Indeed, in Figure 5.11 is better highlighted that

DWTC provided less accurate PRA models if compared with the other sets.
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Hudgins Du Phinyomark 1 Phinyomark 2 TDAR DWTC

QSVM

Accuracy 96.9± 1.6 97.0± 1.6 97.0± 1.5 97.1± 1.5 97.2± 1.5 94.1± 1.3
Precision 84.0± 7.7 85.0± 8.2 84.6± 0.7 84.9± 7.5 85.3± 7.6 69.2± 6.8
Recall 83.8± 7.8 84.7± 8.2 84.3± 7.7 84.6± 7.6 85.6± 7.2 69.3± 6.8
Specificity 98.3± 0.8 98.3± 0.9 98.4± 0.9 98.4± 0.9 98.2± 0.8 97.2± 0.7
F1 83.9± 7.8 84.8± 8.1 84.4± 7.5 84.8± 7.6 84.9± 7.6 69.3± 6.8

LDA

Accuracy 96.0± 1.5 96.7± 1.5 96.6± 1.4 96.5± 1.5 97.3± 1.4 92.6± 1.1
Precision 80.2± 7.8 83.6± 7.8 83.2± 7.4 82.7± 7.9 86.2± 7.3 61.5± 5.8
Recall 80.2± 7.7 83.6± 7.7 83.1± 7.4 82.7± 7.8 86.7± 7.3 62.4± 5.7
Specificity 97.8± 0.8 98.2± 0.9 98.1± 0.8 98.1± 0.9 98.2± 0.8 96.5± 0.6
F1 80.2± 7.8 83.6± 7.8 83.2± 7.4 82.7± 7.8 86.5± 7.3 62.8± 5.7

RF

Accuracy 95.6± 1.5 95.7± 1.6 94.8± 1.6 95.2± 1.7 95.3± 1.5 92.9± 1.4
Precision 79.8± 9.5 78.6± 8.0 74.7± 8.0 76.5± 8.3 78.7± 7.6 62.8± 7.5
Recall 78.0± 7.6 78.5± 8.0 74.4± 8.1 76.3± 8.5 77.1± 7.7 62.8± 7.3
Specificity 97.5± 0.8 97.6± 0.9 97.1± 0.9 97.3± 0.9 97.5± 0.8 96.7± 0.7
F1 83.2± 7.6 83.5± 8.0 80.8± 8.0 81.9± 8.4 83.1± 7.6 71.4± 7.4

Table 5.6: Performance parameters of the PRAs used in the second experiment. Accuracy, precision, recall, specificity and F1 score calculated as mean
and standard deviation among the 11 subjects. Values are reported for all the aggregated feature sets.
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To better contextualize the metrics obtained in Table 5.6, in the following it is shown an

explanatory example of six confusion matrices using QSVM, which generally outperforms

the other PRAs (Table 5.6). In particular, the best and the worst subject cases are reported

for 3 representative feature sets, Hudgins (Figure 5.6,5.7), TDAR (Figure 5.8, 5.9), and

DWTC (Figure 5.10, 5.11). Notice in Figures 5.7,5.9,5.11, one can appreciate the results of a

misclassification between task 0 and task 9, that is repeated whichever feature sets are used

to train the QSVM classifier.

Figure 5.6: Classification accuracy of Hudgins feature set for the best subject case.

Figure 5.7: Classification accuracy of Hudgins feature set for the worst subject case.

Finally, a key step regards the performances of the PRAs when using only the information

coming from the forearm or the wrist. Table 5.7 reports precision values when only forearm

channels are used to extract features from EMG signals of each subject, while Table 5.8 when

only wrist channels are considered. It deserves to be noticed that the performances of the

aggregated feature sets are unsatisfactory, whichever architecture is adopted. When only
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Figure 5.8: Classification accuracy of TDAR feature set for the best subject case.

Figure 5.9: Classification accuracy of TDAR feature set for the worst subject case.

Figure 5.10: Classification accuracy of DWTC feature set for the best subject case.

forearm or wrist channels are considered, a minor amount of information is retrieved, thus

translating into poor level of classification precision (at most 64.7% in forearm channels and

70.8% in wrist channel case).
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Figure 5.11: Classification accuracy of DWTC feature set for the best subject case.

QSVM LDA RF
Hudgins 59.1± 3.1 52.3± 4.2 58.0± 6.2
Du 60.2± 4.2 56.2± 6.2 58.8± 4.3
Phinyomark 1 64.3± 2.5 57.1± 5.0 56.6± 3.9
Phinyomark 2 63.2± 3.4 57.1± 3.6 56.8± 3.7
TDAR 64.7± 5.7 60.8± 6.5 57.4± 6.1
DWTC 45.8± 0.3 40.7± 2.8 43.9± 1.7

Table 5.7: Mean and standard deviation of precision values in the case in which EMG signals
acquired by the four forearm channels are exploited.

QSVM LDA RF
Hudgins 67.2± 3.2 60.2± 6.5 64.0± 5.6
Du 68.2± 2.4 64.3± 5.6 64.6± 7.0
Phinyomark 1 69.4± 4.3 63.5± 4.7 63.5± 6.5
Phinyomark 2 70.5± 2.4 64.3± 4.0 63.4± 7.1
TDAR 70.8± 5.7 67.2± 5.9 63.9± 6.9
DWTC 49.0± 1.6 44.9± 2.4 49.4± 2.3

Table 5.8: Mean and standard deviation of precision values in the case in which EMG signals
acquired by the four wrist channels are exploited.

5.4 Discussion

5.4.1 Feature class separability properties

The first aspect analyzed regards the class separability properties of time (TD), frequency

(FD)and time-frequency (TFD) domain features. This aspect plays a fundamental step when

aggregated feature sets are constructed. In the TD, six features (see Table 5.2) appeared

to be particularly able in highlighting differences among the ten classes, although part of

them shared similar meaning. Indeed, as already observed in the previous chapter, DAMV
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is calculated exactly as WL, but averaging the latter by the number of window samples

[25], and the same consideration can be pointed out for DASDV and RMS. Hence, using

DAMV and WL (or DASDV and RMS) together in the same feature set is not properly

recommended since it would increase redundancy without supplying additional information.

On the contrary, using either WL and RMS, or DAMV and DASDV within an aggregated

feature set could be a valuable choice since their combined effect provides energy (RMS,

DASDV) and complexity (WL, DAMV) information contemporaneously [50, 25].

The separability properties showed by MAV and IEMG (Table 5.2) are not completely

surprising since they are commonly present in aggregated featurests [33, 25]. On the other

hand, it is interesting to observe the behavior of the multidimensional features such as HIST,

AR and CC. The first presents clusters with poor aggregation properties as indicated by

the relatively high MSA and DB. This seems to be in agreement with what reported in [50],

although some works highlighted that HIST is a feature robust with respect to electrode

location stability, providing good results in myoelectric pattern recognition problems[32, 55].

A similar line hold for CC and AR since the inclusion of these two features in an aggregated

feature set seems to add meaningful information which generally increases the overall

recognition accuracy [25, 50]. Indeed, TDAR feature set combines AR coefficients with

6 other time-domain features while Phyniomark 2 feature set mixes cepstral coefficient

with 3 time-domain features [25, 50]. Nevertheless, being CC and AR multidimensional

features, their inclusion in a feature set tends to increase the dimensionality of feature space,

which eventually enhances the complexity of the classifier and the computational burden for

real-time applications.

Among the 10 FD features, the first three spectral moments showed the best class

separability properties. This confirms that such features presented a great capability of

mapping EMG signal epochs in well defined patterns as observed also in the previous

chapter when shoulder motion intention detection problem was faced. Hence, although less

investigated and used in aggregated datasets, such features deserves to be further studied also

in relation to time domain features following the line proposed by [56]. Similar considerations

can be pointed out for the TFD features, where only cD1 reported good clustering properties.

This supports the preference of using TD features in myoelectric pattern recognition [33, 55, 1],

also confirmed by the higher SI values observed in Table 5.5. Indeed, all the aggregated

datasets characterized by a high number of TD features, presented a greater capability in

separating handwriting classes.
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As one can observe in Table 5.6, such separability was confirmed by the high degree of

accuracy when trained with all six features sets. An average accuracy of 92.6% was obtained

in the worst performing classifier-feature set combination (RF with DWTC) while 97.3%

in the best case (QSVM-TDAR). Regarding the classification precision, a decreasing in

its average value can be observed for all feature sets. The same held for the recall and

F1 score. These three parameters are strictly correlated each other. Hence, in order to

make a performance analysis, besides accuracy, one can rely on precision value. Among

the six aggregated sets, TDAR was the one that presents the highest degree of precision.

When it was used with LDA classifier, it carried out an average precision of 86.2%. In a

similar manner, QSVM classifier could correctly predict as well, with an overall precision

of 85.3%. On the other hand, one can observe that the precision of the RF classifiers with

TDAR was consistently lower if compared to the others, with an overall precision of 78.7%.

Despite the solid performances and reliable results obtained using TDAR, it should be noted

that such set generated the largest feature space (along with Phinyomark 1 set). Indeed,

TDAR is composed by 9 features for channels, since AR coefficients carries 4 descriptors each.

Thus, its larger dimensionality could be a drawback for real time applications due to higher

computational burden if compared for instance with the Hudgins set. However, the results

confirm that TDAR is one of the most suitable set to adopt when an offline handwriting

recognition problem has to be faced. As a matter of fact, TDAR guaranteed a very high class

separation, e.g SI index was 2.15 for TDAR, whereas Phinyomark 1 reached 1.90 (Table 5.5).

An important aspect regards the results obtained for Hudgins set, confirming its relevance

in many EMG classification studies [57, 58, 48, 35]. Its widespread use is due to the trade

off between discriminating performance and low feature space dimensionality. Indeed, the

use of only 4 time domain features for channels ensures application when dealing with online

pattern recognition problems. In this study, Hudgins feature set gave the best classification

precision when used in conjunction with QSVM algorithm (84%), whereas the lower values

were observed for LDA (80.2%) and RF (79.8%) (Table 5.6). The performances showed by

Du feature set were similar to Hudgins (Table 5.6). Also in this case, the involvement of a

QSVM classifier guaranteed higher degree of precision (85%). Anyway, even LDA and RF

showed good performances, achieving 83.6% and 78.6% respectively. Although Du set showed

a slight increase with respect to Hudgins in the overall performances, it should be highlighted

that the former set is made by 6 features each channel, hence resulting more computational

expensive. The QSVM predictions were more precise even when the classifier was fed through
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Phinyomark 1 and Phinyomark 2, reaching 84.6% and 84.9% of mean precision, respectively.

Regarding the DWTC feature set, it presented the worst performances. Even if accuracy

value for this set was satisfying (QSVM 94.1%, LDA 92.6%, RF 92.9%), in terms of precision

and recall, DWTC showed serious deficits. DWTC set achieves higher precision (and recall)

when non-linear classification algorithms are used for predicting data. In particular, QSVM

classifier could achieve at most 69.2% of overall precision with this set. It is still a too

poor result to rely on, but it is higher with respect to LDA (61.5%) and RF (62.8%) which

showed to be not suitable at all when using DWTC. This confirms what reported in [59],

namely that TFD features can achieve higher accuracy for a properly tuned SVM classifier

in a pattern recognition contest [50, 59]. The possible non-linear relationships among data

points inside feature space of DWTC set seems to not affect too much the SVM algorithm,

which essentially does not use any prior assumption on the data distribution. Other type

of classifiers that are less sensitive to non-linearity could perform better, as demonstrated

in [60], where a deep learning convolutional neural network approach was adopted to solve

hand gesture recognition problem.

The presented results suggest that DWTC features were not recommended in combination

with simple but largely employed machine learning algorithms used for EMG-based PRAs.

Indeed, it may be useful to supply DWT coefficients by additional time domain feature for

a major robustness of feature set [61]. The class separability metrics support such aspect,

indeed the mean SI index is 1.02, which results much lower than Hudgins set (1.60). MSA

index underlines a high variability of data, while DB index value is low(1.20), smaller than

that computed for Hudgins set (1.60). This latter result might be misleading, as one should

expect that DB would increase in DWTC set. This is due to the fact that DB index takes

into account only geometrical distances between clusters, i.e. it relies on euclidean distances

between centroids of each class group, without considering any statistical difference among

them. Indeed, euclidean distances can distort the metrics to the scale of the larger magnitude

features [32]. In this case a more reliable result is provided by SI index that calculates

distinctness of classes passing through calculation of the covariance matrix.

The general behavior described up to now was confirmed also by investigating the confusion

matrices provided for the classifiers in relation to the best and worst subjects. In Figures

5.6-5.11, one can observe the classification performances of QSVM trained with best and

worse subject case for Hudgins, TDAR and DWTC respectively. In Figure 5.6, Hudgins

feature set showed to be excellent in terms of accuracy: it distinguished correctly all 10 classes
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of handwriting task. Indeed, values in the diagonal of matrix represents the percentage

accuracy of correct associations between target values (vertical axis) and predicted values

(horizontal axis). In the worst subject case (Figure 5.7) a strong misclassification occurred

between first and last class. Classifier were not able to distinguish 0 from 9. This is due to

the fact that number 0 and number 9 share a similar writing pattern. Despite of that, all

the other classes were brilliantly predicted.

The last important aspect that deserves to be pointed out regards the study of the wrist as

an alternative to the forearm for the development of EMG based human machine interfaces.

As already observed the use of forearm and wrist EMG probes together permitted satisfying

classification performances, indicating that a certain degree of spatial covering is required

for developing adequate myoelectric PRAs when the motor task presents fine coordination

properties (Table 5.6). On the contrary, when used separately, wrist channels and forearm

channels did not provide reliable results, indeed as one can observe from Table 5.7 and and

Table 5.8, the average precision of the three classifiers for all feature set did not overcome

64.7% in the case of forearm channels and 70.8% for wrist channels. In the worst case, if

predictions are made with a linear classifier (LDA) trained with DWTC dataset, precision fell

down to 40.7 %, thus demonstrating the infeasibility of this approach. Thus, in handwriting

recognition problems, the complexity and fineness of the task suggest the use of larger setups,

where the information of both wrist and forearm have to be accounted for guaranteeing the

necessary amount of information required for the identification of the handwritten digits.

This seems to be in contrast to what recently observed in the hand gesture recognition

literature, where it has been demonstrated that the wrist can be a valid alternative to the

forearm for acquiring trusty EMG information [3].

To summarize, in this chapter, EMG-based PRAs were developed to solve the handwriting

recognition problem of the ten digits. Such point constitutes a remarkable element of novelty

in the field of hand gesture recognition through EMG since the latter commonly takes into

account hand movements that presented a lower level of neuromuscular control if compared

with respect to handwriting. However, the increasing demand of EMG based human-machine

interfaces in the fields of motor rehabilitation and robotic, motivated the investigation of

using myoelectric control techniques for studying the handwriting task. A first aspect that

can be pointed out regards the possibility to transfer procedures commonly encountered in

the hand gesture recognition in the field of handwriting recognition, hence extending the

number of ways to interact with a machine by adapting, without great efforts, the technical
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solutions already presented in the literature. Concerning this point, the use of few electrodes

located only on the forearm or on the wrist seems to provide unreliable information for the

development of PRAs. This opens to the possibility of further investigations. Indeed, future

research can focus on the use of different type of probes, i.e. high density EMG electrodes,

which permit to extract a large amount of information and limiting, at the same time, the

high number of anatomical landmarks upon which to place the standard EMG electrodes.
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Chapter 6

Concluding remarks

In this work of thesis, the modeling of neuromuscular control was taken into account

from different perspectives and for different motor tasks. The first two chapters were

developed upon the idea of merging data analysis techniques, based on time-series analysis,

to the mechanical modeling approaches used to model the human upright stance and the

neuromuscular control involved in the balance maintenance. An important element that

justifies such research line lies on the intermittent motor control paradigm used to model the

neural controller. Indeed, it has been showed in [1], that under such motor control paradigm,

the single-link inverted pendulum, used to model the upright stance, was able to generate

center of pressure (COP) timeseries that showed complex patterns like those observed in real

data. This puts the focus on the physical interpretation of the controller parameters, which

poses the basis for the employment of the the aforementioned models in the well-established

field of posturography. Thus, rather than focus on kinematic quantities such as the sway

angle, in this work, focus was given to COP time course since mainly involved in research

and clinical practice.

Such research line was followed and enlarged when the stance was modeled through a

double link inverted pendulum as reported in [2, 3]. The introduction of a second joint

that mechanically models the hip required an appropriate formalization of the COP for a

multi-link structure. This allowed to observe that COP fluctuations are intimately connected

to passive and active control actions, that are developed at the joints. Moreover, it has been

observed that certain COP descriptors can be used together with the mechanical model

to infer possible differences in the neuromuscular control policies actuated by two different

groups of subjects [2]. This offers another opportunity for exploiting the mechanical modeling

framework in posturography, aligning with what reported in [4, 5], although in the latter,
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parameters inference was performed through kinematic quantities.

The idea of using multiple dynamics for describing the role of the neuromuscular control

was further developed through the use of data driven models in the context of perturbed

posture. Indeed, the use of variable structure control policies such as the intermittent control

in quiet stance can be a valuable example that can be transferred in the context of perturbed

posture. However, rather than employing a specific model structure for the modeling of

the neural control, in [6] a system identification approach was used. This allowed to build

parsimonious models that took into account not only the kinematic and dynamic variables,

but also the myoelectric activities of the gastrocnemius and tibialis anterior, which are mainly

involved in the actuation of the disturbance rejection policy generated by the central nervous

system. The family of models used in the above mentioned system identification scheme

have a hybrid system structure, which effectively allowed to describe the entire process of

balance maintenance through sub-dynamics. This constitutes an element of novelty in the

field of neural control characterization under perturbed posture tasks. Indeed, up to now it

has been observed in the literature the tendency of approximating the mechanics and the

control of the stance through linear hypothesis assumptions that can be restricting when

nonlinear phenomena appears in the data, as it happens during impulsive events like sudden

support base translations [6].

From chapter three to chapter five, it has been reported the aspects related to the second

core of research, which regards the modeling and characterization of neuromuscular control

based on surface electromyography (sEMG). This line of research was motivated by the

increasing needs behind the modern technologies. Indeed, sEMG can be used to design

human-machine interfaces useful to guide machines during rehabilitation tasks controlling

robot and software. As reported in [7], a first level of characterization of a motor task can

require the knowledge of time instant at which the muscles activate, that is, the muscle onset

detection (MOD). These aspects were used to realize even simple but trustful human-robot

interactions [8]. In this study MOD was investigated when sEMG signals are characterized

by low signal to noise ration (SNR). The latter represents a significant case that can be

encountered for instance when subject’s muscle activity is poor. This can be due for many

different reasons commonly associated to pathological states or bad electrodes placement.

Thus, based on recent literature the role of signal preconditioning through energy operators

was investigated. In particular, in [7] the extended Teager-Kaiser operator was employed

to boost state of the art MOD detection algorithms, providing a useful framework for
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highlighting the muscle activity also in very low SNR conditions.

Although the muscle onset represents a fundamental source of information, many ap-

plications require more structured level of knowledge, that is, the prediction through an

ensamble of EMG signals of which movement the subject is undergoing to perform. This can

be referred as the motion intention detection (MID), and in this work of thesis, the latter

was investigated under the myoelectric pattern recognition approach [9]. Specifically, a MID

problem related to the identification of the shoulder movements has been taken into account

by studying not only time domain features as commonly appears in literature, but also

including the less studied frequency domain features, which demonstrated to be particularly

suitable for such kind of applications. However, it deserves to be stressed that an important

element of novelty lies on the implementation of such approaches for solving MID of the

shoulder since the motion intention detection related to this joint results poorly studied in

the literature. Moreover, as reported in chapter four, it was found that methodologies used

in the hand gesture recognition can be transferred for solving MID problems that involve a

relatively large set of movements.

Finally, the last chapter extended the studies related to the hand gesture toward the

handwriting recognition. Indeed, despite EMG based pattern recognition architectures

demonstrated to be appealing for many different applications [10, 11], they were commonly

trained and tested over a well acknowledged set of gestures. Moreover, the common anatomical

landmark taken into account for the extraction of sEMG signal is the forearm. In this study,

based on the literature suggestion [11], the role of the wrist as a possible landmark for the

sEMG acquisition was investigated in an extremely fine motor task: the digit handwriting.

Similarly to what done for MID problems many different features in time, frequency and

time-frequency domain were extracted and evaluated. Then, they have been aggregated in

feature sets commonly used for the study of hand gesture recognition. A first evidence found

in this work regards the opportunity to recognize handwriting digit from EMG signal. This

is a new aspect that grounds the basis for future studies related to the EMG based hand

writing recognition. Findings suggest that a complete change of perspective from forearm to

wrist deserves to be further investigated since for a fine motor task like the handwriting, the

pattern recognition architectures did not show satisfactory performances when only forearm

wrist electrodes were used.
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