25,169 research outputs found

    Optimal design of single-tuned passive filters using response surface methodology

    Get PDF
    This paper presents an approach based on Response Surface Methodology (RSM) to find the optimal parameters of the single-tuned passive filters for harmonic mitigation. The main advantages of RSM can be underlined as easy implementation and effective computation. Using RSM, the single-tuned harmonic filter is designed to minimize voltage total harmonic distortion (THDV) and current total harmonic distortion (THDI). Power factor (PF) is also incorporated in the design procedure as a constraint. To show the validity of the proposed approach, RSM and Classical Direct Search (Grid Search) methods are evaluated for a typical industrial power system

    Absolutely free extrinsic evolution of passive low-pass filter

    Get PDF
    Evolutionary electronics is a brunch of evolvable hardware, where the evolutionary algorithm is applied towards electronic circuits. The success of evolutionary search most of all depends on variable length representation methodology. The low-pass filter is a standard task in evolutionary electronics to start with. The results of evolution enable one to qualify whether the methodology is good for further experiments. In this paper the maximum freedom for evolutionary search has been proclaimed as a main target during development of new VLR methodology. The introduction of R-support elements enables to perform an unconstrained evolution of analogue circuits for the first time. The proposed algorithm has been tested on the example of analogue low-pass filter. The experimental results demonstrate that the evolved filter is comparable with filters evolved previously using genetic programming and genetic algorithms techniques. The obtained results are compared in details with low-pass filters previously designed

    Prototyping a new car semi-active suspension by variational feedback controller

    Get PDF
    New suspension systems electronically controlled are presented and mounted on board of a real car. The system consists of variable semi-active magneto-rheological dampers that are controlled through an electronic unit that is designed on the basis of a new optimal theoretical control, named VFC-Variational Feedback Controller. The system has been mounted on board of a BMW Series 1 car, and a set of experimental tests have been conducted in real driving conditions. The VFC reveals, because of its design strategy, to be able to enhance simultaneously both the comfort performance as well as the handling capability of the car. Preliminary comparisons with several industrially control methods adopted in the automotive field, among them skyhook and groundhook, show excellent results

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Optimal sizing of C-type passive filters under non-sinusoidal conditions

    Get PDF
    In the literature, much attention has been focused on power system harmonics. One of its important effects is degradation of the load power factor. In this article, a C-type filter is used for reducing harmonic distortion, improving system performance, and compensating reactive power in order to improve the load power factor while taking into account economic considerations. Optimal sizing of the C-type filter parameters based on maximization of the load power factor as an objective function is determined. The total installation cost of the C-type filter and that of the conventional shunt (single-tuned) passive filter are comparatively evaluated. Background voltage and load current harmonics are taken into account. Recommendations defined in IEEE standards 519-1992 and 18-2002 are taken as the main constraints in this study. The presented design is tested using four numerical cases taken from previous publications, and the proposed filter results are compared with those of other published techniques. The results validate that the performance of the C-type passive filter as a low-pass filter is acceptable, especially in the case of lower short-circuit capacity systems. The C-type filter may achieve the same power factor with a lower total installation cost than a single-tuned passive filter

    Challenging the evolutionary strategy for synthesis of analogue computational circuits

    Get PDF
    There are very few reports in the past on applications of Evolutionary Strategy (ES) towards the synthesis of analogue circuits. Moreover, even fewer reports are on the synthesis of computational circuits. Last fact is mainly due to the dif-ficulty in designing of the complex nonlinear functions that these circuits perform. In this paper, the evolving power of the ES is challenged to design four computational circuits: cube root, cubing, square root and squaring functions. The synthesis succeeded due to the usage of oscillating length genotype strategy and the substructure reuse. The approach is characterized by its simplicity and represents one of the first attempts of application of ES towards the synthesis of “QR” circuits. The obtained experimental results significantly exceed the results published before in terms of the circuit quality, economy in components and computing resources utilized, revealing the great potential of the technique pro-posed to design large scale analog circuits

    An Efficient Framework For Fast Computer Aided Design of Microwave Circuits Based on the Higher-Order 3D Finite-Element Method

    Get PDF
    In this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in or external gradient-based optimization procedures. For speed, a model order reduction technique is used and the gradient computation is achieved by perturbation with geometry deformation, processed on the level of the individual mesh nodes. To maximize performance, the framework is targeted to multicore CPU architectures and its extended version can also use multiple GPUs. To illustrate the accuracy and high efficiency of the framework, we provide examples of simulations of a dielectric resonator antenna and full-wave design by optimization of two diplexers involving tens of unknowns, and show that the design can be completed within the duration of a few simulations using industry-standard FEM solvers. The accuracy of the design is confirmed by measurements

    Selective Harmonic Mitigation Technique for High-Power Converters

    Get PDF
    In high-power applications, the maximum switching frequency is limited due to thermal losses. This leads to highly distorted output waveforms. In such applications, it is necessary to filter the output waveforms using bulky passive filtering systems. The recently presented selective harmonic mitigation pulsewidth modulation (SHMPWM) technique produces output waveforms where the harmonic distortion is limited, fulfilling specific grid codes when the number of switching angles is high enough. The related technique has been previously presented using a switching frequency that is equal to 750 Hz. In this paper, a special implementation of the SHMPWM technique optimized for very low switching frequency is studied. Experimental results obtained applying SHMPWM to a three-level neutral-point-clamped converter using a switching frequency that is equal to 350 Hz are presented. The obtained results show that the SHMPWM technique improves the results of previous selective harmonic elimination pulsewidth modulation techniques for very low switching frequencies. This fact highlights that the SHMPWM technique is very useful in high-power applications, leading its use to an important reduction of the bulky and expensive filtering elements.Ministerio de Ciencia y TecnologĂ­a TEC2006-03863Junta de AndalucĂ­a EXC/2005/TIC-117
    • 

    corecore