34 research outputs found

    On the Effectiveness of Image Manipulation Detection in the Age of Social Media

    Full text link
    Image manipulation detection algorithms designed to identify local anomalies often rely on the manipulated regions being ``sufficiently'' different from the rest of the non-tampered regions in the image. However, such anomalies might not be easily identifiable in high-quality manipulations, and their use is often based on the assumption that certain image phenomena are associated with the use of specific editing tools. This makes the task of manipulation detection hard in and of itself, with state-of-the-art detectors only being able to detect a limited number of manipulation types. More importantly, in cases where the anomaly assumption does not hold, the detection of false positives in otherwise non-manipulated images becomes a serious problem. To understand the current state of manipulation detection, we present an in-depth analysis of deep learning-based and learning-free methods, assessing their performance on different benchmark datasets containing tampered and non-tampered samples. We provide a comprehensive study of their suitability for detecting different manipulations as well as their robustness when presented with non-tampered data. Furthermore, we propose a novel deep learning-based pre-processing technique that accentuates the anomalies present in manipulated regions to make them more identifiable by a variety of manipulation detection methods. To this end, we introduce an anomaly enhancement loss that, when used with a residual architecture, improves the performance of different detection algorithms with a minimal introduction of false positives on the non-manipulated data. Lastly, we introduce an open-source manipulation detection toolkit comprising a number of standard detection algorithms

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    Visual and Textual Analysis for Image Trustworthiness Assessment within Online News

    Get PDF
    The majority of news published online presents one or more images or videos, which make the news more easily consumed and therefore more attractive to huge audiences. As a consequence, news with catchy multimedia content can be spread and get viral extremely quickly. Unfortunately, the availability and sophistication of photo editing software are erasing the line between pristine and manipulated content. Given that images have the power of bias and influence the opinion and behavior of readers, the need of automatic techniques to assess the authenticity of images is straightforward. This paper aims at detecting images published within online news that have either been maliciously modified or that do not represent accurately the event the news is mentioning. The proposed approach composes image forensic algorithms for detecting image tampering, and textual analysis as a verifier of images that are misaligned to textual content. Furthermore, textual analysis can be considered as a complementary source of information supporting image forensics techniques when they falsely detect or falsely ignore image tampering due to heavy image postprocessing. The devised method is tested on three datasets. The performance on the first two shows interesting results, with F1-score generally higher than 75%. The third dataset has an exploratory intent; in fact, although showing that the methodology is not ready for completely unsupervised scenarios, it is possible to investigate possible problems and controversial cases that might arise in real-world scenarios

    Spotting the difference: Context retrieval and analysis for improved forgery detection and localization

    Get PDF
    As image tampering becomes ever more sophisticated and commonplace, the need for image forensics algorithms that can accurately and quickly detect forgeries grows. In this paper, we revisit the ideas of image querying and retrieval to provide clues to better localize forgeries. We propose a method to perform large-scale image forensics on the order of one million images using the help of an image search algorithm and database to gather contextual clues as to where tampering may have taken place. In this vein, we introduce five new strongly invariant image comparison methods and test their effectiveness under heavy noise, rotation, and color space changes. Lastly, we show the effectiveness of these methods compared to passive image forensics using Nimble [1], a new, state-of-the-art dataset from the National Institute of Standards and Technology (NIST)
    corecore