237,225 research outputs found

    Passive Learning with Target Risk

    Full text link
    In this paper we consider learning in passive setting but with a slight modification. We assume that the target expected loss, also referred to as target risk, is provided in advance for learner as prior knowledge. Unlike most studies in the learning theory that only incorporate the prior knowledge into the generalization bounds, we are able to explicitly utilize the target risk in the learning process. Our analysis reveals a surprising result on the sample complexity of learning: by exploiting the target risk in the learning algorithm, we show that when the loss function is both strongly convex and smooth, the sample complexity reduces to \O(\log (\frac{1}{\epsilon})), an exponential improvement compared to the sample complexity \O(\frac{1}{\epsilon}) for learning with strongly convex loss functions. Furthermore, our proof is constructive and is based on a computationally efficient stochastic optimization algorithm for such settings which demonstrate that the proposed algorithm is practically useful

    Term structure transmission of monetary policy

    Get PDF
    Under bond rate transmission of monetary policy, standard restrictions on policy responses to obtain determinate inflation need not apply. In periods of passive policy, bond rates may exhibit stable responses to inflation if future policy is anticipated to be active, or if time-varying term premiums incorporate inflation-dependent risk pricing. We derive a generalized Taylor Principle that requires a lower bound to the average anticipated path of forward rate responses to inflation. We also present a no-arbitrage term structure model with horizon-dependent policy and time-varying term premiums to explain mechanics and provide empirical results supporting these channels

    Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning

    Full text link
    Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.Comment: 2019 IEEE Symposium on Security and Privacy (SP

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    On the Power of Adaptivity in Matrix Completion and Approximation

    Full text link
    We consider the related tasks of matrix completion and matrix approximation from missing data and propose adaptive sampling procedures for both problems. We show that adaptive sampling allows one to eliminate standard incoherence assumptions on the matrix row space that are necessary for passive sampling procedures. For exact recovery of a low-rank matrix, our algorithm judiciously selects a few columns to observe in full and, with few additional measurements, projects the remaining columns onto their span. This algorithm exactly recovers an n×nn \times n rank rr matrix using O(nrμ0log2(r))O(nr\mu_0 \log^2(r)) observations, where μ0\mu_0 is a coherence parameter on the column space of the matrix. In addition to completely eliminating any row space assumptions that have pervaded the literature, this algorithm enjoys a better sample complexity than any existing matrix completion algorithm. To certify that this improvement is due to adaptive sampling, we establish that row space coherence is necessary for passive sampling algorithms to achieve non-trivial sample complexity bounds. For constructing a low-rank approximation to a high-rank input matrix, we propose a simple algorithm that thresholds the singular values of a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly as good as the best rank-rr approximation using O(nrμlog2(n))O(nr\mu \log^2(n)) samples, where μ\mu is a slightly different coherence parameter on the matrix columns. Again we eliminate assumptions on the row space
    corecore