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1 Introduction

“Monetary policy works largely through indirect channels–in particular, by influencing
private-sector expectations and thus long-term interest rates.” Bernanke (2004)

“Financial markets are the channel through which our policyaffects the economy, and asset
prices contain valuable information about investors’ expectations for the course of policy,
economic activity, and inflation, as well as the risks about those expectations.” Kohn (2005)

Most studies of monetary policy focus on the policy interestrate, typically a very short-term rate, such
as an overnight rate. However, as suggested by the above quotations, longer-term bond rates are essential
conduits for the transmission of monetary policy. As bond rates contain bond trader expectations of future
policy rates, not recent policy rates, monetary policy effectiveness depends on the policy perceptions of the
bond market. The connection of these perceptions to announced or recently observed policy is not fully
understood. Thus, for instance, it is not known whether the parameterization of an invariant policy rate
reaction function provides sufficient information for evaluating the effectiveness of monetary policy.

The importance of this issue is revealed by revisiting the literature investigating the Great Inflation.
Clarida, Gali, and Gertler (2000), Lubik and Schorfheide (2004), and Kozicki and Tinsley (2007) provide
empirical evidence that in the period before Paul Volcker was appointed Chairman of the Federal Open
Market Committee (FOMC) of the Federal Reserve,4 nominal policy rates exhibited a passive, or inelastic,
response (i.e., less than one-for-one) with respect to inflation. However, in the broader context of bond rate
transmission, it seems important to consider also the responsiveness of bond rates to inflation. To the best
of our knowledge, such an analysis has not been done before. This missing feature of the literature implies
important shortcomings in some interpretations of the Great Inflation. In particular, if the bond rate is the
transmission channel for monetary policy, explanations that focus on the stability of a Taylor rule description
of the policy rate or on central bank assumptions regarding natural rates are not sufficient to assess the
stability of the economy and the determinacy of inflation.

Inflation determinacy imposes conditions on policy reaction functions. However these conditions may
change if bond rates have a distinct influence on economic activity beyond the current policy rate and rational
expectations of future policy rates based on the current policy reaction function. This paper argues that
real-world features give bond rates such a distinct role. Thus, when introduced into structural models, these
features will alter well-accepted determinacy conditionson monetary policy. Specifically, in some situations,
passive current policy may be consistent with determinate inflation and the Taylor Principle may not be
necessary for policy stability. Under bond rate transmission, real-world features that likely play a key role in
assessing policy effectiveness include asymmetric information about policy goals, term premium sensitivity
to inflation, and the responsiveness of the futurepath of the policy rate to inflation.5

Asymmetric information on the part of the private sector and the central bank is critical for understanding
the relationship between short- and long-term interest rates—particularly in the 1980s (Kozicki and Tinsley
(2001 a,b); Dewachter and Lyrio (2006b)). Moreover, as shown by Kozicki and Tinsley (2005b) in an
empirical model of the U.S. economy, asymmetric information about the inflation goal of policy also affects
the transmission of monetary policy shocks.

The key role oftime-varying term premiums for capturing time variation in yields has been emphasized in
several studies including Shiller, Campbell, and Schoenholtz (1983), Duffee (2002), and Dai and Singleton
(2002) among others. Other research, such as Ang and Piazzesi (2003), and Dewachter, Lyrio, and Maes
(2006) relate yields to macro factors. However, in typical DSGE formats, the possibility of a distinct role

4The FOMC of the Federal Reserve is responsible for U.S. monetary policy.

5Term premium sensitivity to other macro variables and responsiveness of the future path of the policy rate to other macro
variables may also be relevant.
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for bond yields in explaining economic behaviour is generally not admitted. For instance, Rudebusch and
Wu (forthcoming), Hördahl, Tristani and Vestin (2006), and Dewachter and Lyrio (2006a) use no-arbitrage
term-structure models and structural macroeconomic models to relate bond yields to macroeconomic
variables through policy responses of short-term interestrates, but the focus remains largely one of explaining
yield-curve behaviour given macroeconomic data, and explaining macroeconomic behaviour given policy
rate responses. In related work, although they comment on the lack of a structural link, Rudebusch, Sack,
and Swanson (2007) establish an empirical link between termpremiums and economic activity.

Explicit links between thefuture path of policy responsiveness to economic conditions and bond rates is
explored in Ang, Dong, and Piazzesi (2005). However, by constraining the parameters of the policy reaction
function to be constant in their formulation, the current reaction function provides sufficient information to
summarize the responsiveness of the path of policy to futureeconomic conditions. Thus, their specification
limits the ability of the bond rate to have distinct effects on economic activity, independent of those implied
by an invariant policy response. One contribution of the current paper is that it generalizes the Ang, Dong,
and Piazzesi format by introducing horizon-dependent policy perceptions into a no-arbitrage term structure
model.

In contrast to existing term structure analyses, includingcontributions noted above, the current study
is directed at implications for inflation determinacy when bond rates are the principal transmission channel
for monetary policy. The central (and distinct) roles of bond rates and the perceptions of bond traders
in the transmission of policy are discussed in remaining sections of the paper. Section 2 investigates the
responsiveness of historical bond rates to macro variables, including inflation, since the mid-1960s. Section
3 uses a simple illustrative macroeconomic model to suggestthat if the bond rate is the principal transmission
channel then, rather than the Taylor Principle, what matters for stabilizing policy is that theaverage of the
bond forward rates displays an elastic response to expectedinflation. In addition, shortcomings of DSGE
models with symmetric information are discussed. Section 4sketches a no-arbitrage model of the term
structure with term premiums that reflect time-varying compensation for macroeconomic uncertainty and
the possibility of horizon-dependent expectations by bondtraders. Within this structure, there are two
possible explanations for different inflation sensitivities of bond rates compared to policy rates. Both of
these features provide for a distinct role for bond rates to influence economic activity. As suggested by
the simple macroeconomic model in the prior section, one explanation is that perceived inelastic responses
by the policy rate to inflation in the short run may be counterbalanced by elastic responses in the longer
run. A second possible explanation is that forward rate termpremiums may also be responsive to inflation.
If this is the case, term premiums demanded by traders may compensate for modestly unstable short-run
policy. Section 5 presents estimated responses of forward rates to forecasts of macro variables, and section
6 concludes.

2 The responsiveness of historical bond rates to macro variables

In this section, we present empirical evidence on the responsiveness of historical bond rates to
macroeconomic variables, including inflation. Regressionresults are reported for two monthly samples:
one includes the “passive policy” period prior to 1980 and the second covers a period of aggressive policy in
the 1980s. An important question addressed is whether bond rates may exhibit elastic responses to inflation
in periods of passive policy.

We estimate the long-run responses of nominal bond rates,R12h,t for h = 1, 3, 5, 10, to inflation,πt, the
level of unemployment,ut, and the difference of unemployment,∆ut:

R12h,t = b3R12h,t−1 + b33(L)∆R12h,t−1 + (1 − b3)R
∗

12h,t + at,12h,

R∗

12h,t = b0 + b1πt−1 + b11(L)∆πt−1 + b2ut−1 + b22(L)∆ut−1,
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wherebjj(L) are 11th-order lag polynomials. Inflation is measured over the prior 12 months using the
deflator for personal consumption expenditures (pce), and unemployment is measured by the civilian
unemployment rate. The bond rates are the nominal rates on 1-year, 3-year, 5-year and 10-year zero-coupon
bonds from McCulloch and Kwon (1993). Results are reported in Table 1.

Regressions results reported in the bottom panel of Table 1 span the period after the abandonment of
nonborrowed reserves targeting to the end of the FOMC chairmanship of Paul Volcker, 1982m1 - 1987m7.
The results are consistent with bond trader forecasts of aggressive policy responses to inflation. Long-run
mean responses by bond rates to inflation are well above unityfor all maturities. Significant long-run mean
responses are also indicated for the change in unemploymentby 1-year and 3-year bond rates. No mean
responses to the level of unemployment are significant.

The top panel in Table 1 reports on regressions for a 1966-79 sample, ending just prior to the
announcement of the well-known shift in operational policyin October 1979.6 The second column in the top
panel indicates that the mean long-run response to inflationis above unity for bond rates of all maturities.7

Overall, the results of Table 1 are consistent with elastic bond rate responses to inflation in both samples,
raising the question of how to evaluate the determinacy of policy. The specific question we examine is
whether it is possible for policy to be passive yet for inflation to be determinate. In the remaining sections of
this paper, we show that such apparently contradictory observations are indeed possible.

3 Bond rate transmission of monetary policy

In this section we use a simple model to show how determinacy conditions for policy may change when
policy anticipations are allowed to be horizon dependent. The results highlight the importance of considering
anticipations of the future path of policy.

Specifications of interest rates in the output equations of empirical macroeconomic models vary widely.
However, in structural macroeconomic models, many specifications use one-period interest rates, with few
identifying independent roles for long-term rates. That said, models with explicit one-period rates do not
necessarily imply that bond rates are unimportant in policytransmission.

Consider, for instance, the purely forward-looking IS equation,

ỹt = Etỹt+1 − a(r̃t − Etπ̃t+1) (1)

relating equilibrium deviations in output̃yt to equilibrium deviations in the ex ante one-period real rate.
Here, the latter is represented as the difference between equilibrium deviations in the nominal rate,̃rt, and
equilibrium deviations in expected inflationEtπ̃t+1. After recursive forward substitution, this expression
implies a relationship between output and long-horizon averages of real-rate deviations from equilibrium:

ỹt ≃ −aEt(
1

n

n
∑

i=1

r̃t+i −
1

n

n
∑

i=1

π̃t+i+1). (2)

Assuming constant term premiums and equilibrium deviations that converge to zero in expectation,
Et

1
n

∑n
i=1 r̃t+i, is typically taken as the equilibrium deviation of an n-period nominal-bond rate,̃Rn,t,

ỹt ≃ −a(R̃n,t − Et

1

n

n
∑

i=1

π̃t+i+1). (3)

6The federal funds market was not well-developed prior to 1966, vid. Tinsley et al. (1982) and Fuhrer (1996).

7Perhaps consistent with bond-trader perceptions of the emphasis of 1970s central bank policy on money-growth targeting, as
discussed in Kozicki and Tinsley (2007), the mean long-run response to the change of the unemployment rate is also significant for
all maturities.
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Thus, such structural models can be used to provide a link between macroeconomic activity and bond yields.
Indeed, (1) motivates the simple macroeconomic model used in the next subsection to discuss conditions for
determinate policy.

It is important to note, however, that while (1) and (2) are exchangeable under standard assumptions,
neither (1) nor (2) is likely exchangeable with (3) under more general assumptions such as asymmetric
information, time-varying term premiums, or horizon-dependent expectations of policy responses.
Moreover, even more sophisticated model specifications that include, for example, habit formation in
consumption or time-to-build in investment, may miss important aspects of bond rate transmission of policy.
Shortcomings are likely because even with these generalizations, typical DSGE implementations continue to
maintain restrictive assumptions such as time-invariant (or zero) risk premiums and symmetric information.
The second subsection expands on limitations of typical DSGE models.

3.1 Determinacy conditions with horizon-dependent policyperceptions

The general presumption in the literature is that evidence of passive monetary policy implies that agent
behavior may have been influenced by exogenous inflationary sunspots. However, if the principal
transmission channel of monetary policy is through the responses embedded in private sector borrowing
rates, then conditions for determinacy of inflation depend on passivity of theanticipated path of future
policy rates. Thus, the sunspot interpretation is based on two untested assumptions: First, that bond traders
can infer, in real time, that the central bank policy is passive.8 And second, that the passivity of monetary
policy is expected to persist over lengthy forecast horizons. With regard to these assumptions, Kozicki
and Tinsley (2001a, 2001b) indicate that private sector perceptions of the implicit central bank target for
inflation were very slow to adjust—the mean lag of adjustmentof the perceived inflation target consistent
with Treasury bond rates exceeded 5 years in the 1970s and 1980s. In addition, FOMC announcements in
the 1970s regarding explicit policy targets were limited toone-year horizons. Overall, it is not obvious that
bond traders would extrapolate difficulties in reaching one-year objectives to policy failure in the long run.

We introduce horizon-dependent policy in a simple linear DSGE model:

ỹt = −a(R̃2,t −
1

2
Et(π̃t+1 + π̃t+2)) + et

π̃t = Etπ̃t+1 + bỹt

R̃2,t =
1

2
(r̃t,1 + r̃t,2)

r̃t,k = ckEtπ̃t+k k = 1, 2 (4)

wherex̃t denotes the equilibrium deviation of variablext. The first equation in (4) indicates that deviations
in output, ỹt are determined by equilibrium deviations in the two-periodex ante real bond rate,Et{R̃2,t −
1
2Et(π̃t+1 + π̃t+2)}, and by a stochastic disturbance,et. To facilitate the derivation of closed-form results,
a 2-period bond rate replaces the n-period rate in (2). In thesecond equation, equilibrium deviations in the
inflation rate,π̃t, are determined by a standard New Keynesian (NK) pricing equation under assumptions
necessary for the output gap to be proportional to marginal cost. The notatioñrt,k is used to represent the
expectation int of the policy rate int+ k. This notation will facilitate analysis of horizon-dependent policy.
The third equation defines the two-period bond rate deviation in t to be equal to the average of one-period
nominal rate deviations for each of the next two periods as expected int. The fourth equation describes
the expected policy path and relates equilibrium deviations in the nominal policy rate to expected inflation

8In contrast to the regression analysis in Clarida, Gali and Gertler (2000), empirical analysis in Kozicki and Tinsley (2007) uses
the retrospective advantage of access to the central bank real-time forecasts of explanatory variables. If external observers are not
privy to central bank information, Beyer and Farmer (2004) illustrate that it is not always possible for the observers todiscriminate
between determinate and indeterminate policies.
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deviations. Note that the perception of the future policy response,c2, is not restricted to be identical to the
response perceived in the current period,c1.9

The model is a two-period illustration of multi-period expectations at a point in time,t. The stylized
convention is thatc1 represents near-term policy expectations andc2 represents expectations of more distant
policies.10 For example, ift is positioned in the 1970s, one might expectc1 to be consistent with passive
policy (perhaps reflecting recognition of pressure to contain the negative output consequences of the large
negative supply shock associated with the oil price increases of the time) whereas expected policy 5-10 years
ahead might be viewed as likely revert to active policy. By contrast, ift is located in the 1980s, one might
expect bothc1 andc2 to be consistent with active policy perceptions. Note that this characterization does not
imply systematic time-inconsistency in market perceptions.11

Substituting the first, third and fourth equations in (4) into the second equation gives a second-order
equation for inflation

π̃t = (1 −
ab(c1 − 1)

2
)Etπ̃t+1 −

ab(c2 − 1)

2
Etπ̃t+2 + bet. (5)

The solution for inflation has the form:

π̃t = Et{
bet

(1 − l−1
1 F )(1 − l−1

2 F )
}, (6)

where the roots of the characteristic equation are determined by12

l1l2 =
2

ab(c2 − 1)
,

l1 + l2 =
2 − ab(c1 − 1)

ab(c2 − 1)
. (7)

The perceptions of the bond traders must satisfy three conditions for determinacy, vid. Woodford (2003)

l1l2 > 1 ⇒ c2 < 1 +
2

ab
,

(1 + l1)(1 + l2) > 0 ⇒ c1 < c2 +
4

ab
,

(1 − l1)(1 − l2) > 0 ⇒
c1 + c2

2
> 1. (8)

9Here, as elsewhere in this paper, conditions for determinacy can be extended to include policy responses to equilibrium
deviations in real activity. Strictly speaking, conditions for determinacy are system properties and not just limitedto the inflation
responsiveness of current and anticipated real policy rates, such as models where nominal interest rates may play an important
stabilizing role, vid. Beyer and Farmer (2004). To simplifyexposition, discussion in this paper assumes real variables, such as
output, are responsive only to real interest rates, consistent with responses by households and firms in conventional NKmodels.

10The model depicts expectations at a single point (t) in time. More generally, one expects market expectations to evolve over
time. A fully specified model might include a specific learning mechanism for market perceptions of policy targets and policy
responses, as well as a description of time variation in historical (as opposed to perceived) policy.

11That said, there is no reason that historical forward rates might not exhibit ex post dynamic inconsistency. For example,
markets in the 1980s might have been sceptical about the central bank’s commitment to active policy. Such a possibility is built
into the Markov-switching model with active and passive policy regimes of Davig and Leeper (2007) where policy always has some
positive probability of reverting to the passive regime. Further, as illustrated by Farmer, Waggoner and Zha (2007), instochastic
regime-switching models, the indeterminacy of a passive regime can spillover into the active regime regardless of the strength of the
active policy regime.

12The roots of the associated companion form system for (5) arederived in the appendix.
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In this formulation, upper bounds for the policy responses are summarized by the first two conditions in
(8). These bounds will depend on the particular specifications of the model. In the case wherec1 = c2, the
second condition puts no constraints on the parameters of the perceived policy path.

The third requirement for determinacy in (8) is a generalization of the Taylor Principle. If policy is not
horizon-dependent, thenc1 = c2 and the determinacy condition simplifies to the standard Taylor Principle
that the nominal policy rate must respond more than one-for-one to expected inflation.

With horizon-dependency in the perceived policy path, determinacy requires that theaverage anticipated
response to expected inflation over the maturity of the bond should exceed unity. Thus, even if the current
period response is passive,c1 < 1, the average perceived response may satisfy the lower boundrequirement
for determinacy.13 The general point here is well known: local determinacy is model-specific and affected
by a convolution of parameters, not just the inflation response coefficient in the near-term policy reaction
function. Yet, a large literature evaluates policy rate sensitivity to inflation to judge the stability of policy
and, in particular, to assess whether passive policy was thecause of the Great Inflation. The simple illustrative
model described above suggests that such an evaluation is insufficient. Moreover, the model provides a clear
illustration where the bond rate has a distinct effect on output beyond the current policy response.

3.2 Pitfalls of standard NK specifications

Standard NK models contain rudimentary links between policy rates and bond rates, where policy rate
responses are invariant and bond rates are averages of future policy rates. In addition to the assumption that
parameters of the policy reaction function are time invariant, this mapping ignores two potentially important
features of the real world—time-varying term premiums and asymmetric information on the part of the
central bank and the private sector.

The treatment of time-varying term premiums in a no-arbitrage model of the term structure is explored in
the next section. In NK models, term premium effects are generally absent by assumption. A recent exception
is Rudebusch, Sack, and Swanson (2007) who develop a structural model in which the sign of the correlation
between the term premium and output depends on the nature of the shock hitting the economy. However,
they note that their structural model is unable to reproducethe magnitude and variation of term premiums
observed in the bond market. Moreover, while their model incorporates time-varying term premiums, it
assumes symmetric information.

The failure to address the issue of asymmetric information is an important drawback of most structural
models that formulate output equations as functions of the one-period rate. Given that theory indicates
forecasts of long-horizon returns in bond markets are important determinants of private-sector expenditures,
the information set of bond traders is more pertinent than that of a macro modeler. The bond-trader
information set is likely to differ, and may be larger than the macro modeler. Unless the modeler ensures
that the averages of forward rates generated by the model areequivalent to observed bond rates, the model
description of policy transmission will reflect the modeler’s priors regarding long-horizon forecasts, and
these may differ markedly from the long-horizon forecasts contained in bond market observations.14

In contrast to the assumptions made in structural models, empirical results from reduced-form analyses
are generally supportive of an independent role for long-term interest rates. Kozicki and Tinsley (2002)
explore competing specifications of short-term and long-term interest rates in output equations. If frictions
in adjusting real expenditures are important, we might expect long-term ex-ante real interest rates to dominate

13Note that the exercise conducted here is different than thatin McGough, Rudebusch, and Williams (2005), where the bond rate
is the monetary policy instrument. For comparison, in the case of the two-period bond rate, determinacy in their set-up requires that
the bond rate int respond more than one-for-one to inflation int, i.e.,R2,t = cBπt with cB > 1.

14The sensitivity of long-horizon forecasts to alternative modeling assumptions regarding time-variation in conditional equilibria
is illustrated in Kozicki and Tinsley (2001a, 2001b, 2005a).
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competing short-term real-rate regressors in reduced-form regressions. Indeed, they provide empirical
evidence indicating that long-term real rates are relatively more important. Results are reported for a
sequence of bivariate tests, where U.S. manufacturing utilization, a proxy for the output gap, is regressed
on competing short-term and long-term ex-ante real interest rates over a 1967m1 - 1997m7 sample. The
tests confirm that spreads between the long-term and short-term interest rates are statistically insignificant
when regressions are conditioned on the long-term rates and, conversely, long-short spreads are significant
when regressions are conditioned on the short-term interest rates. Rudebusch, Sack, and Swanson (2007)
construct several estimates of time-varying term premiumsand use these estimates to examine the link
between movements in the term premium and subsequent economic activity.15 In general, they find that
a decline in the term premium has typically been associated with higher future real GDP growth.

Overall, these results suggest that an important directionfor future research will be to incorporate
time-varying premiums and asymmetric information into structural models. In addition, while not examined
in the current paper, the explanatory role of credit risk premiums in private borrowing rates is empirically
supported in Kozicki and Tinsley (2002), arguing for additional consideration of market perceptions of
private sector risk in the transmission of policy.

4 No-arbitrage bond pricing with time-varying risk premium s and
horizon-dependent perceptions

As noted earlier, bond rates may exhibit elastic responses to inflation at the same time that policy rate settings
appear to indicate passive policy. This section explores two possible real-world features that may admit such
an outcome. One possibility, as suggested in the previous section, is that coefficients of the perceived policy
response may vary over the forecast horizon. Another possibility—one not examined in section 3—is that
term premiums may vary systematically with inflation.16

The next subsection describes a no-arbitrage model of bond pricing that incorporates term premium
responses to macroeconomic determinants of policy rates, such as inflation, and also allows for
horizon-dependent expectations.17 To establish terminology, the nominal yield on an n-period zero-coupon
bond is denoted,

Rn,t =
1

n

n−1
∑

i=0

ft,i,

=
1

n

n−1
∑

i=0

(rt,i + ψt,i),

=
1

n

n−1
∑

i=0

rt,i + Ψn,t. (9)

The first line of (9) indicates that the nominal bond rate is the average offorward rates, ft,i, over the lifetime
of the bond. The second line shows that the forward rate in theith period of then-period forecast horizon

15As Rudebusch, Sack, and Swanson note, estimates of term premiums depend on assumptions regarding long-horizon
expectations of the equilibrium real rate and the inflation anchor.

16In the model of section 3, term premiums of bond rates were assumed to be constant over time and drop out of equilibrium
deviations.

17Recent examples of empirical estimates of the term structure exploring macro variable determinants of term premiums include
Ang and Piazzesi (2003), Rudebusch and Wu (2007, forthcoming), Ang, Dong, and Piazzesi (2005), Duffee (2006), Dewachter and
Lyrio (2006a), and Dewachter, Lyrio, and Maes (2006).
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is equal to the expectedpolicy rate in the ith period,rt,i, plus a possibly time-varying forward rateterm
premium, ψt,i. The last line shows that the term premium of then-period bond rate,Ψt,n, is equal to the
average of the forward rate term premiums.18 Horizon-dependence of the expected policy rate will imply
that the mapping betweenri,t and expected measures of macroeconomic variables in theith period of the
forecast horizon may depend oni.

This format clarifies possible roles of time-varying term premiums. Positive term premium responses to
inflation may reconcile elastic nominal bond rate responseswith passive policy. In addition, with systematic
positive responses to inflation, time-varying term premiums may operate as automatic stabilizers, reducing
the effective lower bound required for determinate policy.

4.1 The model

In the model we present, bond prices depend on the current state and future evolution of the macroeconomy.
We represent the dynamics of macroeconomic variables with afirst-order companion-form system, where,
for notational simplicity, a constant is included in theX vector:19

Xt = ΦXt−1 + Σǫt, ǫt ∼ N(0, I). (10)

The policy rate in periodt + h anticipated by bond traders in periodt, rt,h is assumed to be a linear
function of macroeconomic variables anticipated fort+ h:

rt,h = δ′h+1EtXt+h, (11)

where the vector of response parameters,δh+1 may vary over the forecast horizon. This generalization has
not been considered in the literature.

In the absence of arbitrage, the price of a multiperiod assetthat does not pay dividends is determined
by the expected product of stochastic discount factors,Mt+i, over the lifetime of the asset. In the case of a
zero-coupon n-period nominal bond paying $1 at maturity, the current price is:

Pn,t = Et{Mt+1Mt+2 . . .Mt+n},

= Et{Mt+1Pn−1,t+1}, (12)

where the last line in (12) follows by the law of iterated expectations. The yield on this bond is:

Rn,t = −
1

n
log(Pn,t). (13)

The stochastic discount factor is assumed to satisfy:

Mt+i+1 = exp{−rt,i}exp{−λ
′

t+iǫt+i+1 −
1

2
λ′t+iλt+i} (14)

where, following Duffee (2002), the price of risk is the essentially-affine formulation:

λt+i = λ0 + λ′1Xt+i. (15)

The second term in (14) is the Radon-Nikodym derivative thattranslates the distribution of the discounted
asset price to a martingale by removing predictable drift due to bond risk premiums.20 If investors are risk

18In the terminology of Shiller (1990),Ψn,t is the rollover term premium.

19This format nests the reduced form of linear structural macroeconomic models.

20Change of drift under the Girsanov theorem is discussed in Duffie(1996).
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neutral,λt+i = 0, andMt+i+1 = exp{−rt+i}. To facilitate interpretation of term premiums, the vectorλ0

is included separately in (15) and elements ofλ1 that multiply the constant inXt are restricted to equal zero.
In the absence of an explicit specification of investor utility functions, no additional theoretical restrictions
are imposed on theλ′1 matrix. As the dimensions of the pricing matrix can be large,empirical investigations
of essentially affine formulations of asset pricing often impose zero restrictions on elements of theλ′1 matrix,
such as Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2005), and Dewachter and Lyrio (2006 a,b). Kim
and Orphanides (2005) suggest fewer zero restrictions are required if measurements include both bond rate
data and surveys of interest-rate forecasts over short and long horizons. Depending on the structure of theλ1

matrix, term premium variation linked to a variable may not reflect uncertainty in that variable. For example,
supposeΣλ′1Xt is a2 × 1 vector,

[

s11 s12
s21 s22

] [

λ11 λ12

λ21 λ21

] [

x1,t

x2,t

]

=

[

s11λ11 + s12λ21 s11λ12 + s12λ22

s21λ11 + s22λ21 s21λ12 + s22λ22

] [

x1,t

x2,t

]

.

Note that responses of the term premium to movements inx2,t may not be related to the scale of thex2

shock,s22.
As in Campbell, Lo and MacKinlay (1997), discrete-time bondprices in this Gaussian affine model of

the term structure can be represented by:

Pn,t = Et[Π
n
i=1Mt+i]

= exp{−An −B′

nXt}, (16)

where expressions forAn andBn can be derived by substituting forMt+i from (14). Under the assumption
thatXt is observable int, the price of a one-period bond is

P1,t = EtMt+1,

= Etexp[−δ
′

1Xt −
1

2
λ′tλt − λ′tǫt+1],

= exp[−δ′1Xt −
1

2
λ′tλt +

1

2
V ar([λ0 + λ′1Xt]

′ǫt+1)],

= exp[−δ′1Xt],

= exp[−A1 −B′

1Xt]. (17)

Sincert,1 ≡ R1,t = −log(P1t) andrt,1 = δ′1Xt, it follows that

A1 = 0

B1 = δ1.

More generally, Kozicki and Tinsley (2005c) show that forn > 1

An ≡ −
n

∑

i=2

[(
n

∑

j=i

δ′j(Φ − Σλ′1)
j−i)Σ[Σ′(

n
∑

j=i

1

2
δ′j(Φ − Σλ′1)

j−i)′ + λ0]],

B′

n ≡

n
∑

i=1

δ′i(Φ − Σλ′1)
i−1. (18)

These expressions differ from those found elsewhere in the literature through possible horizon dependence
in the parametersδi, i = 1, . . . , n. The notation convention is that negative entries ofλ1 contribute towards
positive risk premiums. Consequently, sinceRn,t = (1/n)(An + B′

nXt), the sensitivity of bond rates to
variations in the macro variables,Xt, may be increased if elements ofλ1 are negative, as can be seen in the
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final line of (18). If the perceived policy response is constant over the bond maturity,δi = δ, i = 1, . . . , n,
these equations collapse to the standard affine results:

An ≡ −
n

∑

i=2

[ B′

i−1 Σ [ Σ′
1

2
Bi−1 + λ0]],

B′

n ≡ δ′
n

∑

i=1

(Φ − Σλ′1)
i−1. (19)

whereBi in the first equation of (19) is defined in the second equation.

4.2 Forward rate expressions

The formulations in (18) are particularly convenient for analysis of forward rates. The forward rate,fn−1, is

ft,n−1 = rt,n−1 + ψt,n−1,

= pn−1,t − pn,t

= An −An−1 + (Bn −Bn−1)
′Xt

= Cn + δ′n(Φ − Σλ′1)
n−1Xt, (20)

where the intercept in the last line of (20) is

Cn ≡ −

n
∑

i=2

[δ′n(Φ − Σλ′1)
n−iΣ[Σ′(

n
∑

j=i

1

2
δ′j(Φ − Σλ′1)

j−i)′ + λ0]

+(
n−1
∑

j=i

δ′j(Φ − Σλ′1)
j−i)ΣΣ′(

1

2
δ′n(Φ − Σλ′1)

n−i)′].

Thus, with horizon-dependent perceptions of policy responses, the forward rate,ft,h−1, satisfies

ft,h−1 = Ch + δ′h(Φ − Σλ′1)
h−1Xt

≡ Ch + δ′h(I − Σλ′1Φ
−1)h−1Φh−1Xt

= Ch + δ′h(I − Σλ′1Φ
−1)h−1EtXt+h−1.

Estimates ofEtXt+h−1 obtained from projections of the empirical model in (10) with estimated coefficients
permit exploration of “Taylor rule” regressions for forward rates with possibly horizon-varying coefficients,
δ′h(I − Σλ′1Φ

−1)h−1, h = 1, 2, . . . .
To determine an expression for the term premiums, notice that in the absence of term premiums, the

forward rate regression reduces to

ft,h−1 = Ch + δ′hΦh−1Xt,

= Ch + δ′hEtXt+h−1.

Thus, forward rate term premiums are defined by

ψt,h = Ch+1 + δ′h+1(Φ − Σλ′1)
hXt − δ′h+1Φ

hXt. (21)

If the effect of the risk-pricing matrix,λ′1, is such that(Φ − Σλ′1)
h is slower to decay thanΦh, the slope

contributions of forward rate term premiums will increase over the forecast horizon withh.21

21The Jordan form of a matrix,A = PΛP
−1, impliesA

i
= PΛ

i
P

−1.
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5 Empirical responses of forward rates

This section provides a direct evaluation of the combined effects of term-premium and expected-policy-rate
responses by estimating forward rate response equations over different forward horizons. The possibility
of time-varying forward rate term premiums and horizon-dependent expectations of future policy rate
responses suggests that forward rate responses to expectations of future macro variables may differ from
the current-period policy rate responses, providing a moreflexible framework for exploring bond rate effects
on economic activity than extrapolations of invariant Taylor rules.

The macro variables we use to summarize economic activity are inflation,πt, and the unemployment
rate,ut. The unemployment rate appears to be an appropriate summarymeasure of real activity because, as
discussed in Kozicki and Tinsley (2007), it seems likely that the FOMC used aggregate unemployment as a
measure of resource slack. Moreover, the change in the unemployment rate provides a proxy for economic
growth.

Each macro variable is partitioned into its perceived equilibrium attractor or “natural rate,” such as
(π̄t, ūt), and deviations from these natural rates.22

πt ≡ π̄t + π̃t,

ut ≡ ūt + ũt. (22)

The empirical macro model describes the dynamics of four variables: the perceived natural rate of
unemployment,̄ut, deviations of the unemployment rate from its perceived natural rate,ũt = ut − ūt,
the perceived central bank target for inflation,π̄t, and deviations of inflation from this perception,π̃t =
πt − π̄t. In the first subsection we provide more details on the data used and the structure of the empirical
macroeconomic model.

For monthly observations, the instantaneous forward ratesat twelve-month intervals in the forecast
horizon are represented by

ft,12h = (1 − ρ1)f
∗

t,12h + ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + at,12h, (23)

where the forward rate associated with the bond-trader expectation of the policy rate in the absence of policy
lag adjustments is

f∗t,12h = Et{β0 + β1π̄t + β2π̃
(k̄)
t,12h + β3ũt,12h + β4∆

(k)ut,12h},

whereπ̃t,12h is the projected deviation of inflation in the12hth month of the forecast horizon;̃ut,12h is the
projected deviation of unemployment from bond trader perceptions of the unemployment natural rate,ūt;
and the superscripts,(k̄) and(k), denotek-period averages andk-period summations, respectively.23 For
monthly data,k = 12.

As the specification in (23) is amenable to direct regression, it is straightforward to check if estimates of
combined responses, such asβ2, are consistent with stable bond rate responses, and if responses vary over
different partitions of the forecast horizon. The regressions reported here do not impose the cross-equation
restrictions implied by no-arbitrage, as derived in section 4, on the forward rate regressions of different
horizons. Consequently, they do not provide information onwhat proportions of combined responses are
due to forward rate term premium responses,Σλ′1, or to expected policy rate responses,δh. There is one
exception: under the physical probability measure, the expected response to the perceived inflation target
is unity, β1 = 1. Thus, significant deviations fromβ1 = 1 indicate time variation in forward rate term
premiums due to a time-varying inflation target,π̄t.

22In a slight abuse of conventional terminology, it is convenient to refer to the central bank target for inflation perceived by bond
traders,̄πt, as the “natural rate” for inflation.

23The k-period summation of the first-difference operator is the k-period difference,∆(k)
= ∆+∆L+ . . .+∆L

k−1
= 1−L

k .
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5.1 Forecast model

The structure of the empirical model, particularly the expressions describing the evolution of the natural rates,
is very important when making long-horizon forecasts. Kozicki and Tinsley (2001a, 2001b) demonstrate that
long-horizon predictions from VAR models are sensitive to specifications regarding the conditional equilibria
of state variables. For instance if the perceived equilibrium or central bank target for inflation were to be
fixed at the sample mean, then implied constructions of ex-ante 5-year and 10-year real bond rates would
appear to be trending up in the 1970s. By contrast, ifπ̄t were to closely track recent inflation, as would be
the case if̄πt is estimated as the Beveridge-Nelson (1981) unit-root trend, then ex-ante real bond rates would
appear to be much more volatile and fall sharply below zero inthe first half of the 1970s. Finally, more
gradual movements in̄πt that are consistent with survey data imply ex-ante real rates on 5-year and 10-year
bonds that move without much of a discernible trend in the 1970s.

For the forward rate regressions reported below, the time-varying perceptions of bond traders for the
central bank target for inflation,̄πt, and the natural rate for unemployment,ūt, are represented by the
constant-gain learning equations:

π̄t = γπ̄πt−1 + (1 − γπ̄)π̄t−1 + επ̄,t,

ūt = γūut−1 + (1 − γū)ūt−1 + εū,t. (24)

Kozicki and Tinsley (2001b) indicate that a monthly gain ofγπ̄ = .015 provides an average approximation
of private-sector long-horizon forecasts of inflation in the 1980s. This benchmark constant-gain proxy for
bond-trader perceptions of the central bank target for inflation, π̄t, is shown in Figure 1, along with the
12-month moving average of PCE inflation (i.e., inflation based on the price index for personal consumption
expenditures) and the Hoey real-time survey of 5-10 year predictions of CPI inflation. Reductions in survey
predictions of long-horizon inflation and in the perceived inflation target lag considerably the fall of inflation
in the early 1980s.

The same benchmark learning rate is assumed for bond-traderperceptions of the natural rate of
unemployment,γū = .015. The associated constant-gain proxy for the natural rate ofunemployment
is shown in Figure 2, along with the historical unemploymentrate and the Congressional Budget Office
(2004) retrospective estimate of the natural rate. As with many real-time estimates of the natural rate of
unemployment, the constant-gain proxy tracks below the retrospective CBO estimate in the 1970s, with an
average underestimation error of about 1.25 percentage points in the first half of the 1970s before the error
sharply diminishes in the remainder of the 1970s.

Given the sensitivity of long-horizon forecasts to the specification of the perceived central bank target for
inflation, we examine the effects of three constant-gain learning rates. In the case of a fixed inflation target,
the learning rate is set to zero,γπ̄ = 0.0, and the perceived inflation target is set to the sample mean.The
benchmark perception of the central bank inflation target, shown in Figure 1, uses the constant-gain learning
rate,γπ̄ = .015, which implies a mean learning lag of about 5.5 years. Finally, a faster learning rate is also
examined for perceptions of the central bank target for inflation, γπ̄ = .03, with a mean learning lag of about
2.8 years.24

Time-variation in the natural-rate deviations of inflationand unemployment is captured by a pth-order,

24Results in Kozicki and Tinsley (2001a, 2005b) indicate thatlearning rates need not be constant over time. Faster learning rates
are more likely if agents perceive larger forecast errors for observable variables and can reduce the real consequencesof perception
errors in episodes with a time-varying inflation target. But, faster constant-gain learning rates are inefficient in more tranquil periods,
as larger responses to transient disturbances increase thedispersion of the ergodic distribution of perceived inflation targets about a
fixed central bank target.
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bivariate vector autoregression,

π̃t = α11,1π̃t−1 +

p−1
∑

i=1

α11,i+1∆π̃t−i + α12,1ũt−1 +

p−1
∑

i=1

α12,i+1∆ũt−i + επ̃,t,

ũt = α21,1π̃t−1 +

p−1
∑

i=1

α21,i+1∆π̃t−i + α22,1ũt−1 +

p−1
∑

i=1

α22,i+1∆ũt−i + εũ,t., (25)

If the macro system is stable, each macro variable reverts toits natural rate in the long run. Monthly
predictions of expected inflation,Etπt,12h, and unemployment,Etut,12h, are generated by a12th-order
empirical model of inflation and unemployment, whose formatis shown in (25).

5.2 Forward rate regressions

The empirical analysis of forward rates uses data for forward rates at 1-year, 3-year, 5-year and 10-year
horizons. As forward rates at neighbouring horizons tend tomove closely, the forward rate regressions are
grouped into three horizon partitions: 1-3 years, 4-6 years, and 7-10 years. This grouping assumes that
perceived policy rate responses do not vary significantly within a partition. Because the term premium
responses within a partition are not likely to be identical,unless they are zero, the regression residuals will
be heteroskedastic reflecting deviations from estimated average responses.

Forward rate regressions for the three partitions are presented in Tables 2a and 2b for a pre-Volcker
sample, 1966 m1 - 1979 m7.25 Forecasts of inflation and unemployment regressors for results in Table
2a are generated by fitting the empirical macro model to the 1960-79 sample under the assumption of the
benchmark learning rates,γπ̄ = γū = .015. The mean long-run response,β2, to the equilibrium deviation
in inflation, π̃t, is statistically insignificant for forward rates in the 1-3year partition; is not statistically
different from unity for forward rates in the 4-6 year partition; and is greater than unity for forward rates in
the 7-10 year partition. Thus, the pattern of increasing responses over the forecast horizon is consistent with
elastic responses to expected inflation by intermediate-maturity bond rates in the 1960s and 1970s. While
mean responses to the forecast level or difference of the unemployment rate are negative, mean responses
are not significant in the 1-3 and 4-6 year partitions. Although the signs of term premium responses may be
opposite to the signs of expected policy rate responses, it is unlikely the combined response would overturn
the direction of the expected policy rate response.26

Forward rate responses to expected inflation under alternative learning rates are examined in Table 2b
for the pre-Volcker sample. The pattern of increasing inflation responses,β2, over the forecast horizon
is relatively insensitive to variation in the assumed learning rate. However, determinacy of bond rate
responses to expected inflation is better supported for perceptions of a fixed inflation target,γπ̄ = 0.0,
or the time-varying inflation target generated by the benchmark learning rate,γπ̄ = .015.

Tables 3a and 3b present forward rate regressions for the sample, 1982 m1 - 1987 m7, a period that
encompasses the last six and one-half years of the FOMC chairmanship of Paul Volcker but excludes the

25During this interval, the FOMC was chaired by William McChesney Martin, Jr, Arthur Burns, and G. William Miller.

26Buraschi and Jiltsov (2005) report positive term premiums for inflation, with larger premiums for longer maturities. Dewachter,
Lyrio, and Maes (2006) estimate positive term premiums for inflation that rise with maturity and negligible term premiums for GDP
gaps. Positive term premiums are also estimated for a time-varying central tendency for inflation, similar tōπt; these premiums also
rise with maturity and are nearly triple the size of the term premiums for inflation. By contrast, Duffee (2006) presents evidence of
negative term premium responses to inflation in a pre-Volcker sample. Note that negative term premium responses to inflation could
conceivably reverse the historical roles of the inflation responses by the central bank and bond traders suggested in section 3. That
is, system indeterminacy could occur if an elastic policy rate response to inflation is accompanied by inelastic bond rate responses
to expected inflation.
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unusual interest-rate volatility in 1979-81, during the experiment with nonborrowed reserves as the operating
policy instrument. In Table 3a, the forward rate response toexpected inflation,β2, is not statistically different
from unity in the 1-3 year partition, and greater than unity in the 4-6 year partition, although not significantly
so. The mean inflation response in the 7-10 year partition is greater than unity but the associated p-value is
marginally larger than .10. As with the earlier sample, forward rates do not appear to consistently respond
to forecasts of unemployment.

The estimated forward rate responses,β1, to the perceived inflation target,π̄, in Table 3a are significantly
greater than unity in the 1-3 year and 4-6 year partitions. Under the physical probability measure, the
expected coefficient of the inflation target is one, so this suggests forward rate term premiums responded
positively to the perceived inflation target in the 1980s, incontrast to results in the earlier sample.

Forward rate responses to expected inflation in the 1980s under alternative learning rates are examined
in Table 3b. Here, the pattern of increasing responses to expected inflation over the forecast horizon is
statistically supported when the inflation-target learning rate is equal to or exceeds the benchmark learning
rate. The case with no learning is likely to be a particularlybad assumption for this sample, as it incorporates
a period immediately after a large change in policy regime with sizable reductions in inflation. Positive
responses of forward rate term premiums to the perceived inflation target,β1 > 1, are also indicated for the
benchmark learning rate,γπ̄ = .015, and the faster learning rate,γπ̄ = .03.

Although the forward rate regressions provide only rough approximations of combined forward rate
responses to macro variables, two results appear to be common to the pre-Volcker sample and the 1980s
sample. First, forward rate responses to equilibrium deviations in inflation are generally larger at more distant
horizons and often greater than one, consistent with elastic bond rate responses to inflation. Second, there is
little evidence of systematic responses by forward rates tothe level or difference of unemployment. A notable
difference in sample results is that positive responses by forward rate term premiums to a time-varying
inflation target are supported in the 1980s sample but not in the pre-Volcker sample.

6 Concluding remarks

This paper re-examines the stability of monetary policy, taking into account the transmission role of bond
yields. Some interpretations of the Great Inflation have focused on the stability of a Taylor rule description of
the policy rate or on central bank assumptions regarding natural rates. However, these possible shortcomings
in policy are not sufficient to assess the stability of the economy if the bond rate is the transmission channel
for monetary policy. With bond rate transmission, we show that conditions for determinate inflation require
a lower bound on bond rate responses to expected inflation. Consequently, passive current policy may be
compensated by bond trader perceptions of aggressive policy later.

Such horizon-dependence in policy anticipations may explain elastic nominal bond rate responses to
inflation, even in the 1960s and 1970s when other studies havedemonstrated that the policy rate did not keep
pace with inflation. Another resolution of possible contradictory sensitivities to inflation by policy rates and
bond rates is that risk prices in forward rate term premiums may depend on expected inflation and operate as
automatic stabilizers, reducing the lower-bound requirement for expected policy rate responses.

In investigating historical behaviour of policy rates and bond rates, we also note the importance of
allowing for asymmetric information on the part of the central bank and the private sector. Although
structural dynamic expenditure equations are often formulated as functions only of the one-period interest
rate, the elimination of market bond rate observations substitutes the information set of the modeller for the
more relevant information set of bond traders in long-horizon forecasts.

To accommodate these possibilities, we present a variant ofthe essentially-affine model of no-arbitrage
bond pricing that allows for horizon-dependent expectations of policy rate responses and incorporates
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time-varying term premiums. This model provides a framework for interpreting forward rate responses
to equilibrium deviations in expected inflation. Forward rate regressions provide empirical support for
the conjecture that forward rate responses at more distant horizons display larger long-run responses to
equilibrium deviations in expected inflation. The regressions also suggest forward rate term premiums
responded positively to perceptions of a time-varying inflation target in the 1980s but not in the 1960s and
1970s.

In future work, we look to isolate the separate contributions of time-varying term premiums
and horizon-dependent expectations of future policy rates. This will require imposing no-arbitrage
cross-equation restrictions on the forward rate regressions. If horizon-dependent perceptions are confirmed,
it would be useful to explore possible reasons for horizon dependency in expectations. If long-horizon
expectations are merely inertial, that inertia can partially insulate the economy from poor monetary policies,
as may have occurred in the 1960s and 1970s, but may also attenuate responses to new monetary policies.
Horizon-dependent expectations may also offer a richer framework for interpreting central bank policy
communications.
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A Eigenvalues of the companion form for equation (5)

The second-order inflation equation

π̃t = (1 −
ab(c1 − 1)

2
)Etπ̃t+1 −

ab(c2 − 1)

2
Etπ̃t+2 + bet,

is restated in the first-order companion form

A1yt+1 = A0yt + aeet + aηηt,

wherey′t+1 = [π̃t+1, Etπ̃t+2],

A1 =

[

0 −ab(c2−1)
2

1 0

]

, A0 =

[

1 − (2−ab(c1−1))
2

0 1

]

, ae =

[

b
0

]

, andaη =

[

0
1

]

.

Using

A−1
1 =

[

0 1
− 2

ab(c2−1) 0

]

,

the reduced form is

yt+1 = B0yt + beet + bηηt,

where

B0 =

[

0 1

− 2
ab(c2−1)

2−ab(c1−1)
ab(c2−1)

]

.

The text equations for the eigenvalues (l1, l2) in (7) are provided by the trace and determinant ofB0,

l1l2 =
2

ab(c2 − 1)
,

l1 + l2 =
2 − ab(c1 − 1)

ab(c2 − 1)
.
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Table 1: Bond Rate Responsiveness to Macro Variables1.

R∗

12h,t = b0 + b1πt−1 + b11(L)∆πt−1 + b2ut−1 + b22(L)∆ut−1.

R12h,t = b3R12h,t−1 + b33(L)∆R12h,t−1 + (1 − b3)R
∗

12h,t + at,12h.

bond π u ∆u
rate b1 b2 b22(1) b3 Prob(b1 > 1)

sample: 1966 m1 - 1979 m9
h = 1 1.37 -1.28 -1.94 .880 .77

(2.8) (-2.0) (-3.1) (12)

h = 3 1.06 -.889 -1.44 .864 .58
(3.8) (-2.3) (-3.2) (13)

h = 5 1.05 -.853 -1.15 .864 .58
(3.6) (-2.1) (-3.2) (15)

h = 10 1.12 -.904 -.812 .898 .64
(3.4) (-1.8) (-3.0) (20)

sample: 1982 m1 - 1987 m7
h = 1 1.96 .068 -3.92 .704 .99

(4.9) (.19) (-2.8) (7.8)

h = 3 1.95 .214 -2.97 .757 .96
(3.7) (.50) (-2.1) (10)

h = 5 1.73 .338 -2.42 .774 .87
(2.7) (.71) (-1.5) (11)

h = 10 1.20 .551 -2.42 .795 .60
(1.6) (1.0) (-1.5) (12)

1. Dependent variable is h-year, zero-coupon bond rate on USTreasury securities.bii(L) are
11th-order polynomials in L. Parentheses contain ratios ofcoefficients to asymptotic standard
errors.
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Table 2a: Forward rate regressions, pre-Volcker 1966 - 1979,
with benchmark learning rates1.

f∗t,12h = Et

{

β0 + β1π̄t + β2π̃
(k̄)
t,12h + β3ũt,12h + β4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate β1 β2 β3 β4 ρ1 ρ2

time-varying perceived natural rates,γπ̄ = γū = 0.015
h = 1-3 .588 -.042 – – .513 -.009

(9.2) (-0.4) (16) (-0.2)

.581 -.042 -.023 – .509 -.005
(9.1) (-0.4) (-0.3) (15) (-0.1)

.581 .056 – -.172 .518 -.017
(9.0) (0.3) (-0.6) (16) (-0.4)

h = 4-6 .904 .661 – – .877 .219
(10) (2.5) (38) (2.5)

.861 .375 -.564 – .873 .211
(8.5) (1.5) (-1.5) (39) (2.4)

.860 2.92 – -2.65 .873 .211
(8.4) (1.8) (-1.5) (39) (2.4)

h = 7-10 .796 2.70 – – .967 .877
(25) (3.9) (178) (20)

.813 1.32 -2.86 – .967 .873
(25) (1.8) (-3.7) (179) (20)

.813 13.8 – -13.1 .967 .873
(25) (4.3) (-3.7) (179) (20)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12. Parentheses contain
ratios of coefficients to HAC standard errors. VAR forecast model sample: 1960 m1 - 1979 m7.
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Table 2b: Forward rate regressions, pre-Volcker 1966 - 1979,
with alternative learning rates1.

f∗t,12h = Et

{

β0 + β1π̄t + β2π̃
(k̄)
t,12h + β3ũt,12h + β4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate β1 β2 β3 β4 ρ1 ρ2

fixed perceived inflation target,γπ̄ = γū = 0.0
h = 1-3 1.0 .320 – – .540 -.037

(5.1) (14) (-0.7)

h = 4-6 1.0 .929 – – .970 .312
(1.8) (54) (3.1)

h = 7-10 1.0 1.59 – – .981 .870
(13) (346) (20)

time-varying perceived inflation target,γπ̄ = γū = 0.015
h = 1-3 .588 -.042 – – .513 -.009

(9.2) (-0.4) (16) (-0.2)

h = 4-6 .904 .661 – – .877 .219
(10) (2.5) (38) (2.5)

h = 7-10 .796 2.70 – – .967 .877
(25) (3.9) (178) (20)

time-varying perceived inflation target,γπ̄ = 0.03; γū = .015
h = 1-3 .499 -.012 – – .503 -.001

(10) (-0.2) (17) (-0.0)

h = 4-6 .670 .422 – – .866 .216
(9.9) (2.1) (36) (2.3)

h = 7-10 .694 1.24 – – .965 .879
(26) (4.0) (164) (20)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12. Parentheses contain
ratios of coefficients to HAC standard errors. VAR forecast model sample: 1960 m1 - 1979 m7.
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Table 3a: Forward Rate Regressions, Volcker 1982 - 1987
with benchmark learning rates1.

f∗t,12h = Et

{

β0 + β1π̄t + β2π̃
(k̄)
t,12h + β3ũt,12h + β4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate β1 β2 β3 β4 ρ1 ρ2

time-varying perceived natural rates:γπ̄ = γū = 0.015
h = 1-3 3.63 .732 – – 0.574 -.155

(8.4) (2.6) (9.9) (-3.1)

3.62 .731 .007 – .574 -.155
(9.5) (2.8) (0.0) (10) (-3.1)

3.85 .429 – .759 .529 -.120
(9.9) (1.3) (1.9) (9.1) (-2.4)

h = 4-6 3.28 1.12 – – .918 -.232
(3.6) (1.8) (24) (-2.3)

.754 9.18 -20.2 – .955 -.265
(0.2) (1.1) (-1.0) (26) (-2.7)

.226 -1.50 – 13.3 .958 -.268
(0.1) (-0.6) (1.0) (27) (-2.8)

h = 7-10 -.686 6.64 – – .957 .450
(-0.4) (1.6) (60) (5.4)

1.62 -76.1 119 – .942 .485
(2.0) (-2.6) (2.7) (65) (6.4)

2.15 -7.67 – -28.6 .934 .467
(2.7) (-1.9) (-3.2) (60) (6.2)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12. Parentheses contain
ratios of coefficients to HAC standard errors. VAR forecast model sample: 1982 m1 - 1987 m7.
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Table 3b: Forward rate regressions, Volcker 1982 - 1987,
with alternative learning rates1.

f∗t,12h = Et

{

β0 + β1π̄t + β2π̃
(k̄)
t,12h + β3ũt,12h + β4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate β1 β2 β3 β4 ρ1 ρ2

fixed perceived inflation target,γπ̄ = γū = 0.0
h = 1-3 1.0 4.37 – – .850 -.262

(2.1) (24) (-4.8)

h = 4-6 1.0 75.7 – – .978 -.285
(1.1) (53) (-2.9)

h = 7-10 1.0 36.2 – – .936 .412
(0.9) (80) (4.6)

time-varying perceived inflation target,γπ̄ = γū = 0.015
h = 1-3 3.63 .732 – – .574 -.155

(8.4) (2.6) (9.9) (-3.1)

h = 4-6 3.28 1.12 – – .918 -.232
(3.6) (1.8) (24) (-2.3)

h = 7-10 -.686 6.64 – – .957 .450
(-0.4) (1.6) (60) (5.4)

time-varying perceived inflation target,γπ̄ = 0.03; γū = .015
h = 1-3 2.22 .774 – – .617 -.171

(5.7) (2.3) (10) (-3.3)

h = 4-6 2.04 1.38 – – .933 -.240
(2.8) (1.7) (26) (-2.3)

h = 7-10 1.40 4.01 – – .934 .441
(3.1) (3.2) (61) (5.6)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12. Parentheses contain
ratios of coefficients to HAC standard errors. VAR forecast model sample: 1982 m1 - 1987 m7.
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Figure 1: Perceived central bank target for inflation1
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1. solid line: perceived inflation target with learning gain, γπ̄ = .015 (see text).
dashed: Hoey survey of expected 5-10 year inflation.
dotted: inflation in personal consumption expenditure (pce) deflator, 12-month average.
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Figure 2: Perceived natural rate of unemployment1
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1. solid line: perceived natural rate of unemployment with learning gainγū = .015
(see text).
dashed: Congressional Budget Office (2004) estimate of natural rate for unemployment.
dotted: civilian unemployment rate.

25


	1994cover.pdf
	1994body.pdf

