84,837 research outputs found

    Query Resolution for Conversational Search with Limited Supervision

    Get PDF
    In this work we focus on multi-turn passage retrieval as a crucial component of conversational search. One of the key challenges in multi-turn passage retrieval comes from the fact that the current turn query is often underspecified due to zero anaphora, topic change, or topic return. Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution. In this paper, we model the query resolution task as a binary term classification problem: for each term appearing in the previous turns of the conversation decide whether to add it to the current turn query or not. We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers. We propose a distant supervision method to automatically generate training data by using query-passage relevance labels. Such labels are often readily available in a collection either as human annotations or inferred from user interactions. We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC. We incorporate QuReTeC in a multi-turn, multi-stage passage retrieval architecture and demonstrate its effectiveness on the TREC CAsT dataset.Comment: SIGIR 2020 full conference pape

    GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Passage Retrieval

    Full text link
    Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.Comment: 11 pages, 6 figure

    The State-of-the-arts in Focused Search

    Get PDF
    The continuous influx of various text data on the Web requires search engines to improve their retrieval abilities for more specific information. The need for relevant results to a userā€™s topic of interest has gone beyond search for domain or type specific documents to more focused result (e.g. document fragments or answers to a query). The introduction of XML provides a format standard for data representation, storage, and exchange. It helps focused search to be carried out at different granularities of a structured document with XML markups. This report aims at reviewing the state-of-the-arts in focused search, particularly techniques for topic-specific document retrieval, passage retrieval, XML retrieval, and entity ranking. It is concluded with highlight of open problems

    DCU at the NTCIR-12 SpokenQuery&Doc-2 task

    Get PDF
    We describe DCUā€™s participation in the NTCIR-12 SpokenQuery&Doc (SQD-2) task. In the context of the slide-group retrieval sub-task, we experiment with a passage retrieval method that re-scores each passage according to the relevance score of the document from which the passage is taken. This is performed by linearly interpolating their relevance scores which are calculated using the Okapi BM25 model of probabilistic retrieval for passages and documents independently. In conjunction with this, we assess the benefits of using pseudo-relevance feedback for expanding the textual representation of the spoken queries with terms found in the top-ranked documents and passages, and experiment with a general multidimensional optimisation method to jointly tune the BM25 and query expansion parameters with queries and relevance data from the NTCIR-11 SQD-1 task. Retrieval experiments performed over the SQD-1 and SQD-2 queries confirm previous findings which affirm that integrating document information when ranking passages can lead to improved passage retrieval effectiveness. Furthermore, results indicate that no significant gains in retrieval effectiveness can be obtained by using query expansion in combination with our retrieval models over these two query sets

    Learning to Rank in Generative Retrieval

    Full text link
    Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target. This paradigm leverages powerful generation models and represents a new paradigm distinct from traditional learning-to-rank methods. However, despite its rapid development, current generative retrieval methods are still limited. They typically rely on a heuristic function to transform predicted identifiers into a passage rank list, which creates a gap between the learning objective of generative retrieval and the desired passage ranking target. Moreover, the inherent exposure bias problem of text generation also persists in generative retrieval. To address these issues, we propose a novel framework, called LTRGR, that combines generative retrieval with the classical learning-to-rank paradigm. Our approach involves training an autoregressive model using a passage rank loss, which directly optimizes the autoregressive model toward the optimal passage ranking. This framework only requires an additional training step to enhance current generative retrieval systems and does not add any burden to the inference stage. We conducted experiments on three public datasets, and our results demonstrate that LTRGR achieves state-of-the-art performance among generative retrieval methods, indicating its effectiveness and robustness
    • ā€¦
    corecore