510 research outputs found

    Localized Algorithm for Segregation of Critical/Non-critical Nodes in Mobile Ad Hoc and Sensor Networks

    Get PDF
    AbstractTimely segregation of connectivity-centric critical/non-critical nodes is extremely crucial in mobile ad hoc and sensor networks to assess network vulnerabilities against critical node failures and provide precautionary means for survivability. This paper presents a localized algorithm for segregation of critical/non-critical nodes (LASCNN) that opts to distinguish critical/non-critical nodes to the network connectivity based on limited topology information. Each node establishes and maintains a k-hop connection list and employ LASCNN to determine whether it is critical/non- critical. Based on the list, LASCNN marks a node as critical if its k-hop neighbor's become disconnected without the node, non-critical otherwise. Simulation experiments demonstrate the scalability of LASCNN and shows the performance is quite competitive compared to a scheme with global network information. The accuracy of LASCNN in determining critical nodes is 87% (1-hop) and 93% (2-hop) and non-critical nodes 91% (1-hop) and 93% (2-hop)

    Prediction Approach of Critical Node Based on Multiple Attribute Decision Making for Opportunistic Sensor Networks

    Get PDF
    Predicting critical nodes of Opportunistic Sensor Network (OSN) can help us not only to improve network performance but also to decrease the cost in network maintenance. However, existing ways of predicting critical nodes in static network are not suitable for OSN. In this paper, the conceptions of critical nodes, region contribution, and cut-vertex in multiregion OSN are defined. We propose an approach to predict critical node for OSN, which is based on multiple attribute decision making (MADM). It takes RC to present the dependence of regions on Ferry nodes. TOPSIS algorithm is employed to find out Ferry node with maximum comprehensive contribution, which is a critical node. The experimental results show that, in different scenarios, this approach can predict the critical nodes of OSN better

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Connectionless routing protocols for mobile ad-hoc networks.

    Get PDF
    No abstract available.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b128054

    Energy-aware and secure routing with trust levels for wireless ad hoc and sensor networks

    Get PDF
    This dissertation focuses on the development of routing algorithms for secure and trusted routing in wireless ad hoc and sensor network. The first paper presents the Trust Level Routing (TLR) protocol, an extension of the optimized energy-delay routing (OEDR) protocol, focusing on the integrity, reliability and survivability of the wireless network...The second paper analyzes both OLSR and TLR in terms of survivability and reliability to emphasize the improved performance of the network in terms of lifetime and proper delivery of data...The third paper proposes a statistical reputation model that uses the watchdog mechanism to observe the cooperation of the neighboring nodes...The last paper presents the results of the hardware implementation of Energy-Efficient Hybrid Key Management --Abstract, page iv

    Energy-efficiency media access control in wireless ad hoc networks

    Get PDF

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    Cross-Layer Resilience Based On Critical Points in MANETs

    Get PDF
    A fundamental problem in mobile ad hoc and unstructured sensor networks is maintaining connectivity. A network is connected if all nodes have a communication route (typically multi-hop) to each other. Maintaining connectivity is a challenge due to the unstructured nature of the network topology and the frequent occurrence of link and node failures due to interference, mobility, radio channel effects and battery limitations. In order to effectively deploy techniques to improve the resilience of sensor and mobile ad hoc networks against failures or attacks one must be able to identify all the weak points of a network topology. Here we define the weak or critical points of the topology as those links and nodes whose failure results in partitioning of the network. In this dissertation, we propose a set of algorithms to identify the critical points of a network topology. Utilizing these algorithms we study the behavior of critical points and the effect of using only local information in identifying global critical points. Then, we propose both local and global based resilient techniques that can improve the wireless network connectivity around critical points to lessen their importance and improve the network resilience. Next we extend the work to examine the network connectivity for heterogeneous wireless networks that can be result due to factors such as variations in transmission power and signal propagation environments and propose an algorithm to identify the connectivity of the network. We also propose two schemes for constructing additional links to enhance the connectivity of the network and evaluate the network performance of when a random interference factor occurs. Lastly, we implement our resilience techniques to improve the performance

    Secure and Reliable Resource Allocation and Caching in Aerial-Terrestrial Cloud Networks (ATCNs)

    Get PDF
    Aerial-terrestrial cloud networks (ATCNs), global integration of air and ground communication systems, pave a way for a large set of applications such as surveillance, on-demand transmissions, data-acquisition, and navigation. However, such networks suffer from crucial challenges of secure and reliable resource allocation and content-caching as the involved entities are highly dynamic and there is no fine-tuned strategy to accommodate their connectivity. To resolve this quandary, cog-chain, a novel paradigm for secure and reliable resource allocation and content-caching in ATCNs, is presented. Various requirements, key concepts, and issues with ATCNs are also presented along with basic concepts to establish a cog-chain in ATCNs. Feed and fetch modes are utilized depending on the involved entities and caching servers. In addition, a cog-chain communication protocol is presented which avails to evaluate the formation of a virtual cog-chain between the nodes and the content-caching servers. The efficacy of the proposed solution is demonstrated through consequential gains observed for signaling overheads, computational time, reliability, and resource allocation growth. The proposed approach operates with the signaling overheads ranging between 30.36 and 303.6 bytes?hops/sec and the formation time between 186 and 195 ms. Furthermore, the overall time consumption is 83.33% lower than the sequential-verification model and the resource allocation growth is 27.17% better than the sequential-verification model. - 2019 IEEE.This work was supported in part by the Institute for Information and Communications Technology Promotion (IITP) grant through the Korean Government (MSIT) (Rule Specification-Based Misbehavior Detection for IoT-Embedded Cyber-Physical Systems) under Grant 2017-0-00664, and in part by the Soonchunhyang University Research Fund.Scopu
    corecore