5,510 research outputs found

    A Domain Specific Approach to High Performance Heterogeneous Computing

    Full text link
    Users of heterogeneous computing systems face two problems: firstly, in understanding the trade-off relationships between the observable characteristics of their applications, such as latency and quality of the result, and secondly, how to exploit knowledge of these characteristics to allocate work to distributed computing platforms efficiently. A domain specific approach addresses both of these problems. By considering a subset of operations or functions, models of the observable characteristics or domain metrics may be formulated in advance, and populated at run-time for task instances. These metric models can then be used to express the allocation of work as a constrained integer program, which can be solved using heuristics, machine learning or Mixed Integer Linear Programming (MILP) frameworks. These claims are illustrated using the example domain of derivatives pricing in computational finance, with the domain metrics of workload latency or makespan and pricing accuracy. For a large, varied workload of 128 Black-Scholes and Heston model-based option pricing tasks, running upon a diverse array of 16 Multicore CPUs, GPUs and FPGAs platforms, predictions made by models of both the makespan and accuracy are generally within 10% of the run-time performance. When these models are used as inputs to machine learning and MILP-based workload allocation approaches, a latency improvement of up to 24 and 270 times over the heuristic approach is seen.Comment: 14 pages, preprint draft, minor revisio

    Seeing Shapes in Clouds: On the Performance-Cost trade-off for Heterogeneous Infrastructure-as-a-Service

    Full text link
    In the near future FPGAs will be available by the hour, however this new Infrastructure as a Service (IaaS) usage mode presents both an opportunity and a challenge: The opportunity is that programmers can potentially trade resources for performance on a much larger scale, for much shorter periods of time than before. The challenge is in finding and traversing the trade-off for heterogeneous IaaS that guarantees increased resources result in the greatest possible increased performance. Such a trade-off is Pareto optimal. The Pareto optimal trade-off for clusters of heterogeneous resources can be found by solving multiple, multi-objective optimisation problems, resulting in an optimal allocation of tasks to the available platforms. Solving these optimisation programs can be done using simple heuristic approaches or formal Mixed Integer Linear Programming (MILP) techniques. When pricing 128 financial options using a Monte Carlo algorithm upon a heterogeneous cluster of Multicore CPU, GPU and FPGA platforms, the MILP approach produces a trade-off that is up to 110% faster than a heuristic approach, and over 50% cheaper. These results suggest that high quality performance-resource trade-offs of heterogeneous IaaS are best realised through a formal optimisation approach.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    On improving the performance of optimistic distributed simulations

    No full text
    This report investigates means of improving the performance of optimistic distributed simulations without affecting the simulation accuracy. We argue that existing clustering algorithms are not adequate for application in distributed simulations, and outline some characteristics of an ideal algorithm that could be applied in this field. This report is structured as follows. We start by introducing the area of distributed simulation. Following a comparison of the dominant protocols used in distributed simulation, we elaborate on the current approaches of improving the simulation performance, using computation efficient techniques, exploiting the hardware configuration of processors, optimizations that can be derived from the simulation scenario, etc. We introduce the core characteristics of clustering approaches and argue that these cannot be applied in real-life distributed simulation problems. We present a typical distributed simulation setting and elaborate on the reasons that existing clustering approaches are not expected to improve the performance of a distributed simulation. We introduce a prototype distributed simulation platform that has been developed in the scope of this research, focusing on the area of emergency response and specifically building evacuation. We continue by outlining our current work on this issue, and finally, we end this report by outlining next actions which could be made in this field

    AT-GIS: highly parallel spatial query processing with associative transducers

    Get PDF
    Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for largescale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multicore CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. ATGIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers(ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIS provides 3× the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10× for aggregation queries

    The Simulation Model Partitioning Problem: an Adaptive Solution Based on Self-Clustering (Extended Version)

    Full text link
    This paper is about partitioning in parallel and distributed simulation. That means decomposing the simulation model into a numberof components and to properly allocate them on the execution units. An adaptive solution based on self-clustering, that considers both communication reduction and computational load-balancing, is proposed. The implementation of the proposed mechanism is tested using a simulation model that is challenging both in terms of structure and dynamicity. Various configurations of the simulation model and the execution environment have been considered. The obtained performance results are analyzed using a reference cost model. The results demonstrate that the proposed approach is promising and that it can reduce the simulation execution time in both parallel and distributed architectures
    corecore