9 research outputs found

    Partitioning a weighted partial order.

    Get PDF
    The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wiOrder; Studies; Size; Lower bounds;

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    "Algorithms for some Graph-Theoretical Optimization Problems".

    Get PDF
    Samenvatting Deze thesis situeert zich in het onderzoeksgebied van operationeel onder zoek. We richten ons op methoden om een aantal graaf-theoretische optima lisatie problemen op te lossen. Allereerst geven we een korte introducti e in lineair en integer programmeren en bespreken we enkele oplossingsme thoden die in deze thesis worden gebruikt. Het vervolg van deze thesis k an grofweg in twee delen worden opgesplitst. In het eerste deel komt het opdelen van een partial order aan bod. In het tweede deel be studeren we de structuur en de connectiviteit van het Internet. Het opsplitsen van een partial order in een zo klein mogelijk aantal cha ins is een welbekend en fundamenteel probleem in het vakgebied van opera tioneel onderzoek. Dilworth (1950) toonde aan dat het probleem polynomia al oplosbaar is en dat het minimum benodigde aantal chains gelijk is aan het aantal elementen in een maximale antichain. We generaliseren dit pr obleem door te stellen dat een chain niet meer dan een gegeven aantal el ementen mag bevatten. We stellen een aantal exacte algoritmen voor om di t probleem op te lossen en passen deze toe op een specifiek probleem bij een productiebedrijf in Nederland. Een interessant resultaat van dit on derzoek is dat we bij de probleem instanties van dit productiebedrijf ee n speciale structuur konden vaststellen, gerelateerd aan het concept van de clique-width van een graaf. Door deze structuur kunnen we aantonen d at het probleem, voor deze speciale instanties, polynomiaal oplosbaar is . Vervolgens behandelen we een tweede generalisatie van het probleem, waar bij we aan elk element van de partial order een gewicht toekennen. Het p robleem wordt dan om alle elementen op te delen in chains zod anig dat de som van de gewichten van de chains minimaal is. Hierbij word t het gewicht van een chain gedefinieerd als het gewicht van het zwaarst e element in de chain. Ook hier geldt de capaciteitsbeperking dat elke c hain ten hoogste een gegeven aantal elementen mag bevatten. We geven een aantal ondergrenzen voor de waarde van de optimale oplossing en we stel len een 2-approximatie algoritme voor. In het tweede deel van deze thesis bestuderen we de structuur en de conn ectiviteit van het Internet. Het Internet is de laatste decennia zeer po pulair geworden en de hoeveelheid data die via het Internet wordt verstu urd is enorm gegroeid. Het is zeer belangrijk dat communicatie die via I nternet verloopt efficiënt, veilig en betrouwbaar is, zeker in een tijd waarin virussen binnen enkele uren enorme computer netwerken kunnen stil leggen. Om de structuur en de connectiviteit van het Internet te bestude ren, modelleren we het Internet als een graaf. Een veel gebruikte manier om de connectiviteit van een graaf te analyseren is door het maximale a antal paden en de minimale sneden de bepalen. Het is welbekend dat deze twee problemen polynomiaal oplosbaar zijn voor gewone grafen, maar voor een Internet-graaf is dat niet het geval. Aangezien de definitie van een pad in de graaf in deze context anders is dan bij normale grafen, zijn beide problemen voor Internet-grafen NP-compleet. We stellen een aantal exacte algoritmen voor om deze problemen op te lossen en vergelijken de resultaten met de resultaten van twee 2-approximatie algoritmes voorgest eld door Erlebach et al. (2005).

    Partitioning a weighted partial order

    No full text
    The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi < wj if i < j The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX-hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instances.status: publishe

    Partitioning a weighted partial order

    No full text
    Abstract The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi ≤ wj if i ≺ j . The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX-hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instancesstatus: publishe

    Partitioning a weighted partial order

    No full text
    The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi &lt; wj if i &lt; j The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX-hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instances.status: publishe

    Partitioning a weighted partial order

    No full text
    The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi ≤ wj if i ≺ j. The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX-hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instances. 1 1

    Partitioning a weighted partial order.

    No full text
    Abstract The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi ≤ wj if i ≺ j . The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX-hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instancesOrder; Partially ordered sets · Chain decomposition · Approximation algorithms;
    corecore