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Hochschule in Zürich where I joined the research group of Thomas Erlebach.

Thomas introduced me to the topic of computer network modelling, which

has become a substantial part of this thesis. I am very grateful to him for

giving me the opportunity to join his research group for a few weeks. In

addition, I want to thank him for his useful remarks and suggestions for

improving this thesis.

Many thanks also to the other members of my committee: Erik Demeule-

meester, Yves Crama, Willy Gochet, and Koos Vrieze gave me a lot of

comments and suggestions, which improved both the quality and the read-

ability of this work.

Next, I would like to thank Lieve Janssens, Julie Callaert, Rosanne Vanpée,

and Caroline van Eeckhout, for keeping my mind off work every now and

then, for listening to all my complaints when I was having an off-day, but

most of all for all the fun we had in the past years. I hope that we will

continue our shopping days and our girls nights, even if we don’t see each

other at work every day anymore.

Furthermore, I want to thank everyone from the research groups ORSTAT

and Operations Management for being such great colleagues. Special thanks

to everyone who has accompanied me to the conferences I attended, to

Roselinde Kessels for being a great office mate for all these years, and to

Jan Adem and Roel Leus for their patience in explaining all the rules and

regulations concerning the finalization of my PhD.



v

I also want to thank the members of the Computer Engineering and Net-
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Abstract

This thesis is situated in the field of combinatorial optimization. More

specifically, we focus on solution methods for solving a number of graph-

theoretical optimization problems. First we give a short introduction to the

field of integer programming and state of the art solution techniques. The

remainder of this thesis can be roughly split into two parts. The first part is

dedicated to the problem of partitioning partially ordered sets. The second

part deals with the structure and the connectivity of the Internet.

The problem of partitioning a partially ordered set into a minimal number

of chains, such that each element belongs to at least one chain, is a basic

and fundamental problem in operations research. Dilworth (1950) showed

that it is solvable in polynomial time, and that the minimum number of

chains needed to cover all elements of X is equal to the value of a maximum

antichain. We generalize this problem by assuming that the chains must

have bounded size, and we propose a number of exact algorithms for solv-

ing this problem. We apply these algorithms to a real-world application of

this problem encountered at a manufacturing company in the Netherlands.

One of the interesting outcomes of this work is that, in this real-world set-

ting, we were able to identify a special structure in the problem instances.

It turns out that these problem instances have a property called bounded

clique-width, which allows us to design a polynomial time algorithm for

these special instances that works extremely well.
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Next we further generalize the problem by assuming that a weight is given

for each element in the partial order. The problem is now to partition the

partial order into a minimum-weight set of chains (where the weight of a

chain is defined as the largest weight of all elements in this chain), such that

the size of each chain is bounded by a given parameter. We give a number of

lower and upper bounds on the value of an optimal solution, and we propose

a 2-approximation algorithm for solving this problem.

In the second part of this thesis we study the connectivity of the Internet.

The Internet has become very popular over the past decades. Of course it

is very important for Internet-based communication to be efficient, secure,

and reliable, especially in a time of viruses that can take down entire com-

puter networks within a few hours. In order to study the structure and the

connectivity of the Internet, we model it as a graph. A natural means for

analyzing the connectivity of a graph, is to determine the maximum number

of vertex-disjoint paths and the size of a minimum vertex-cut for any pair of

nodes. It is well known that these problems are solvable in polynomial time

for ordinary graphs, but for the Internet-graph, this is not the case. Since

the notion of a valid path is somewhat different for the Internet-graph, both

problems become NP-hard. We propose a number of exact algorithms for

solving both problems, and compare their results with the results from two

2-approximation algorithms proposed by Erlebach et al. (2005).



Samenvatting

Deze thesis situeert zich in het onderzoeksgebied van operationeel onderzoek.

We richten ons op methoden om een aantal graaf-theoretische optimalisatie

problemen op te lossen. Allereerst geven we een korte introductie in lineair

en integer programmeren en bespreken we enkele oplossingsmethoden die

in deze thesis worden gebruikt. Het vervolg van deze thesis kan grofweg in

twee delen worden opgesplitst. In het eerste deel komt het opdelen van een

partial order aan bod. In het tweede deel bestuderen we de structuur en de

connectiviteit van het Internet.

Het opsplitsen van een partial order in een zo klein mogelijk aantal chains

is een welbekend en fundamenteel probleem in het vakgebied van operatio-

neel onderzoek. Dilworth (1950) toonde aan dat het probleem polynomiaal

oplosbaar is en dat het minimum benodigde aantal chains gelijk is aan het

aantal elementen in een maximale antichain. We generaliseren dit probleem

door te stellen dat een chain niet meer dan een gegeven aantal elementen

mag bevatten. We stellen een aantal exacte algoritmen voor om dit probleem

op te lossen en passen deze toe op een specifiek probleem bij een produc-

tiebedrijf in Nederland. Een interessant resultaat van dit onderzoek is dat

we bij de probleem instanties van dit productiebedrijf een speciale structuur

konden vaststellen, gerelateerd aan het concept van de clique width van een

graaf. Door deze structuur kunnen we aantonen dat het probleem, voor deze

speciale instanties, polynomiaal oplosbaar is.
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Vervolgens behandelen we een tweede generalisatie van het probleem, waar-

bij we aan elk element van de partial order een gewicht toekennen. Het

probleem wordt dan om alle elementen op te delen in chains zodanig dat de

som van de gewichten van de chains minimaal is. Hierbij wordt het gewicht

van een chain gedefinieerd als het gewicht van het zwaarste element in de

chain. Ook hier geldt de capaciteitsbeperking dat elke chain ten hoogste een

gegeven aantal elementen mag bevatten. We geven een aantal ondergrenzen

voor de waarde van de optimale oplossing en we stellen een 2-approximatie

algoritme voor.

In het tweede deel van deze thesis bestuderen we de structuur en de connec-

tiviteit van het Internet. Het Internet is de laatste decennia zeer populair

geworden en de hoeveelheid data die via het Internet wordt verstuurd is

enorm gegroeid. Het is zeer belangrijk dat communicatie die via Internet

verloopt efficiënt, veilig en betrouwbaar is, zeker in een tijd waarin virussen

binnen enkele uren enorme computer netwerken kunnen stilleggen. Om de

structuur en de connectiviteit van het Internet te bestuderen, modelleren

we het Internet als een graaf. Een veel gebruikte manier om de connec-

tiviteit van een graaf te analyseren is door het maximale aantal paden en

de minimale sneden de bepalen. Het is welbekend dat deze twee problemen

polynomiaal oplosbaar zijn voor gewone grafen, maar voor een Internet-

graaf is dat niet het geval. Aangezien de definitie van een pad in de graaf

in deze context anders is dan bij normale grafen, zijn beide problemen voor

Internet-grafen NP-compleet. We stellen een aantal exacte algoritmen voor

om deze problemen op te lossen en vergelijken de resultaten met de resul-

taten van twee 2-approximatie algoritmes voorgesteld door Erlebach et al.

(2005).
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“There are three men on a train. One of them is an economist

and one of them is a logician and one of them is a mathematician.

And they have just crossed the border into Scotland (I don’t

know why they are going to Scotland) and they see a brown cow

standing in a field from the window of the train (and the cow is

standing parallel to the train). And the economist says, ‘Look,

the cows in Scotland are brown.’ And the logician says, ‘No.

There are cows in Scotland of which one, at least, is brown.’

And the mathematician says, ‘No. There is at least one cow

in Scotland, of which one side appears to be brown.’ And it is

funny because economists are not really scientists, and because

logicians think more clearly, but mathematicians are best.”

From The curious incident of the dog in the night-time

by Mark Haddon.
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Chapter 1

Introduction

This thesis deals with exact and approximation algorithms for some specific

combinatorial optimization problems. Some of these algorithms are based

on integer linear programming formulations of these combinatorial prob-

lems. Therefore, we discuss in this first introductory chapter several tech-

niques that we use in this thesis to solve integer programming problems.

Section 1.1 gives a short introduction to linear and integer programming.

In Section 1.2 we describe a number of solution methods, both exact and

heuristic approaches, for solving integer programs. For a more complete

overview of integer programming and IP solution techniques, we refer to

Nemhauser and Wolsey (1988), or Wolsey (1998). Section 1.3 deals with

the approximability of optimization problems, and in Section 1.4 we give an

outline of the remainder of the thesis.

1.1 Linear and Integer Programming

During the last 50 years, linear programming has become a well-established

tool for solving a wide range of optimization problems. Linear programming

can be described as a process in which we transform a real-life problem

into a mathematical model, and try to find methods for solving this model

(Sierksma, 1996). In general, a linear program (LP ) is written in matrix

1



2 1.1. Linear and Integer Programming

notation as follows:

max cx

s.t. Ax ≤ b

x ≥ 0

Here, c is an n-dimensional row vector, A is an (m × n)-matrix, b is an

m-dimensional column vector and x is an n-dimensional column vector of

decision variables.

In many practical situations (see the upcoming chapters), the decision vari-

ables are required to have integer values. For example, when we consider an

application in which we want to minimize the number of vehicles needed to

transport goods from one point to another, we would like to find an integral

solution. An LP in which all variables must have integer values is called

an integer (linear) program (IP ), as shown in model (1.1). Furthermore, if

all variables are required to equal 0 or 1, we have a binary integer (linear)

program (BIP ).

max cx

s.t. Ax ≤ b (1.1)

x ∈ IN

Many problems have only a finite number of alternative choices and conse-

quently can be stated as combinatorial optimization problems. These prob-

lems can often be formulated as integer programming models where some or

all of the variables can take on only a finite number of alternative possibili-

ties (the word combinatorial referring to the fact that only a finite number

of alternative feasible solutions exists). We describe the knapsack problem

and the assignment problem, two well-known examples of combinatorial op-

timization problems. For a detailed overview of combinatorial optimization
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problems and techniques, we refer to Schrijver (2003), or Papadimitriou and

Steiglitz (1998).

The Knapsack Problem

In the Knapsack Problem, we are given n items and a knapsack with capacity

b. Each item i has a value vi and a weight wi, i = 1, . . . , n. The goal is to

find a subset of items with maximal value, such that the total weight of all

items in the subset does not exceed the knapsack capacity b. We define a

decision variable xi for each item i (i = 1, . . . , n) such that xi = 1 if item i is

selected, and xi = 0 otherwise. The IP formulation can be given as follows.

max
n

∑

i=1

vixi (1.2)

s.t.
n

∑

i=1

wixi ≤ b (1.3)

xi ∈ {0, 1} (∀i) (1.4)

We maximize the total value of the selected items in the objective func-

tion (1.2). Constraint (1.3) states that the capacity of the knapsack can

not be exceeded, and constraints (1.4) are the integrality constraints for the

decision variables.

The Assignment Problem

In the Assignment Problem, there are n people available to perform n jobs.

Any person can be assigned to perform any job, incurring a cost that may

vary according to the assignment. So the cost of assigning person i to

perform job j is given by cij . The goal is to find a minimum cost assignment.

If we define decision variables xij equal to 1 if person i performs job j, and

0 otherwise, we can formulate the problem as follows.
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min
n

∑

i=1

n
∑

j=1

cijxij (1.5)

s.t.
n

∑

j=1

xij = 1 (∀i) (1.6)

n
∑

i=1

xij = 1 (∀j) (1.7)

xij ∈ {0, 1} (∀i, j) (1.8)

The objective (1.5) is the minimization of the total cost of the assignment.

The first set of constraints (1.6) state that each person performs exactly one

job, and the second set of constraints (1.7) state that each job is performed

by one person. Finally, constraints (1.8) are the 0-1 constraints on the

decision variables.

1.2 Solving IP Problems

A natural idea for solving IPs is called rounding, i.e., solving the IP as if

it were an LP, and rounding the solution to integer values. However, this

method of solving IPs is often inadequate, as shown in the following example.

Example – Rounding an LP

Consider the following IP:

max 11x1 + 10x2

s.t. 7x1 + 5x2 ≤ 35 (1.9)

−x1 + 2x2 ≤ 2

x1, x2 ∈ IN
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Figure 1.1: Rounding an LP

In Figure 1.1 we see that the LP-solution to problem (1.9) is ( 6019 ,
49
19), which

is quite different from the IP-solution (5, 0). ¥

So in order to solve integer programming problems, we need other methods

than just simply rounding the linear programming solution. When trying

to find methods to optimize complex IP problems, often one has to make

a trade-off between quality and efficiency. One can try to find the optimal

solution to an IP using an exact algorithm. The downside of using exact

solution methods is that, in general, the running times can be very high.

On the other hand, one can settle for a heuristic algorithm. The running time

for heuristic methods is usually small, but there is no guarantee about the

quality of the solution. Approximation algorithms are heuristic approaches,

with the difference that for these methods, a performance guarantee can be

given. In this section we discuss a number of different solution methods

for solving IPs, that are used in this thesis. In Section 1.2.1, we discuss a

number of exact solution methods, and Section 1.2.2 deals with heuristics.
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1.2.1 Exact Solution Methods

In this section we describe a number of exact solution methods for solving

IPs. For a more detailed overview we refer to Wolsey (1998).

Branch-and-Bound

Branch-and-bound is probably the most widely used approach for solving

IP-models to optimality. Basically, the branch-and-bound method solves an

optimization problem by partitioning its solution space into smaller subsets

(branching). Each of these subsets is further analyzed and partitioned, until

a (better) feasible solution is found or it is determined that the subset does

not contain a better solution. Lower and upper bounds can be used either

to prove optimality of the current solution, or to discard certain submod-

els from further consideration (bounding). The branching procedure can be

nicely visualized by means of a branching tree. In this branching tree, the

root node corresponds to the original problem, and each child node repre-

sents a submodel created by partitioning the solution space of its parent (see

Johnson et al. (2000)).

Example – Branch-and-Bound

In this example we will solve the IP-model given by (1.9) by branch-and-

bound. First, we have to calculate an upper bound, and we do this by

solving the LP-relaxation of (1.9). The solution to the LP-relaxation is an

upper bound on the integer optimum. We find that the LP-solution is equal

to (6019 ,
49
19) with value 115019 ≈ 60.5, which we use as an upper bound during

the branch-and-bound process. Since no feasible solution has been found

yet, we initialize the lower bound at −∞.

For the branching part, we have to select a fractional variable. Both x1 and

x2 have fractional value in the LP-solution, so we arbitrarily choose x1 for

the branching procedure. We have to divide the solution space of the origi-
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Figure 1.2: The first branching step

nal problem, S0, in such a way that we cut off the fractional LP-solution, but

don’t cut off any integral solutions. We can do this by creating two submod-

els S1 and S2 as follows: S1 = {x ∈ S0 : x1 ≤ 3} and S2 = {x ∈ S0 : x1 ≥ 4}.

So we add two children to the root node of the branching tree, and we solve

the LP-relaxation of the two subproblems. In both nodes we find a frac-

tional solution with value 58, as shown in Figure 1.2.

If we continue the branch-and-bound process, we eventually arrive at the

branching tree shown in Figure 1.3. From this figure, we can see that in

node S3, an integer solution is found with value 53, which means that we

don’t have to investigate this node any further, and that we can change the

value of the lower bound to 53. In node S4, the LP is infeasible, so we can

discard this node. If, in some node, we would find a solution which has a

value that is smaller than the lower bound, we can discard this node, since

we can’t find a better solution in this node than the currently best solution.

Discarding such a node is called fathoming a node. After finishing the tree,

we see that the best solution is found in node S8, with value 55. ¥

In order to be able to use branch-and-bound efficiently to solve an IP, we

need two things. For the branching step, we need a set of solutions that

can be partitioned into mutually exclusive sets. For the bounding step,

we need an algorithm for calculating an upper bound (or a lower bound

in case of a minimization problem) on the cost of any solution in a subset
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Figure 1.3: The entire branching tree

(Papadimitriou and Steiglitz, 1998).

Branch-and-Price

In the branch-and-bound approach, we usually solve a relaxation (the LP-

relaxation for instance) of the original IP in order to obtain a bound on

the integer optimum. However, it is not always easy to solve a relaxation

optimally. For instance, if the number of variables is very large, common

LP-solvers are no longer able to solve the LP-models. Branch-and-price is

a technique for solving integer programs with a huge number of variables.

We refer to Barnhart et al. (1998) or Vanderbeck and Wolsey (1996) for a

thorough description of this technique. Basically, the branch-and-price pro-

cess can be split into two phases. First, we solve the LP-relaxation of the

problem by using column generation. Then, after having found the optimal

LP-solution, we branch in order to find the integer optimum.
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So, first we have to solve the LP-relaxation of the problem. Since the num-

ber of variables is very large, we start with a small subset S of all variables

and consider the restriction of the LP to the variables in S. We call this

restricted version of the LP the restricted master problem (RMP). We solve

RMP using an LP-solver and obtain a solution to RMP and its correspond-

ing dual solution. Now, we need to check whether this dual solution is also

feasible in the dual program that includes constraints for all variables in

order to test whether the primal solution is optimal. In other words, we

need to check whether there exists a violated constraint in the dual. In the

literature, this is called the pricing problem (Vanderbeck and Wolsey, 1996).

If we find a violated constraint in the dual, we add the corresponding primal

variable to RMP and solve it again. We repeat this procedure until we can

no longer find a violated constraint in the dual, which means we have solved

the LP-relaxation optimally. In general, this LP-solution is fractional, so we

have to branch in order to find the integer optimum.

In the branching procedure, we partition the solution space in order to

create a number of smaller subproblems. For each of these subproblems,

we can solve the LP-relaxation again. In order to be able to use column

generation throughout the branching tree, we need to find an appropriate

way to partition the solution space. The way in which the solution space is

divided usually differs from problem to problem. The complete branch-and-

price procedure is depicted in Figure 1.4.

Branch-and-Cut

Branch-and-cut is a solution approach similar to branch-and-price. As men-

tioned above, in the branch-and-price procedure, we usually have a huge

number of variables. In contrast, the branch-and-cut method is commonly

used when trying to solve IPs with a huge number of constraints (see John-

son et al. (2001) or Caprara and Fischetti (1997)).
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Figure 1.4: Branch-and-Price procedure
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Again, we start by solving a restricted version of the LP-relaxation. We take

a small subset of all constraints, and we solve the LP-relaxation restricted

to these constraints. In order to determine whether the solution found is

optimal, we try to find a valid inequality that is violated. This problem is

known as the separation problem (see for example Wolsey (1998) or Ladányi

et al. (2001)). If we can identify such an inequality, we add it to the

restricted master problem (RMP). We continue this process until no violated

inequality can be found, which means that the solution to the RMP is also

optimal to the LP-relaxation. In general, this solution is fractional, and we

need to branch in order to find the integer optimum.

Dynamic Programming

Dynamic programming is an approach developed by Bellman (1957) to solve

sequential, or multi-stage, decision problems, but the approach is also appli-

cable for decision problems where this sequential property is induced solely

for computational convenience. It is, like branch-and-bound, a way of de-

composing problems that are hard to solve into smaller subproblems that are

easier to solve. The solution to the original problem is obtained recursively,

either by working backward from the end of the problem to the beginning,

or forward from the beginning to the end (see Denardo (1982)).

We explain the dynamic programming approach by applying it to the short-

est path problem. Suppose we are given a directed graph G = (V,E) with

nodes V = {1, 2, . . . , n} and edges E, each edge (i, j) having a non-negative

length `(i, j) associated to it. At the end of the dynamic programming al-

gorithm, we have an (n× n)-matrix D in which an entry Di,j is the length

of a shortest path from node i to node j in G.

The algorithm constructs a sequence of matrices D0, D1, . . . , Dn (with Dn =

D). For each k, 1 ≤ k ≤ n, Dk
i,j is the length of a shortest i-j path when
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Figure 1.5: An instance of the shortest path problem

only the nodes {1, 2, . . . , k} can be used as interior nodes on the path. We

initialize D0 as follows.

D0i,j =















0 if i = j

∞ if (i, j) /∈ E

`(i, j) if (i, j) ∈ E.

We can then formulate a dynamic programming recursion for calculating

the values of Dk+1, using the values from Dk.

Dk+1
i,j = min(Dk

i,j , D
k
i,k+1 +Dk

k+1,j) (1.10)

We illustrate this approach with an example.

Example – Dynamic Programming

Suppose we are given the directed graph G shown in Figure 1.5, with

V = {A,B,C,D,E}, and edges with edge length as shown in the picture.

After initialization, the matrix D0 looks like this:
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D0 =



















0 1 ∞ ∞ ∞

∞ 0 2 1 ∞

∞ ∞ 0 3 ∞

4 ∞ ∞ 0 2

∞ ∞ 3 ∞ 0



















Using the dynamic programming recursion (1.10), we ultimately get the

following result for D5:

D5 =



















0 1 3 2 4

5 0 2 1 3

7 8 0 3 5

4 5 7 0 2

10 11 3 6 0



















The matrix D5 represents the solution to our problem. For example, we see

from entry D5A,E that the shortest path from A to E has length 4. ¥

1.2.2 Heuristic Solution Methods

So far we discussed a number of exact solution approaches for solving integer

programs. In this section we present a special type of heuristic approach,

being approximation algorithms. Since we do not use any other types of

heuristics in this thesis, we will not discuss them here. For an overview of

heuristic methods for solving IPs, we refer to Aarts and Lenstra (1998) or

Silver (2004).

Approximation Algorithms

Approximation algorithms are an approach for solving NP-hard optimiza-

tion problems. Since it is unlikely that there can ever be efficient exact

algorithms solving NP-hard problems (unless P = NP), one can settle for

non-optimal solutions, but require them to be found in polynomial time.
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Unlike heuristics, which usually find reasonable good solutions reasonably

fast, one wants provable solution quality and provable run time bounds.

Assume we have a polynomial time algorithm A for solving a maximization

problem. We say A is an ε-approximation algorithm if, for every problem

instance I,

A(I) ≥ ε ·OPT (I).

Here, A(I) denotes the value of the solution found by algorithm A, OPT (I)

is the value of the optimal solution for instance I, and ε ≤ 1 is the approxi-

mation ratio or performance guarantee. In case of a minimization problem,

A is an ε-approximation algorithm if, for every problem instance I,

A(I) ≤ ε ·OPT (I),

where ε ≥ 1.

In the next example we give a well-known example of an approximation al-

gorithm, for the node cover problem: given a graph G = (V,E), find the

smallest possible set C ⊆ V such that (u, v) ∈ E ⇒ u ∈ C or v ∈ C.

Example – Approximation algorithm

Consider the following algorithm for the node cover problem. Given is a

graph G = (V,E).

Algorithm NODE COVER

1. Compute a maximum matching M ∗ in G.

2. For each edge (u, v) ∈M ∗, add both u and v to the node cover C.

The set C computed by the algorithm is definitely a node cover, since any

edge not in M∗ shares an endpoint with some edge in M ∗ (otherwise this
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edge could have been added to the matching, and hence M ∗ is not a max-

imum matching). Can we say anything about the performance of the algo-

rithm? Let |M∗| be the size of a maximum matching, and |C∗| the size of a

minimum node cover. We know that |M ∗| ≤ |C∗|. (If this was not the case,

some vertex v ∈ C∗ must touch two edges in M ∗, and this is in contradiction

with the construction of M ∗.) Therefore, the node cover produced by the

algorithm, which has size 2 · |M ∗|, is within a factor 2 of the optimum. So

the algorithm is a 2-approximation algorithm for the node cover problem. ¥

For a detailed overview of approximation algorithms, we refer to Vazirani

(2001) or Ausiello et al. (1999).

1.3 Approximability and Proving APX -hardness

As discussed earlier, it is very unlikely to find efficient algorithms for solving

optimization problems that are NP-hard to optimality (since this would im-

ply that P = NP). If we want to solve these problems efficiently, we have to

accept that the solution we find is not guaranteed to be an optimal solution.

Approximation algorithms, as described in Section 1.2.2, provide us with

an efficient way to solve NP-hard problems, while giving a provable per-

formance guarantee. In this section we describe, informally, the complexity

class APX in more detail, and we describe how to prove that a problem

is APX -hard. For a detailed description of approximation algorithms and

their complexity, we refer to Ausiello et al. (1999).

ForNP-hard optimization problems, we are interested in finding approxima-

tion algorithms with an approximation ratio as close to one as possible. We

are mainly interested in algorithms that give a constant approximation ra-

tio. The complexity class APX contains allNP-hard optimization problems

that admit an efficient (i.e., polynomial) algorithm with a constant approx-

imation ratio, and a problem is called approximable if it belongs to the class

APX (Ausiello et al., 1999). For some optimization problems, we can do
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Figure 1.6: Reduction between two optimization problems (Ausiello et al., 1999)

better than a constant-factor approximation algorithm. A polynomial-time

approximation scheme, or PTAS, is a family of algorithms such that, for

any ε > 0, there exists an algorithm in the family that produces a solution

within a factor ε of the optimum and that runs in polynomial time (Moret,

1998). Optimization problems that belong to the class APX and that don’t

permit a PTAS are called APX -hard.

In order to prove that a problem P is APX -hard, we have to show an ap-

proximation preserving reduction from a known APX -hard problem to P.

Usually, a so-called AP-reduction (Ausiello et al., 1999) or an L-reduction

(Papadimitriou and Yannakakis, 1991) is used. In such a reduction we need

a function f mapping instances of problem P1 to instances of problem P2.

Next, we also need a function g to map a solution to problem P2 back

to a solution to problem P1. Figure 1.6 from Ausiello et al. (1999) gives a

schematic view of such a reduction. Here, IPk
denotes the set of all instances

of problem Pk, and SOLPk
(x) denotes the set of all feasible solutions to a

problem instance x of problem Pk.
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1.4 Outline of the Thesis

The remainder of this thesis consists of two parts. The first part (Chap-

ters 2 and 3) is dedicated to the problem of partitioning a partial order.

The second part (Chapter 4) deals with the connectivity of the Internet. All

chapters can be read independently of the others.

In Chapter 2 we discuss the problem of partitioning a permutation graph

into cliques of bounded size. We present two exact algorithms for solving

this problem. The first algorithm is a branch-and-price algorithm based on

an IP formulation. The second algorithm is a branch-and-bound algorithm

based on the concept of the clique width of a graph, and was motivated by a

special structure present in the real-world problem instances. This algorithm

is, as far as we are aware, the first implementation of an algorithm based on

bounded clique width. The performance of both algorithms is tested using a

number of real-world and randomly generated instances. Chapter 2 is joint

work with Frits Spieksma.

Chapter 3 deals with the problem of partitioning a weighted partially ordered

set into chains of bounded size. We show that this problem is APX -hard,

and derive lower bounds on the value of the optimum. Based on these lower

bounds, we exhibit a 2-approximation algorithm for solving the problem,

and we show that it is tight. Chapter 3 is joint work with Frits Spieksma.

In Chapter 4 we study the structure and the connectivity of the Internet.

First we explain how the Internet can be modelled as a graph. Next, we

analyze the connectivity of the Internet-graph by computing the maximum

number of vertex-disjoint paths and the size of a minimum cut for any pair of

nodes. Although these problems are solvable in polynomial time for regular

graphs, this is not the case for Internet-graphs. Since the notion of a valid

path is somewhat different for the Internet-graph, both problems become

NP-hard. We present exact and approximation algorithms for solving both
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problems, and we give computational results for all algorithms. Chapter 4 is

joint work with Thomas Erlebach, Frits Spieksma, and Danica Vukadinovic̀.

Finally, in Chapter 5 we describe a number of topics for future research.



Chapter 2

Exact Algorithms for a

Loading Problem with

Bounded Clique Width

In this chapter we discuss a special pallet-loading problem, which we encoun-

tered at a manufacturing company in the Netherlands. In graph-theoretical

terms, the problem is equivalent to partitioning a permutation graph into

bounded-size cliques. We formulate the problem as an integer program,

and present two exact algorithms for solving it. The first algorithm is a

branch-and-price algorithm based on the integer-programming formulation;

the second one is an algorithm based on the concept of bounded clique

width. The latter algorithm was motivated by the structure present in the

real-world instances. Test results are given, both for real-world instances

and randomly generated instances. As far as we are aware, this is the first

implementation of an algorithm based on bounded clique width.

This chapter is organized as follows. Section 2.1 introduces the problem, and

describes the application of the problem encountered at Bruynzeel Storage

Systems. Section 2.2 proposes a branch-and-price approach based on a set-

partitioning formulation of the loading problem (see Barnhart et al. (1998)

19
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for a description of branch-and-price algorithms). We show that the pric-

ing problem is solvable in polynomial time, and that we can generalize this

approach to partial orders. Section 2.3 is devoted to an exact enumeration

algorithm for a special case of the loading problem. This algorithm is based

on the concept of bounded clique width. In Section 2.5, we show computa-

tional results from the branch-and-price algorithm and from the algorithm

based on bounded clique width. Section 2.6 contains the conclusions.

2.1 Introduction

Consider the following situation. Given is a set S of distinct points (or

items) in the plane, S = {1, 2, ..., n}. For any pair of points i, j ∈ S, we say

that i is smaller than j (i ≺ j) if and only if

(xi ≤ xj) ∧ (yi ≤ yj),

where xi and yi denote the x- and y-coordinate of i, i ∈ S. Furthermore,

we call R ⊆ S a feasible subset (or a stable pallet, see Section 2.1.2) if and

only if for any two points i, j ∈ R either i ≺ j or j ≺ i.

The problem we consider is as follows: given the set S and an integer B ≤ n,

partition S into as few feasible subsets as possible such that each subset con-

tains no more than B points. For reasons to become clear in Section 2.1.2,

we refer to this problem as the loading problem.

Of course, if B is not present in the input of our problem, the resulting

problem is solvable in polynomial time since it is a special case of Dilworth’s

chain decomposition theorem (Dilworth, 1950). However, Jansen (2003)

proves that for each fixed B ≥ 6, our loading problem is NP-hard. We now

proceed by describing the relation to graph theory.
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2.1.1 Relation to Graph Theory

The loading problem is intimately related to problems in graph theory. We

first discuss the concept of a permutation graph before we explain this rela-

tion in more detail.

Definition 1 (Golumbic, 1980). A graph G = (V,E) is a permutation

graph if (i, j) ∈ E ⇔ (i − j) · (π−1i − π−1j ) < 0, where π = [π1, π2, . . . , π|V |]

is a permutation of the vertices of G, and π−1i is the position of i in π.

In other words, a graph is a permutation graph when one can exhibit a se-

quence of the vertices such that there is an edge (i, j) between two vertices

(with i > j) if and only if i precedes j in the sequence.

Example – Permutation graphs

Figure 2.1: Example of a permutation graph.

The graph shown in Figure 2.1 is the permutation graph corresponding to

the permutation π = [4, 7, 1, 3, 2, 5, 8, 6]. ¥
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Now, suppose we are given a set of points S = {1, 2, . . . , n}. We can build a

graph G = (V,E) as follows: for each point i ∈ S there is a node in V , and

two nodes are adjacent if and only if i ≺ j or j ≺ i.

Claim 1. The resulting graph G is a permutation graph.

Figure 2.2: Point set S.

Proof: Suppose we are given the point set as shown in Figure 2.2. First,

project all points to the y-axis, and label them 1, . . . , n in such a way that

the point with the largest y-coordinate gets the lowest label. Next, project

all original points to the x-axis. Now, write the numbers 1 to n from left to

right. Under this sequence, write the numbers again, in the order in which

they appear in the projection on the x-axis. Finally, connect the points

in the upper sequence with the points in the lower sequence that have the

same number. This results in the matching diagram of S (see Figure 2.3).

Notice that line segments between the points i and j intersect if and only

if i and j appear in reversed order in the lower sequence (Golumbic, 1980).

This corresponds exactly to the definition of a permutation graph, so the

permutation π is equal to the lower sequence. So, for the example in Fig-

ure 2.3 the permutation π is equal to [4, 7, 1, 3, 2, 5, 8, 6], corresponding to
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the permutation graph depicted in Figure 2.1.

Figure 2.3: Matching diagram corresponding S.

Observe that a feasible subset in S corresponds to a clique in G. Thus, the

loading problem is equivalent to the problem of partitioning a permutation

graph into cliques of bounded size.

2.1.2 Motivation

Our motivation comes from a real-world setting encountered at Bruynzeel

Storage Systems (BSS), a manufacturing company in the Netherlands. BSS

produces mobile storage systems that are delivered worldwide. To construct

such a system, BSS produces many rectangular shaped boxes, each with a

specific length and a specific width. We refer to such a rectangular shaped

box as an item. A single storage system may consist of up to 200 items.

Furthermore, there are no standard sizes, so each customer specifies his or

her own requirements. The height of an item, however, is identical for all

items. The items have to be loaded onto pallets for transportation to the

clients. It is allowed to place items on top of each other in layers; however,

the number of items per layer is restricted to one. Since the items all have

identical heights, it follows that the height of the trucks that transport the

pallets determines the maximum number of layers of each pallet. We denote

this number by B (in the case of BSS, B = 12). A crucial feature involves

the stability of the pallets (see for example Bischoff (1991)). BSS stipulated

that no larger item could be placed on top of a smaller item. More pre-

cisely, both the length and the width of an item placed in some layer must
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be smaller than or equal to the length and the width of the item placed in

the layer directly under it. This restriction ensures that pallets arrive in

good shape at their final destination (Moonen, 2001). In order to achieve

an efficient usage of the trucks it is important to minimize the total number

of pallets used.

Remark: Notice that the application described here allows for

identical items, whereas we assume in the loading problem that

all items are pairwise distinct. It is not difficult to see, how-

ever, that all results presented later are valid for the case where

identical items are allowed.

2.1.3 Related Work

Thus, our problem can be seen as a type of pallet-loading problem (PLP).

Pallet- or container-loading problems concern the optimal packing of small

items into large containers or pallets. The terms pallets and containers are

used interchangeably in most studies, although there is an important differ-

ence between them. When loading goods onto a pallet, the notion of the

stability of the loading schemes is far more important than when the goods

are to be loaded into a container, since we cannot make use of the upstand-

ing walls that we have when loading items into a container, so the stability

must be guaranteed (Bischoff, 1991).

Although the problem discussed in this paper is a type of pallet-loading

problem, it is quite different from customary PLPs. Usually, PLPs are

three-dimensional packing problems that concern the optimal packing of a

number of small items into a large container, with the objective to minimize

the volume of product packed on the pallet. The problem we discuss is a

two-dimensional problem. Also, restricting the pallets such that there can

only be one item on each layer is unusual for general PLPs. Indeed, when

it is possible to store multiple items on a layer, the resulting packings may
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have a very complex structure. Thus, our loading problem is a very specific

pallet-loading problem, and different from ordinary PLPs.

Most of the research on PLPs has concentrated on the case where a set of

identical items has to be loaded onto a single pallet. Dyckhoff (1990) gives

a detailed overview of the different types of PLPs and proposes a number

of solution approaches for solving them. In more recent work, Morabito

and Morales (1998) developed a heuristic based on a recursive procedure to

solve the problem, and G and Kang (2001) propose a heuristic that can be

applied to relatively large instances (more than 5000 items). Letchford and

Amaral (2001) give a detailed analysis of upper bounds for the PLP. Also,

some heuristics have been suggested for solving the PLP with non-identical

items. Scheithauer and Terno (1996b) developed a heuristic combining a

general branch-and-bound framework with optimal two-dimensional loading

patterns. More recently, Terno et al. (2000) proposed an algorithm that uses

the G4-heuristic introduced in Scheithauer and Terno (1996a), and combine

this with a branch-and-bound procedure.

Our loading problem also occurs in the field of mutual exclusion scheduling

problems (Baker and Coffman, 1996; Jansen, 2003). In such a scheduling

problem a graph is given such that each vertex corresponds to a job, and

an edge between two vertices indicates that the two corresponding jobs are

incompatible, i.e., cannot be processed at the same time. Assuming that

we have B processors available, and that each job needs a single time unit,

computing a schedule such that the latest job finishes as soon as possible

is an instance of the loading problem (provided that the conflict graph is a

permutation graph).

This type of problem is also known under the name of batch scheduling with

job compatibilities. Batch scheduling involves a machine that can process

multiple jobs simultaneously. Often, jobs within a batch need to be pairwise

compatible, and these compatibilities can be expressed using a compatibility
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graph. Boudhar (2003) and Finke et al. (2004) study different variants of

these batch scheduling problems when the compatibility graph is bipartite

or an interval graph.

Lee et al. (2004) describe an application from the steel-industry where

molten steel is turned into solid steel. For this application, the problem is

equivalent to partitioning an interval graph into bounded size cliques.

Another related problem, described in Felsner and Wernisch (1998), involves

covering as many points in a planar point set as possible, using a given num-

ber of chains.

2.2 A Branch-and-Price Algorithm

In this section we formulate the loading problem as an integer program and

we describe a branch-and-price algorithm for solving it (see eg. Barnhart

et al. (1998)). We use terminology corresponding to the application, i.e.,

we use “items” (instead of points), and “stable pallets” or simple “pallets”

(instead of feasible subsets).

2.2.1 Problem Formulation

We introduce a decision variable xk for every possible stable pallet k, such

that:

xk =

{

1 if stable pallet k is in the solution

0 otherwise.

Next, we define Ik as the set of all items contained in pallet k. Using a

set-partitioning formulation, we get the following model:
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min
∑

k

xk (2.1)

s.t.
∑

k:i∈Ik

xk = 1 ∀i (2.2)

xk ∈ {0, 1} ∀k (2.3)

The objective (2.1) is to minimize the total number of pallets needed to pack

all items. Constraints (2.2) state that each item has to be in exactly one

pallet, and constraints (2.3) are the zero-one constraints on the xk variables.

2.2.2 Column Generation

Since the number of variables in formulation (2.1)-(2.3) is exponentially

large, we employ column generation to solve its LP-relaxation without hav-

ing to enumerate all variables. In the column-generation process we start

with a small subset of the variables that contains a feasible solution. All

other variables are implicitly assigned the value zero. The subproblem con-

structed in this way is called the restricted master problem (RMP). We solve

the LP-relaxation of RMP, and then we have to determine whether the so-

lution found is optimal for the master problem. To do this, we have to try

to identify a variable with negative reduced cost, or, a violated constraint in

the dual. The dual of the LP-relaxation of formulation (2.1)-(2.3) is given

below.

max
∑

i

ui (2.4)

s.t.
∑

i∈Ik

ui ≤ 1 ∀k (2.5)

We can now formulate an expression for the reduced costs of a variable xk:

1−
∑

i∈Ik

ui
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Thus, given a feasible solution to the LP-relaxation and the corresponding

dual variables, the pricing problem boils down to the following question:

∃k such that
∑

i∈Ik

ui > 1?

Lemma 1. The pricing problem can be solved in polynomial time.

Proof: We construct a directed graph D = (V,A) as follows: There is a

node in V for each item, and there is a source s and a sink t in V . We draw

an arc from node i to node j if for the corresponding items i ≺ j holds; this

arc has length uj . Also, there is an arc from s to each node i ∈ V with

length ui, and an arc from each node i to t with length 0. Observe that

the constructed graph is acyclic. We now define dp(j) to be the length of a

longest path from s to j using at most p arcs (j = 1, ..., n). These longest

paths can be calculated in polynomial time using the following dynamic-

programming recursion:

dp(j) = max(maxi:(i,j)∈Ad
p−1(i) + uj , d

p−1(j))

with d1(s) = 0 and d1(j) = uj ∀j 6= s (p = 2, ..., B) (2.6)

Let us show by induction that the values dp(j) computed by the dynamic

programming recursion (2.6) satisfy their definition. The case p = 1 is triv-

ial, so let us assume that it holds for p = ` − 1. Consider now a longest

path from s to j using at most ` arcs. If this path contains exactly ` arcs,

there is a predecessor of j in this path, say j ′, such that the longest path

from s to j′ using at most ` − 1 arcs consists of the first ` − 1 arcs in the

longest path from s to j. By induction the latter value (i.e., the length of a

longest path from s to j ′ using at most `− 1 arcs) is recorded in d`−1(j′). If

this path contains less than ` arcs, it follows that d`(j) = d`−1(j). It follows

that (2.6) computes d`(j) correctly. Thus, testing whether dB+1(t), which is

the length of a longest path from s to t containing at most B+1 edges (and

therefore at most B interior nodes) is larger than 1 amounts to answering
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the pricing problem.

Remark. One could consider a situation where a weight pk is

given for each possible pallet k, and next minimize total weight.

For instance, in terms of the application, it would be quite nat-

ural to define the weight of pallet k as the area of its largest

item. Indeed, it is easy to exhibit examples where minimizing

total area is not equivalent to minimizing the number of pal-

lets needed. Notice that in this case the efficient solvability of

the pricing problem is preserved since by computing dB(j) us-

ing (2.6), and next comparing each value with the corresponding

area of item j determines whether a variable with negative re-

duced costs exists.

The solution found by applying the column-generation procedure will in

general be a fractional solution. We now sketch a branching structure in

order to find the integer optimum.

2.2.3 Branching Procedure

Ryan and Foster (1981) proposed a general branching rule for set-partitioning

problems, where two rows of the constraint matrix have to be covered by the

same column in one branch, and by different columns in the other branch.

For our problem, this would mean that two items have to be packed onto

the same pallet in one branch, and on different pallets in the other branch.

Since it is difficult to force two items to appear on the same pallet, or to ap-

pear in different pallets, we use a slightly modified version of the Ryan-Foster

branching rule (see also Vanderbeck (1994)). We partition the solution space

based on the order in which items are packed onto a pallet. Two items are

called successors if they are packed on the same pallet such that one item

lies directly above the other. The branching rule we use is then as follows:

in one branch two items i and j are forced to appear as successors on a
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pallet, and in the other branch items i and j cannot be successors on a

pallet. Similar modifications of the Ryan-Foster rule have also been used in

the field of airline crew scheduling (see for example Desrosiers et al. (1991)

or Vance et al. (1997)).

Lemma 2. If a given LP-solution x is fractional, there exists a pair of items

i and j which are successors on a certain pallet k (denoted by suc(i, j)k) with

1 > xk > 0, such that

0 <
∑

k:i,j∈Ik∧suc(i,j)k

xk < 1

Proof: Suppose that the lemma is false. Consider a fractional pallet k (i.e.,

a pallet whose corresponding variable has a fractional value) and suppose

that it contains m items, {1, 2, ...,m},m ≥ 2, such that no other fractional

pallet contains more than m items (notice that such a pallet always exists).

For the lemma to be false, it must hold that

∑

k:`,`+1∈Ik∧suc(`,`+1)k

xk = 1, for ` = 1, ...,m− 1.

Thus all fractional pallets that contain item ` must also contain item `+ 1

as its successor (` = 1, ...,m− 1). Further, since the LP-solution x satisfies

constraints (2.2) for each item ` = 1, ...,m, it follows that xk = 1. Thus, the

LP-solution is integral, which is in contradiction with our assumption of a

fractional solution, and proves the correctness of the lemma.

When an optimal, fractional LP-solution has been found, we identify two

items i and j for which the sum of all pallets where i and j are successors

lies between 0 and 1. In the integer optimum, these two items will either

be successors on a pallet, or they will not. So, given two items i and j, we

branch as follows. In one branch we modify the directed graph D in such a
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way that items i and j have to be successors. We do this by deleting all arcs

(i, p) for p 6= j and all arcs (p, j) for p 6= i. In the second branch, we make

sure that items i and j can never be successors in a solution by deleting arc

(i, j) from D. In our algorithm we employ this branching step repeatedly to

find an integer solution to our problem. Notice that this branching scheme

keeps the problem structure intact, which allows us to use column genera-

tion throughout the branch-and-bound tree.

The entire branch-and-price algorithm can be summarized as follows.

Branch-and-Price Algorithm PartitionPermutationGraph

1. Calculate an initial solution consisting of a set S of stable pallets with

value VS , and let V ∗ = VS . Create a list L and add to L a branching

node corresponding to the input graph D and the set S of pallets.

2. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next branching node from L (i.e., the branching node

that was added most recently to L), remove it from L, and go to

step 3.

3. Solve the LP-relaxation using only those variables that correspond to

a stable pallet in S.

4. Solve the pricing problem. Is there a variable with negative reduced

costs?

YES: Add this variable to S and go to step 3.

NO: An optimal solution to the LP-relaxation is found with value VLP .

Continue with step 5.

5. VLP < V ∗?
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YES: Continue with step 6.

NO: Go to step 2.

6. Is the solution to the LP-relaxation integral?

YES: V ∗ = VLP . Go to step 2.

NO: Select two items i and j for which the sum of all pallets where

i and j are successors is fractional. Create two new branching

nodes, with their corresponding input graph D (i.e., the graph

obtained by deleting the respective edges) and set of pallets S,

corresponding to the assumption that either i and j are succes-

sors, or they are not. Add these nodes to L, and go to step 2.

Remark. The branch-and-price approach sketched in Sections 2.2.2

and 2.2.3 remains valid for so-called partial orders. Consider the

problem of decomposing a partial order into a minimum number

of chains, such that each chain contains no more than B ele-

ments (see Shum and Trotter (1996), and Chapter 3). We will

refer to such a chain as a B-chain. We claim that this prob-

lem can be tackled using the approach sketched here. First, one

easily verifies that the formulation (2.1)-(2.3) goes through by

substituting the word “B-chain” for “stable pallet” in the defi-

nition of the xk-variables. Second, the efficient solvability of the

pricing problem (Lemma 1) depends on the fact that the digraph

contains no directed cycles. This property is preserved when we

consider partial orders. Finally, notice that the branching rule

also holds in this more general setting, and it follows that the

branch-and-price approach remains valid.

2.3 An Algorithm Based on Bounded Clique Width

In this section we propose an enumeration algorithm that is based on a prop-

erty of some of the instances encountered at BSS. It turns out that, in some
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instances, many items have the same length. We exploit this property in

this section by assuming that the number of different lengths in an instance

is bounded by a given parameter K. In other words, we assume that in the

input of the problem an additional parameter K is present; we refer to this

variant of our loading problem as problem P (K).

As a motivating example we first explore the case K = 2. We define nj as

the number of items of length j, and we assume that L1 < L2, where Lj is

the jth length. Furthermore, define p and q as follows:

p = n1 mod B

q = n2 mod B

Consider now the items with length L1, and let w1 be the width that cor-

responds to the pth smallest item. Then consider the items of length 2,

and let w2 be the width that corresponds to the qth largest item. Notice

that the optimal solution of problem P (2) has value d n
B
e or d n

B
e + 1 since

dn1
B
e+dn2

B
e ≤ d n

B
e+1. In fact, we characterize below in Proposition 1 when

instances of problem P (2) have value d n
B
e or d n

B
e+ 1.

Proposition 1. The optimal solution of problem P (2) has value d n
B
e if and

only if d n
B
e = dn1

B
e+ dn2

B
e or w1 ≤ w2.

We now consider problem P (K) in case of a fixed value of K. We assume

that the lengths are ordered such that L1 < L2 < ... < LK . In Section 2.3.1

we focus on the concept of (bounded) clique width. Section 2.3.2 describes

an exact algorithm for problem P (K).

2.3.1 Clique Width

A property of graphs that has received wide attention recently is clique

width. This property was first introduced by Courcelle et al. (1993); a re-

lated concept called NLC-width has been introduced by Wanke (1994). The
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reason for this attention is the fact that important graph-theoretic problems

(like maximum clique or independent set) can be solved in polynomial time

for graphs with bounded clique width.

Before giving a definition of the clique width of a graph, we start with some

notation. A labeled graph G = (VG, EG, `G) is a graph whose vertices are

labeled by some mapping `G : VG → IN . A labeled graph H = (VH , EH , `H)

is a subgraph of G if VH ⊆ VG, EH ⊆ EG and `H(v) = `G(u) for all v ∈ VH .

Informally, the notion of clique width of a graph G can be described as

in Definition 2. For formal definitions, see Courcelle and Olariu(2000) or

Brandstädt et al. (2004).

Definition 2. The concept of the clique width of a graph G can be described

using the following four operations:

Operation 1. Creation of a vertex labeled with some integer

i (the vertex is said to have label i); we denote the single

vertex graph with label ` as •`.

Operation 2. Disjoint union of two vertex-labeled graphs: given

G1 = (V1, E1, `1) and G2 = (V2, E2, `2), define the disjoint

union G = (VG, EG, `G) as follows:

- VG = V1 ∪ V2

- EG = E1 ∪ E2

- `G =

{

`1(v) if v ∈ V1

`2(v) if v ∈ V2

We denote the disjoint union of two graphs G1 and G2 as

G1 ⊕G2.

Operation 3. Adding an edge between each vertex with label i

and each vertex with label j, i 6= j; we denote this operation

by ηi,j .
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Operation 4. Relabel each vertex with label i by label j; we

denote this by ρi→j .

The minimum number of labels needed to construct a graph G

using these operations is the clique width of G.

Example – Clique width

Figure 2.4: (a) K4: the complete graph with 4 vertices. (b) C6: the cycle with 6

vertices.

The clique width of K4, the complete graph with 4 vertices (see Figure 2.4a),

is 2. K4 can be defined by the following operations:

ρb→a(ηa,b(•b ⊕ ρb→a(ηa,b(•b ⊕ ρb→a(ηa,b(•a ⊕ •b))))))

The clique width of C6, the cycle with 6 vertices (see Figure 2.4b), is equal to

3, and we can describe it by the following operations (Courcelle and Olariu,

2000):

ρc→a(ρb→a(ηb,c(•c ⊕ ρc→a(ηa,c(•c ⊕ ηa,b(•a ⊕ •b)⊕ ηa,b(•a ⊕ •b)))))) ¥

Permutation graphs in general have unbounded clique width (Brandstädt

and Lozin, 2003), however, in case of P (K) we have the following:
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Lemma 3. A graph associated to an instance of P (K) has clique width at

most K + 1.

Proof: We prove the lemma by exhibiting a sequence of operations. First,

we order the vertices according to the width of the associated item in de-

creasing order. In case of a tie, the vertex with the highest length goes first.

For each vertex i = 1, . . . , n, letting the vertex correspond to an item with

length Lj , 1 ≤ j ≤ K, we perform the following operations:

- create vertex i and label it K + 1, using operation 1.

- add vertex i to the graph, using operation 2, i.e., G := (V ∪ {i}, E).

- connect the vertex with label K+1 to all vertices with label j, j+1, . . . ,K,

using operation 3 repeatedly.

- relabel the vertex with label K + 1 by label j using operation 4.

Observe that this construction guarantees that each vertex that corresponds

to an item with length Lj is connected to all vertices that correspond to

items that have length Lj or larger. Thus, the resulting permutation graph

corresponds to an instance of P (K).

Remark: It is easy to verify that the graphs corresponding to

instances of P (K) do not have bounded tree width.

We can now state the following theorem:

Theorem 1. Problem P (K) is solvable in polynomial time.

Proof: This result follows from Lemma 3 above and Theorem 2 in Es-

pelage et al. (2001), which states that the problem of partitioning a graph

into cliques of bounded size is solvable in polynomial time for graphs with
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bounded clique width.

Notice, however, that the approach in Espelage et al. (2001) is quite gen-

eral, and does not lead to a ready-to-use algorithm. We propose such an

algorithm in the next section.

2.3.2 An Algorithm for P (K)

We describe an exact algorithm for problem P (K) that, for a fixed B and

K, runs in polynomial time. We now state some preliminaries.

Definition 3. A pallet is called pure when it contains B items of the

same length; otherwise a pallet is called mixed (notice that a pallet with

fewer than B items of the same length is called a mixed pallet).

Definition 4. The length of an item i is denoted by `i; its width by wi.

Property 1. A solution of problem P (K) is said to have property 1 if it

contains no more than 2K mixed pallets.

Property 2. A solution of problem P (K) is said to have property 2 if no

item r in a mixed pallet can be replaced by an item s from a pure pallet,

with `s = `r and ws < wr, in such a way that both pallets remain feasible.

Definition 5. We call a solution to problem P (K) minimal if it simulta-

neously satisfies properties 1 and 2.

Lemma 4. There exists an optimal solution to problem P (K) that is min-

imal.

Proof: Consider some optimal solution to problem P (K). By interchang-

ing and transferring items, we show that there is an optimal solution that

is minimal. If there exists an item r occurring in a mixed pallet that can
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be replaced by an item s from a pure pallet with `s = `r and ws < wr, we

interchange these items so that property 2 is satisfied. To see that there

exists an optimal solution that satisfies property 1, observe that an upper

bound on the maximum number of mixed pallets with different length sets is

equal to 2K . Therefore, if we have found a solution containing more than 2K

mixed pallets, there exist at least two pallets with identical length sets. We

now show that, by interchanging some items between these pallets, we can

alter the solution such that no pallets with identical length sets are present

in the solution.

If, in an optimal solution, the number of mixed pallets that contain items of

one single length exceeds K, we can transfer items in a straightforward way,

and reduce the number of mixed pallets that have items of a same length to

K.

If, in an optimal solution, the number of mixed pallets that contain items of

at least two different lengths exceeds 2K −K, we can reduce the number of

mixed pallets that have items of at least two different lengths by transferring

items. For this, we first define

pALi
: the smallest width of an item of length Li from pallet A

qALi
: the largest width of an item of length Li from pallet A

Observe that, when we discard the size requirement of a pallet, all items of

length Li can be transferred from a pallet A to a pallet C if the following

two conditions hold:

qALi
≤ pCLi+1

(2.7)

pALi
≥ qCLi−1

(2.8)

Now, consider an optimal solution that contains more than 2K −K mixed

pallets with items of at least two different lengths. Then there exist two
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pallets A and C with identical length sets, say L1, L2, ..., Lm (m ≥ 2). We

claim that there exist two lengths Li and Lj such that either all items of

Li can be transferred from pallet A to pallet C, or all items of Lj can be

transferred from C to A. This implies that we can construct an alternative

optimal solution by interchanging items between A and C such that these

pallets no longer have identical length sets.

Without loss of generality we assume that pALm
≥ qCLm−1

. (If this would not

be the case, we have pALm
< qCLm−1

. We know, by feasibility of pallets A

and C, that qALm−1
≤ pALm

and qCLm−1
≤ pCLm

. From this it follows that

pCLm
≥ qALm−1

, and we can simply change the order of the two pallets to

arrive at our assumption that pALm
≥ qCLm−1

.)

Since pALm
≥ qCLm−1

, the items of length Lm from pallet A can be transferred

to pallet C. Now, we have to find a length such that items from pallet C

can be transferred to pallet A. In order to do so, we have to find a length

for which conditions (2.7) and (2.8) hold. Assume that we cannot find such

a length; we then show that we will ultimately arrive at a contradiction,

proving that such a length does exist.

Claim 2. If items of length L1, ..., Lj cannot be transferred from C to A, it

follows that qCLj
> pALj+1

, j = 1, ...,m− 1.

Proof: We use induction to prove this claim. Consider the case j = 1. We

can transfer the items of L1 from pallet C to pallet A if qCL1 ≤ pAL2 . Since the

items of L1 are the smallest items, condition (2.8) does not apply, since there

is no length smaller than L1. We assumed that we could not transfer items

from pallet C to pallet A, so it must hold that qCL1 > pAL2 . Next, suppose

the claim is true for j = ` − 1; is it then true for j = `? Since we are not

able to transfer the items of L` from C to A, at least one of the inequalities

qCL`
≤ pAL`+1

and pCL`
≥ qAL`−1

must be violated. But we know by induction

that qCL`−1
> pAL`

, which, together with pCL`
≥ qCL`−1

and pAL`
≥ qAL`−1

, implies
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pCL`
≥ qAL`−1

. Hence, it follows that qCL`
> pAL`+1

, proving the claim.

Claim 2 states that if we cannot transfer items of length L1, ..., Lj from C to

A, it follows that qCLj
> pALj+1

, j = 1, ...,m−1. However, this in in contradic-

tion with our assumption that pALm
≥ qCLm−1

, meaning that there does exist

a length for which we can transfer items from C to A. This means that we

can reduce the number of mixed pallets that contain items of at least two

different lengths to at most 2K −K, implying that property 1 is satisfied.

This proves that there indeed exists an optimal solution that is minimal.

Lemma 4 implies that there exists an optimal solution such that for each

j = 1, ...,K the number of items of length Lj present in mixed pallets

(denoted by sj) equals sj = nj − αjB, for some αj ∈ {0, 1, . . . , d
nj

B
e}, and

satisfies
∑K

j=1 sj ≤ B2K . Now, given a set of possible sj values with
∑K

j=1 sj ≤ B2K , we enumerate all possible minimal solutions. We do this

using the concept of a partial solution.

Definition 6. A partial solution is a family of 2K sets of items such that

each set corresponds to a stable pallet and such that each item occurs at

most once in the family.

To each partial solution we associate a minimum length `min, that is the

minimum length Lj for which fewer than sj items are present in the current

partial solution. Furthermore, we associate a minimal item to each stable

pallet with fewer than B items in the partial solution. This minimal item

is the item with length `min that has minimal width, and can be feasibly

added to that pallet.

We now give an algorithm that finds an optimal minimal solution to problem

P (K), assuming that a set of sj values, satisfying
∑K

j=1 sj ≤ B2K , is given.

First, we deal exclusively with constructing the mixed pallets. For this, we

start with a partial solution that has 2K empty pallets, and we gradually
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fill - in many different ways - these pallets.

Algorithm ENUM

1. Start with the initial partial solution that consists of 2K empty pallets.

We associate length L1 to this solution (assuming s1 > 0; if s1 = 0,

we associate length Lj to the solution, with j minimal while satisfying

sj > 0), and set as minimal item for each pallet the smallest item of

L1. Go to step 2.

2. For each different pallet in the current partial solution, generate a new

partial solution by adding to this pallet its minimal item. Notice that

we get at most 2K new partial solutions, since there are 2K pallets in

the old partial solution. Go to step 3.

3. Associate to each partial solution the new minimum length Lj for

which fewer than sj items are present, and associate to each pallet its

new minimal item. If
∑K

j=1 sj items are present in the new partial

solution, go to step 4. Otherwise, go to step 2.

4. For each final partial solution, i.e., for each partial solution where
∑K

j=1 sj items are assigned, verify whether each pallet in the solution

is a mixed pallet. If not, simply discard the solution. Go to step 5.

5. Complete each final partial solution to a feasible solution by adding

the remaining items in pure pallets in a straightforward way. Output

the solution that contains the smallest number of pallets. STOP.

By associating a node to each partial solution and connecting two nodes if

one partial solution is constructed by adding a single minimal item to the

other, a tree results. We refer to this as the tree of partial solutions.
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Example – Algorithm ENUM

Consider a problem instance containing 9 items, with lengths and widths as

shown in Figure 2.5.

Figure 2.5: Problem instance for algorithm ENUM

Assume that B = 3, K = 3, and that the following sj-values are given:

s1 = 2, s2 = 1, and s3 = 0. The tree of partial solutions corresponding to

this problem instance is shown in Figure 2.6. ¥

Figure 2.6: Tree of partial solutions

Lemma 5. A solution produced by algorithm ENUM is minimal.

Proof: We verify whether a solution found by ENUM satisfies properties
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1 and 2. Obviously, it satisfies property 1. Now suppose that the solution

found does not satisfy property 2; that is, there exists at least one item r

that is present in a mixed pallet, that could be interchanged with an item s

satisfying `s = `r and ws < wr. Let r be the smallest interchangeable item

and consider the step in the algorithm when we added item r to a pallet.

Apparently, we could have added item s at that time. But that implies that

item r was not a minimal item for that pallet. Hence, such a solution cannot

have been generated by the algorithm.

Lemma 6. Any minimal solution is generated by algorithm ENUM.

Proof: Consider a minimal solution that is not generated by ENUM. Re-

move from this solution all pure pallets, so that a final partial solution S

remains. So each final partial solution generated by ENUM differs from S.

Consider the tree of partial solutions. Let us find a set of paths in this tree:

starting with the initial solution, follow a branch to a next partial solution

if it puts an item in a pallet if in S the same item is in the same pallet.

Notice that no path makes it until the end (since S was not generated by

ENUM). So let us consider a partial solution for which we cannot follow a

branch anymore and that is not final. To this partial solution a length is

associated, say the current length.

Consider now the minimal item of the current length of that partial solu-

tion that is used in S, and that has not been considered when we followed

branches. Say that this is item d and that it is in pallet j in solution S. This

pallet j has another item, say item c, serving as minimal item when we look

at the branch from our current partial solution to the partial solution where

pallet j receives an item (if c = d, we would have followed that branch).

Thus, c ≺ d. Now, since S is minimal it must use item c somewhere else

(if S did not use c at all, we could replace d by c in S, contradicting the

minimality of S (property 2)). Say item c is used in pallet j ′ (j′ 6= j). If we

look at the branch from our current partial solution to the partial solution
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that gives j′ another item, we know there is a minimal item that cannot

be item c (otherwise we would have followed that branch). Thus, there is

another item present in that partial solution, say item b, b ≺ c. Again, b

must be somewhere in S, say in pallet j ′′. Notice that j ′′ 6= j′ (for obvious

reasons) but also j ′′ 6= j (since c is minimal for j and b ≺ c). Let us look

at the pallet j ′′ and its minimal item given our current partial solution. It

cannot be b (else we would have followed this branch), so it must be less

than b, say a. Thus, a must be in S (otherwise we can interchange contra-

dicting the minimality of S), say in j ′′′. Again, this pallet j ′′′ is different

from the previously considered pallets j ′′, j′, and j (otherwise each of the

pallets wouldn’t have the minimal item they have). Continuing in this way,

it leads to the conclusion that S has more than 2K pallets, contradicting

property 1; hence S is not minimal.

Lemma 7. The number of nodes in all trees of partial solutions generated

by algorithm ENUM is bounded by (2K)B2
K
nK .

Proof: The number of nodes generated by ENUM depends on the number of

solutions generated. This number depends on the number of items that are

present in mixed pallets. Property 1 implies that
∑K

j=1 sj ≤ B2K . Hence,

ENUM cannot generate more than (2K)B2
K

different solutions. Further-

more, ENUM has to be executed for each possible set of sj values. Observe

that for each sj there are O(
nj

B
) possible values, j = 1, . . . ,K, leading to

O(nK) possible sets of sj values for a fixed B. The result follows.

Theorem 2. The running time of algorithm ENUM is polynomial in case

of a fixed B and a fixed K.

Proof: From Lemma 7 we know that the number of nodes generated by

ENUM is bounded by (2K)B2
K
nK . Furthermore, the calculations in a sin-

gle node can be done polynomially. This means that, for a fixed B and a

fixed K, we have a polynomial-time algorithm.
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2.4 The Price of Stability

The stability restriction posed on the pallets is valid in the context of the

application from the field of pallet loading discussed in this chapter. How-

ever, in many other applications this restriction is unnecessary. Therefore,

we consider in this section the problem which results from disregarding this

stability restriction. For the problem with unit weights (i.e., minimizing the

number of pallets), as discussed in this chapter, the generalization without

stability constraints is not very interesting, since the solution to this problem

is trivial (an optimal solution contains exactly d n
B
e pallets). Therefore, we

consider the weighted problem, where each item has a weight corresponding

to its area, and we want to minimize the total area of all pallets. In this

setting, the area of a pallet equals the area of its largest item. (See also the

remark at the end of Section 2.2.2.) The complexity of this problem with a

capacity constraint on the number of items on a pallet is, as far as we are

aware, unknown. However, in case this capacity constraint is relaxed (i.e.,

B = n), the problem is solvable in polynomial time, as will be explained

hereunder.

So, we consider problem with weights corresponding to the area of an item.

We refer to this generalization of the loading problem as the weighted load-

ing problem. For the weighted loading problem with B = n, we have the

following result.

Theorem 3. The weighted loading problem with B = n is solvable in poly-

nomial time.

Proof. Let D be the set of all dominating items (an item i is dominating

if there is no item j such that `j ≥ `i and wj ≥ wi), and assume that the

items in D are ordered such that `1 ≤ `2 ≤ . . . ≤ `m (m denotes the number

of items in D). The proof is now based on two observations. First, any item

that is non-dominating can be ignored, since we can always add the domi-

nated item to the pallet containing the dominating item without changing
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the area of the pallet. This means that we only need to consider the items

in D. Second, if an item i belongs to the same pallet as another item j

(j > i), we can also add the items i+1, i+2, . . . , j−1 to this pallet without

changing its area. Now, in order to solve the problem, we create a directed

graph as shown in Figure 2.7: we have a source s, a sink t, and m layers

of vertices. In each layer there are a number of vertices corresponding to

feasible pallets: in layer k we have a vertex for all feasible pallets consisting

of consecutive items that contain item k as smallest item (with respect to

the length of the item). We connect the vertices as follows: there is an arc

from the source s to each vertex in the first layer. Then, between layer k and

layer k + 1 the vertices are connected such that their corresponding pallets

do not contain an item more than once. All vertices corresponding to a pal-

let containing item m are connected to the sink. The length of an arc from

i to j corresponds to the area of the pallet corresponding to vertex j, and

arcs directed to the sink have length zero. Now we can solve the problem by

calculating a shortest path from s to t in this network. The solution to the

weighted loading problem that corresponds to such a shortest path contains

a pallet for each interior vertex on the s-t path (that is, each vertex on the

path except for s and t).

In Figure 2.7 an example is given. In this example we have D = {a, b, c},

with `a ≤ `b ≤ `c.

2.5 Computational Experiments

In this section we discuss some issues concerning the implementation of the

algorithms described in this chapter, and we show the computational results.

2.5.1 Implementation Issues

Both algorithms described in this paper are implemented on a 733 MHz

computer with 128MB of physical memory. The algorithms are coded in
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Figure 2.7: Directed graph corresponding to D = {a, b, c}.

C++, and in the branch-and-price algorithm, we use LINDO to solve the

restricted master problems.

We use three data sets for the computational experiments. The first data

set contains 50 real-world instances where the length and the width of each

item was provided to us by BSS; the second data set contains 50 randomly

generated instances where the length and the width of each item is uni-

formly distributed between 0 and 3000. The third data set also contains 50

randomly generated instances, but in this data set all instances have small

clique width. More specifically, the number of different lengths is uniformly

distributed between 5 and 15, whereas the width of the items is uniformly

distributed between 0 and 3000. In all three data sets the number of items

ranges from 0 to 200 (see Table 2.1). The number of items for an instance

of the second and third data set follows a uniform distribution between 0

and 200 items per instance. We use different values for B, ranging from 3

to 15. In the real-world setting from BSS, B = 12.

In the branch-and-price algorithm, we use a heuristic to find a good start-

ing solution, before starting the actual branch-and-price procedure. This
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Table 2.1: Characteristics of the Data Sets

#Items #Instances #Instances #Instances

(data set 1) (data set 2) (data set 3)

0-40 10 9 4

40-80 15 13 13

80-120 10 7 15

120-160 7 12 8

160-200 8 9 10

starting solution is computed in a very straightforward way: all items are

ordered, first according to their length (increasing), and second according

to their width (also increasing). We start with the first item and put it in a

pallet. Then we simply go down the list. If an item can be added to the cur-

rent pallet, we add it; otherwise we continue with the next item. If a pallet

contains B items, or if we are at the end of the list, we start a new pallet with

the first available item and start this procedure over. To determine whether

a solution generated by this heuristic is optimal, we use the lower bound d n
B
e.

In the pricing problem, when trying to find new variables with negative

reduced costs, we add one variable in each iteration of the longest-path pro-

cedure. This is the variable with reduced costs that are the most negative.

In the enumeration algorithm, we first compute a lower and an upper bound.

The lower bound equals d n
B
e, and the upper bound is equal to dn1

B
e+ . . .+

dnK

B
e. If these bounds coincide, there exists an optimal solution with value

d n
B
e, and we do not need to run ENUM to find a solution.

Apart from computing the LP-relaxation and d n
B
e, we compute a third lower

bound, AC. AC stands for the size of a maximum antichain. In other words,

AC is the optimal value of the loading problem if there is no restriction on

B (i.e., B = n).
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2.5.2 Results

For data set 1, the value of K ranges from 2 to 9, and in most instances (ap-

proximately 85%) K equals 2, 3, or 4. For the second data set, however, the

value of K is very close to n. Thus, the clique width of the instances of data

set 1 is small; this is not guaranteed for the instances of data set 2. Since

the running time of the enumeration algorithm is exponential in K, the in-

stances from data set 2 are very hard to solve for ENUM. In fact, none of the

instances could be solved by ENUM in less than one hour of computation

time, so for ENUM we present only the results of the first and third data set.

Table 2.2: Performance of lower bounds for data set 1

B n d n
B
e Gap (%) AC Gap (%) LP Gap (%) OPT

3 ≤ 40 11.90 0.00 2.50 77.52 11.47 3.69 11.90

≤ 80 19.13 0.00 3.33 86.54 18.91 1.22 19.13

≤ 120 36.90 0.00 2.90 94.54 36.40 1.35 36.90

≤ 160 45.86 0.00 3.00 95.23 45.43 0.94 45.86

≤ 200 60.50 0.00 2.38 96.68 60.08 0.68 60.50

6 ≤ 40 6.20 0.00 2.50 56.60 5.72 7.54 6.20

≤ 80 9.73 0.74 3.33 73.98 9.48 3.49 9.80

≤ 120 18.70 0.00 2.90 89.21 18.20 2.66 18.70

≤ 160 23.29 0.00 3.00 90.60 22.71 2.46 23.29

≤ 200 30.38 0.00 2.38 93.38 30.04 1.09 30.38

9 ≤ 40 4.40 0.00 2.50 39.00 3.97 8.77 4.40

≤ 80 6.67 0.00 3.33 61.79 6.35 4.97 6.67

≤ 120 12.80 0.00 2.90 84.26 12.18 4.83 12.80

≤ 160 15.57 0.00 3.00 85.99 15.16 2.67 15.57

≤ 200 20.38 0.00 2.38 90.13 20.04 1.61 20.38

12 ≤ 40 3.50 5.83 2.50 30.83 3.23 12.02 3.70

≤ 80 5.13 2.67 3.33 52.29 4.82 8.54 5.27

≤ 120 9.60 0.00 2.90 79.00 9.10 5.22 9.60

≤ 160 11.86 0.00 3.00 81.45 11.48 3.13 11.86

≤ 200 15.50 0.00 2.38 87.03 15.02 3.07 15.50

15 ≤ 40 2.70 11.67 2.50 20.00 2.81 9.57 3.10

≤ 80 4.33 1.33 3.33 42.22 3.96 9.48 4.40

≤ 120 7.60 0.00 2.90 73.39 7.29 3.98 7.60

≤ 160 9.43 0.00 3.00 76.80 9.10 3.47 9.43

≤ 200 12.63 0.00 2.38 84.06 12.19 3.52 12.96
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Table 2.3: Performance of lower bounds for data set 2

B n d n
B
e Gap (%) AC Gap (%) LP Gap (%) OPT

3 ≤ 40 9.89 6.23 8.67 16.56 10.11 3.42 10.44

≤ 80 18.77 0.40 11.69 36.85 18.54 1.67 18.85

≤ 120 33.57 0.00 16.14 51.78 33.38 0.60 33.57

≤ 160 47.92 0.00 20.83 56.41 47.47 0.95 47.92

≤ 200 61.11 0.00 23.22 62.04 60.85 0.41 61.11

6 ≤ 40 5.22 39.96 8.67 0.00 8.67 0.00 8.67

≤ 80 9.62 16.82 11.69 0.64 11.72 0.43 11.77

≤ 120 17.00 0.79 16.14 9.24 17.10 1.34 17.29

≤ 160 24.17 0.38 20.83 15.13 23.90 1.35 24.25

≤ 200 30.67 0.00 23.22 23.21 30.50 0.50 30.67

9 ≤ 40 3.78 55.44 8.67 0.00 8.67 0.00 8.67

≤ 80 6.62 42.06 11.69 0.00 11.69 0.00 11.69

≤ 120 11.57 25.82 16.14 0.79 16.14 0.00 16.14

≤ 160 16.33 23.43 20.83 4.03 21.42 0.00 21.42

≤ 200 20.67 19.56 23.22 8.49 26.00 0.00 26.00

12 ≤ 40 2.78 66.91 8.67 0.00 8.67 0.00 8.67

≤ 80 5.08 55.62 11.69 0.00 11.69 0.00 11.69

≤ 120 8.71 43.72 16.14 0.00 16.14 0.00 16.14

≤ 160 12.42 38.88 20.83 0.00 20.83 0.00 20.83

≤ 200 15.56 34.00 23.22 0.00 23.22 0.00 23.22

15 ≤ 40 2.44 71.08 8.67 0.00 8.67 0.00 8.67

≤ 80 4.23 63.02 11.69 0.00 11.69 0.00 11.69

≤ 120 7.29 52.44 16.14 0.00 16.14 0.00 16.14

≤ 160 10.00 50.90 20.83 0.00 20.83 0.00 20.83

≤ 200 12.67 46.03 23.22 0.00 23.22 0.00 23.22

Tables 2.2, 2.3, and 2.4 give an overview of the performance of the three

lower bounds: d n
B
e, the size of a maximum antichain (AC), and the value

of the LP-relaxation. In the first two columns we give the value of B and

a range for the number of items. The following columns give the values

of three lower bounds, and the gap (%) between the lower bound and the

integer optimum, i.e., OPT−LB
OPT

. The column labelled “OPT” denotes the

value of the optimal integer solution.

From these tables we see that the LP-relaxation provides us with a good

lower bound for all three data sets. However, the quality of the other lower

bounds depends on the characteristics of the different data sets. For data
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Table 2.4: Performance of lower bounds for data set 3

B n d n
B
e Gap (%) AC Gap (%) LP Gap (%) OPT

3 ≤ 40 10.25 0.00 6.00 36.31 9.67 6.16 10.25

≤ 80 21.69 0.00 7.75 63.71 21.36 1.58 21.69

≤ 120 34.33 0.00 8.93 73.56 34.13 0.56 34.33

≤ 160 44.75 0.00 10.63 76.14 44.46 0.66 44.75

≤ 200 62.90 0.00 9.50 84.76 62.57 0.52 62.90

6 ≤ 40 5.00 20.00 6.00 0.00 6.00 0.00 6.00

≤ 80 11.15 1.65 7.77 30.82 10.72 5.65 11.38

≤ 120 17.47 0.32 8.93 48.27 17.07 2.63 17.53

≤ 160 22.63 0.00 10.63 52.82 22.23 1.78 22.63

≤ 200 31.80 0.00 9.50 69.85 31.28 1.60 31.80

9 ≤ 40 3.75 39.29 6.00 0.00 6.00 0.00 6.00

≤ 80 7.54 8.45 7.77 6.41 8.25 0.74 8.31

≤ 120 11.93 1.56 8.93 25.47 11.63 3.93 12.13

≤ 160 15.25 0.83 10.63 30.62 14.83 3.49 15.38

≤ 200 21.50 0.00 9.50 55.49 20.86 2.99 21.50

12 ≤ 40 3.00 51.43 6.00 0.00 6.00 0.00 6.00

≤ 80 5.85 26.41 7.77 4.12 7.86 2.93 8.08

≤ 120 8.93 11.83 8.93 13.88 9.99 2.83 10.27

≤ 160 11.75 5.80 10.63 14.81 11.68 6.50 12.50

≤ 200 16.20 1.11 9.50 41.99 15.67 4.36 16.40

15 ≤ 40 2.50 58.57 6.00 0.00 6.00 0.00 6.00

≤ 80 4.69 38.20 7.77 1.10 7.77 1.02 7.85

≤ 120 7.27 22.95 8.93 9.48 9.35 4.31 9.73

≤ 160 9.38 16.10 10.63 5.62 10.97 2.69 11.25

≤ 200 13.10 3.48 9.50 30.56 12.93 4.85 13.60

set 1, the real-world problem instances, d n
B
e gives a good bound on the

optimal value, while the quality of AC is very poor for this data set (see

Table 2.2). This can be explained by the special structure in these instances,

namely that the number of different lengths among the items (K) in these

instances is very limited. Therefore, the value of AC will be very small

for these instances, resulting in a poor quality of this lower bound. One

could expect the same behavior of these lower bounds for data set 3, where

we tried to mimic the structure found in the real-world problem instances.

However, if we look at Table 2.4 we clearly see that this is not the case:

the quality of both d n
B
e and AC is poor for these problem instances. This

can be explained by the fact that the value of K is slightly larger for these
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Table 2.5: Comparison of algorithms for data set 1

B n Branch & Price ENUM

Nodes Time Nodes Time

avg % ≤ 1 sec max avg % ≤ 1 sec max

3 ≤ 40 0.00 0.00 100.00 0.00 3.70 0.00 100.00 0.00

≤ 80 29.07 0.69 86.67 6.19 33.93 2.52 93.33 37.76

≤ 120 0.00 0.01 100.00 0.01 2.90 0.01 100.00 0.10

≤ 160 0.00 0.02 100.00 0.03 3.14 2.04 85.71 14.27

≤ 200 0.00 0.05 100.00 0.08 0.63 0.00 100.00 0.00

6 ≤ 40 0.00 0.00 100.00 0.00 7.40 0.00 100.00 0.01

≤ 80 0.07 0.03 93.33 0.36 23.87 0.00 100.00 0.03

≤ 120 0.00 0.01 100.00 0.01 11.80 0.00 100.00 0.01

≤ 160 0.00 0.02 100.00 0.03 4.29 0.01 100.00 0.09

≤ 200 0.00 0.05 100.00 0.08 4.63 0.00 100.00 0.00

9 ≤ 40 0.10 0.02 100.00 0.21 11.00 0.00 100.00 0.00

≤ 80 10.08 4.87 86.67 66.94 24.27 0.00 100.00 0.01

≤ 120 5.40 0.23 80.00 1.19 5.80 0.00 100.00 0.00

≤ 160 1.43 2.26 85.71 15.66 20.57 0.00 100.00 0.01

≤ 200 7.75 0.65 87.50 4.88 11.00 0.00 100.00 0.00

12 ≤ 40 4.80 0.56 90.00 5.17 14.00 0.00 100.00 0.00

≤ 80 9.00 6.64 80.00 80.19 25.94 0.00 100.00 0.00

≤ 120 0.00 0.01 100.00 0.02 25.90 0.00 100.00 0.01

≤ 160 7.57 0.96 85.71 6.63 31.43 0.00 100.00 0.01

≤ 200 8.75 2.60 75.00 16.03 51.88 0.01 100.00 0.03

15 ≤ 40 8.10 5.72 80.00 41.43 22.10 0.00 100.00 0.01

≤ 80 0.07 1.35 86.67 18.82 29.07 0.00 100.00 0.01

≤ 120 4.90 5.13 70.00 35.69 28.00 0.00 100.00 0.00

≤ 160 10.71 6.89 71.43 43.01 61.14 0.00 100.00 0.02

≤ 200 15.50 7.78 75.00 51.23 55.88 0.01 100.00 0.03

instances compared to the instances from data set 1, which results in a bad

performance of d n
B
e. However, since K is still much smaller than the op-

timal value for most instances, also the performance of AC is pretty bad.

From Table 2.3 we see that for data set 2, the quality of AC is very good, in

contrast to the performance of d n
B
e for this data set. Since these instances

are randomly generated, the number of different lengths among all items is

very large. Therefore the size of a maximum antichain is very close to the

optimum for this data set.
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Table 2.6: Performance of branch-and-price algorithm for data set 2

B n Nodes Time

avg % ≤ 1 sec max

3 ≤ 40 15.11 0.10 100.00 0.28

≤ 80 46.08 7.23 38.46 77.00

≤ 120 101.14 12.92 14.29 28.49

≤ 160 165.75 41.43 25.00 143.06

≤ 200 305.56 120.10 11.11 246.85

6 ≤ 40 1.00 0.02 100.00 0.05

≤ 80 12.31 4.50 76.92 47.75

≤ 120 69.14 82.53 14.29 187.23

≤ 160 51.83 65.36 25.00 201.33

≤ 200 62.67 112.78 11.11 202.99

9 ≤ 40 1.00 0.02 100.00 0.04

≤ 80 1.00 0.14 100.00 0.29

≤ 120 9.57 9.25 0.00 42.31

≤ 160 10.67 25.40 0.00 78.39

≤ 200 15.22 97.62 0.00 318.54

12 ≤ 40 1.00 0.03 100.00 0.06

≤ 80 1.00 0.37 84.62 1.83

≤ 120 1.00 3.68 0.00 5.56

≤ 160 13.17 43.54 0.00 374.16

≤ 200 1.00 78.54 0.00 174.89

15 ≤ 40 1.00 0.03 100.00 0.06

≤ 80 1.00 0.37 84.62 1.81

≤ 120 1.00 3.98 0.00 7.29

≤ 160 1.00 16.20 0.00 48.59

≤ 200 1.00 85.93 0.00 174.85

Tables 2.5, 2.6, and 2.7 compare the performance of the branch-and-price

and the enumeration algorithm, in terms of computation time and number

of nodes in the search tree. Again, the first two columns show the value of

B and a range for the number of items. In the next columns we give the

number of branching nodes visited in the search tree (for ENUM, this is the

number of nodes in all trees of partial solutions), the average computation

time (in seconds), the percentage of problem instances that is solved within

one second of computation time, and the maximum computation time (in

seconds). For Tables 2.5 and 2.7, these values are given both for the branch-

and-price algorithm as well as for ENUM; Table 2.6 shows only the results
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Table 2.7: Comparison of algorithms for data set 3

B n Branch & Price ENUM

Nodes Time Nodes Time

avg % ≤ 1 sec max avg % ≤ 1 sec max

3 ≤ 40 5.50 0.02 100.00 0.06 12.75 0.00 100.00 0.01

≤ 80 65.00 2.18 38.46 5.02 15.00 0.12 100.00 0.56

≤ 120 118.87 14.06 33.33 81.59 19.47 1.93 66.67 12.79

≤ 160 107.38 17.47 37.50 38.21 18.13 0.06 100.00 0.08

≤ 200 93.10 77.80 70.00 369.15 19.90 8.83 90.00 87.83

6 ≤ 40 4.75 0.33 75.00 1.27 27.00 0.00 100.00 0.00

≤ 80 –(10) – 30.77 – 45.85 0.02 100.00 0.29

≤ 120 –(13) – 33.33 – 156.60 16.50 86.67 170.29

≤ 160 –(5) – 25.00 – 52.75 0.20 100.00 0.43

≤ 200 –(4) – 40.00 – 43.10 0.93 80.00 2.95

9 ≤ 40 1.00 0.03 100.00 0.08 29.00 0.00 100.00 0.00

≤ 80 42.31 47.07 30.77 163.56 49.85 0.00 100.00 0.00

≤ 120 –(13) – 13.33 – 66.87 0.01 100.00 0.08

≤ 160 –(3) – 0.00 – 67.13 0.07 100.00 0.54

≤ 200 –(1) – 10.00 – 58.10 0.06 100.00 0.20

12 ≤ 40 1.00 0.04 100.00 0.09 29.00 0.00 100.00 0.01

≤ 80 –(11) – 46.15 – 57.00 0.00 100.00 0.01

≤ 120 –(10) – 13.33 – 77.20 0.00 100.00 0.02

≤ 160 –(3) – 25.00 – 118.25 0.12 100.00 0.73

≤ 200 –(1) – 10.00 – 168.80 16.10 90.00 160.87

15 ≤ 40 1.00 0.04 100.00 0.12 29.00 0.00 100.00 0.00

≤ 80 –(11) – 61.54 – 59.15 0.00 100.00 0.01

≤ 120 –(9) – 6.67 – 82.53 0.00 100.00 0.02

≤ 160 –(5) – 0.00 – 117.88 0.02 100.00 0.14

≤ 200 –(0) – 0.00 – 100.90 0.01 100.00 0.09

of the branch-and-price algorithm. Notice that all values are average values

over all test instances in the specific range, except for the maximum com-

putation time, which corresponds to a single problem instance.

We see that, in a number of cases, the number of branching nodes is equal

to zero. For the branch-and-price algorithm, this means that the solution

found by the heuristic equals d n
B
e (this happened 217 out of 250 times in

Table 2.5, 12 out of 250 times in Table 2.6, and 45 out of 250 times in

Table 2.7). For the ENUM algorithm it means that the lower and upper
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bounds computed at the start of the algorithm are the same, which means

that there exists an optimal solution with value d n
B
e (this happened 90 out

of 250 times in Table 2.5, and never in Table 2.7).

From Table 2.5 we conclude that the instances from data set 1 can be solved

to optimality very quickly by both algorithms; 90% of the instances are

solved in less than one second for the branch-and-price algorithm, and for

ENUM, 99% of all instances are solved in less than one second. One reason

for the good performance of the branch-and-price algorithm is that in 86.8%

of the instances, the heuristic for finding an initial solution in the branch-

and-price algorithm provides us with an optimal solution that equals d n
B
e.

Indeed, the quality of the lower bound d n
B
e for data set 1 is striking, as

can be seen from Table 2.2. Another reason for the success of the branch-

and-price algorithm is that the matrices are very sparse (for example, for

B = 15, each column has fewer than 15 nonzeros). For the ENUM algo-

rithm, an optimal solution is found without having to branch in 36.0% of

the instances. Thus, in most cases ENUM has to be executed, and then it

finds an optimal solution very quickly, i.e., usually faster than the branch-

and-price algorithm. As described before, from the results it is also clear

that both d n
B
e and LP are good lower bounds for the integer optimum; the

value of AC, however, is in many cases far from the optimum. The small

gap between the LP and IP solutions is not surprising, since this is the case

for set-partitioning models in general (Byun, 2001).

When we look at the results from the random instances in Table 2.6, we see

that the computation times of the branch-and-price algorithm are slower

than those from the real-world instances. Furthermore, the lower bound

from the LP relaxation and the value of AC are very close to the integer op-

timum; for large B (B ≥ 9) they even coincide. Not surprisingly, the lower

bound d n
B
e performs much worse here, especially for large B. The heuristic

for finding an initial solution performs much worse compared to the results

from the first data set: for only 4.8% of the instances does the heuristic find
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an optimal solution equal to d n
B
e.

Finally, when we look at Table 2.7, we see that the branch-and-price algo-

rithm is no longer capable of solving the larger instances to optimality in a

reasonable amount of time (we use a time limit of one hour to solve a single

problem instance). If a number of instances in a specific range could not

be solved within this time limit, this is denoted by “–(α)” where α denotes

the number of instances that could be solved by the branch-and-price algo-

rithm. So we present only these figures from these groups of instances that

could all be solved optimally. We see that, for the smaller instances, the

branch-and-price algorithm is still very fast, but as the number of items in-

creases, the number of instances that cannot be solved also increases. This

is in sharp contrast to the performance of ENUM. From these results we

see that ENUM is able to solve all instances, and 95.6% of all instances

are solved within one second of computation time. Also for this data set,

the value of the LP relaxation is a good lower bound for the integer optimum.

2.6 Conclusion

In this chapter we described two exact algorithms for a pallet-loading prob-

lem. The first algorithm is a branch-and-price algorithm, based on an

integer-programming formulation. The pricing problem can be formulated

as a longest-path problem and can be solved efficiently by dynamic pro-

gramming. The second algorithm is an enumeration algorithm based on the

concept of bounded clique width. This algorithm was motivated by a spe-

cial structure that is present in the real-world instances that were used for

computational experiments. From the computational results we conclude

that the problem instances from data sets 1 and 2 can be solved satisfac-

torily by the branch-and-price algorithm, while approximately 30% of the

instances from data set 3 cannot be solved after one hour of computation

time. The enumeration algorithm performs really well in case of the real-
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world instances (99% of the instances are solved within a second). Also, the

instances from data set 3 can be solved efficiently by ENUM, due to the

small clique width of these problem instances (95% of these instances are

solved in less than one second), but the random instances cannot be solved

efficiently, due to the large number of different lengths in the input. From

the results we also see that the LP relaxation provides us with a good lower

bound on the integer optimum.
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Chapter 3

Partitioning a Weighted

Partial Order

The problem of partitioning a partially ordered set into a minimum number

of chains is a well-known problem in operations research. In this chapter we

study a generalization of this problem, where we not only assume that the

chains have bounded size (i.e., we are given an additional parameter B that

denotes the maximum number of elements that can be contained in a chain;

see Chapter 2), but also that a weight wi is given for each element i in the

partial order such that wi ≤ wj if i ≺ j. The weight of a chain is defined

as the weight of the heaviest element in the chain. The problem is then to

partition the partial order into a number of chains of bounded size, such that

the sum of the weights of the chains in minimized. We refer to this prob-

lem as Minimum Weight Partition into B-chains (MWPB). We prove that

this problem is APX -hard, and we propose and analyze lower bounds for

this problem. Based on these lower bounds, we exhibit a 2-approximation

algorithm, and show that it is tight. We report computational results for a

number of real-world and randomly generated problem instances.

The outline of this chapter is as follows. We describe the problem in Sec-

tion 3.1. Section 3.2 deals with the complexity of MWPB. In Section 3.3

59



60 3.1. Introduction

we propose a number of lower bounds on the value of the optimum, and in

Section 3.4 we present a 2-approximation algorithm for solving MWPB. We

tested the algorithm on a number of real-world problem instances, as well

as on randomly generated instances. The results from these experiments are

described in Section 3.6. In Section 3.7 we discuss an interesting variant of

MWPB, where the orientation of an element is taken into account. Finally,

in Section 3.8, we conclude.

3.1 Introduction

Consider a partially ordered set (X,≺). We say that two elements i, j ∈ X

are comparable if either i ≺ j or j ≺ i. A chain C is defined as a subset of

X such that all elements i, j ∈ C are pairwise comparable. An antichain A

is a subset of X such that no two elements i, j ∈ A are comparable. The

size of a chain (or antichain) is equal to the number of elements contained

in it (Trotter, 1992).

Now, the problem of partitioning a partially ordered set (X,≺) into a min-

imal number of chains such that each element of X belongs to at least one

chain, is a well-known, fundamental problem in operations research. This

problem is solvable in polynomial time, and the size of a maximum antichain

is equal to the minimum number of chains needed to cover all elements of

X (Dilworth, 1950).

Shum and Trotter (1996) generalize this problem by assuming that an in-

teger B is given that bounds the size of a chain. Thus, in this setting no

more than B elements can be in a chain. They show that the corresponding

decision problem is NP-complete, even for a fixed B = 3. As far as we are

aware, this is the only work that considers the problem of partitioning a

partial order into chains of bounded size.

In this chapter we further generalize this problem by assuming that a weight
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wi for each i ∈ X is given such that wi ≤ wj if i ≺ j. Moreover, we define

the weight of a chain C as max
i∈C

wi, thus, the weight of a chain is equal

to the weight of the heaviest element in the chain. Further, we denote a

chain containing at most B elements as a B-chain. The problem is now to

partitionX into a minimum-weight set of B-chains. We refer to this problem

as Minimum Weight Partition into B-chains (MWPB). Observe that when

wi = 1 for all i ∈ X the problem dealt with by Shum and Trotter (1996)

arises.

3.1.1 Relation to Graph-Coloring Problems

The problem of partitioning a partially ordered set into chains of bounded

size is closely related to vertex coloring problems. In the standard vertex

coloring problem we want to color the vertices of a graph such that for all

edges, both endpoints have different colors. The objective is to minimize the

number of colors needed (Golumbic, 1980). Now, given a positive integer k,

a bounded vertex coloring of a graph G = (V,E) is then defined as a usual

vertex coloring in which each color is used at most k times. The bounded

chromatic number of a graph G (γk(G)) is the smallest number of colors

such that G admits a bounded coloring with color classes of size at most k.

(Hansen et al., 1993).

The problem of partitioning a partial order into chains of bounded size

can be formulated as a bounded vertex coloring problem. Indeed, we can

represent the partial order as a graph, creating a vertex for each element

in the partial order, and connecting two vertices if the corresponding ele-

ments are incomparable (the resulting graph is a cocomparability graph, see

Golumbic (1980)). The solution to the bounded vertex coloring problem

on such problem instances can be transformed to solutions to the original

problem of partitioning a partial order: vertices having the same color make

up a chain. Since any color can be used at most a limited number of times,

we know that the chains are bounded in size as well.
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Hansen et al. (1993) show that the bounded vertex coloring problem for

arbitrary graphs is NP-complete for k ≥ 3 using a reduction from Partition

into Isomorphic Subgraphs. They also conjecture that, if k is part of the

input, it is NP-complete to find γk for bipartite graphs. This conjecture

is later proved by Bodlaender and Jansen (1993). Jarvis and Zhou (2001)

show that the bounded vertex coloring problem is solvable in polynomial

time for trees.

3.1.2 Applications

Applications of MWPB can be found in the field of mutual exclusion schedul-

ing (Baker and Coffman, 1996; Jansen, 2003), also known as batch schedul-

ing with job compatibilities (Boudhar, 2003; Finke et al., 2004)). In such a

problem jobs are given, each with a given processing time pi, and for each

pair of jobs it is known whether they can be processed on the same machine.

A machine can process at most B jobs simultaneously, and the time a ma-

chine needs to process its jobs equals the maximum processing time of the

jobs assigned to that machine. The problem is then to assign the jobs to

the machines, respecting the compatibilities, while minimizing the sum of

the completion times of all machines. To represent the job compatibilities,

often a graph is used; different types of graphs lead to different complexity

results. In our setting, the graph corresponding to the job compatibilities is

a comparability graph (see e.g. Golumbic (1980)).

Another application of MWPB from the field of pallet loading is described

in Chapter 2. In this setting, the weight of an item equals the area of the

item, and the weight of a chain is determined by the area of its largest item.

The objective is then to minimize total area, that is, the sum of the weights

of all chains.
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3.1.3 Our Results

In this chapter we show the following:

• Strengthening a result from Shum and Trotter (1996), we show that

MWPB is APX -hard, rendering the existence of a PTAS unlikely.

• We propose two lower bounds, each of which can be arbitrarily bad

when compared to the value of the optimum. The maximum of these

lower bounds, however, is shown never to be less than half the optimum

value.

• We describe a simple algorithm that yields a solution with a value

guaranteed not to exceed twice the optimum value. The analysis is

shown to be tight.

• We consider an extension of the special case of MWPB where the

dimension is 2, to a setting where rotation of the elements is allowed.

3.2 Complexity of MWPB

The decision problem corresponding to MWPB can be formulated as follows:

Given an integer B, a partial order (X,≺), weights wi with wi ≤ wj if i ≺ j

(∀i, j ∈ X), and an integer K, does there exist a partition of X into B-

chains such that the sum of the weights of the B-chains does not exceed K?

As stated in Section 3.1, Shum and Trotter (1996) prove that this decision

problem is NP-complete, even if wi = 1, for all i ∈ X. We can strengthen

their result:

Theorem 4. MWPB is APX -hard, even if

• B = 3, and
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• wi = 1 ∀i, and

• each element occurs in no more than 3 chains.

Proof: We use a reduction from the Maximum 3-bounded 3-dimensional

matching problem (3DM-3), and follow the reduction from Shum and Trot-

ter (1996). Furthermore, we apply arguments used in Chekuri and Khanna

(2005).

Problem 3DM-3 is defined as follows: given are three sets X,Y, Z with

|X| = |Y | = |Z| = n, and a set of triples T ⊆ X × Y × Z with |T | = m.

Each element occurs at most three times in a triple in T (therefore we can

assume that m = O(n)). The goal is to find a matching of largest cardinal-

ity. Kann (1991) showed that this problem is APX -hard. In fact, he shows

that it is NP-hard to decide whether there exists a matching of size n, or

whether every matching has size at most (1− δ)n for some fixed δ > 0.

Figure 3.1: Subgraph for triple ti = {xi, yi, zi}, see Shum and Trotter (1996).

Now, consider an instance I of problem 3DM-3, and build the corresponding

instance I ′ of problem MWPB with B = 3 as described in Shum and Trotter

(1996) (See also Garey and Johnson (1979), page 69): to each triple ti ∈ T ,

ti = {xi, yi, zi}, we associate a subgraph (called a configuration) as shown

in Figure 3.1, where an arc from i to j implies that i ≺ j. Observe that

i) each chain in the instance I ′ must be contained within a single configu-

ration, and
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ii) only if xi and yi and zi are covered by other chains, it is possible to

use 3 chains (recall that B = 3) for the points in the configuration;

otherwise at least 4 chains are needed.

If instance I has a matching of size n, then there exists a solution to instance

I ′ with 4n+3(m− n) = n+3m chains: we need 4 chains to cover each ele-

ment in a configuration that corresponds to a chosen triple in the matching.

For the elements in the remaining configurations, we need 3 chains to cover

them, since all xi, yj , and zk are covered by other chains.

Now let us consider the case that the maximum matching has size (1− δ)n

for some fixed δ > 0. First of all, we need 4(1− δ)n chains to cover the ele-

ments contained in configurations corresponding to triples in the matching.

Then we have covered 3(1−δ)n = 3n−3δn x, y, z-elements. So there are 3δn

x, y, z-elements remaining. Observe that there can be no configuration that

contains more than 2 of these 3δn elements, since otherwise a better solution

(i.e., a matching exceeding size (1− δ)n) exists. That means that the min-

imum number of configurations needed to cover these elements is 3δn2 , and

we need at least 4( 3δn2 ) chains to cover all elements in these configurations.

Finally, for the remaining elements we need at least 3 times the number of

remaining configurations, which equals 3(m− (1− δ)n− 3δn
2 ) chains. So in

total, we need at least 4(1−δ)n+4( 3δn2 )+3(m−(1−δ)n− 3δn2 ) = n+3m+ 12δn

chains. Since m = O(n), the APX -hardness follows.

3.3 Lower Bounds for MWPB

Consider an instance of MWPB, containing an integer B and n elements,

each with a weight wi, 1 ≤ i ≤ n. We assume that the elements are ordered

such that w1 ≥ w2 ≥ · · · ≥ wn. Let OPT denote the value of an optimal

solution to the instance. We define three lower bounds lbi, i = 1, 2, 3, as

follows:

1. lb1 = w1+wB+1+ . . .+w(d n
B
e−1)B+1. Since the size of a chain cannot
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exceed B, lb1 is obviously a lower bound for OPT .

2. When we omit the size constraint (i.e., if there is no restriction on

the size of a chain), a relaxation of MWPB appears. Solving this

relaxation gives a minimum-weight set of chains with value MWC.

We set lb2 = MWC.

3. lb3 = max(lb1, lb2).

Theorem 5. We can calculate the value of lb2 by solving a min-cost flow

problem.

Proof: In order to compute the value of lb2, we create a directed graph

D = (V,A). V contains 2n + 2 nodes: 2 nodes i′ and i′′ for every i ∈ X, a

source s and a sink t. We draw an arc from s to each node i′, with cost 0.

Then we add an arc from each node i′′ to t with cost wi. Next, we add an

arc from a node i′ to its copy i′′ with cost 0, and we add arcs from nodes

i′′ to j′ if i ≺ j, also with cost 0. Finally we add an arc from s to t with

cost 0. All nodes have supply zero, except for s which has supply n, and

t, which has supply −n (a demand of n). All arc capacities are equal to 1,

except for the arc from s to t, which has capacity equal to n. The arcs from

a node i′ to its copy i′′ have a lower bound on the flow of 1. Now, a min-cost

flow in D can be easily translated to a solution to MWPB without the size

constraint and vice versa.

Notice that this algorithm solves a weighted generalization of the classical

result of Dilworth (1950).

Example – Min-Cost Flow

Suppose we are given a partial order S containing four points, S = {a, b, c, d},

and suppose a ≺ b, a ≺ d and c ≺ d. The min-cost flow network correspond-

ing to this example is shown in Figure 3.2. (The lower and upper bounds

on the arcs, the arc costs and the demands are omitted from this figure.)
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Figure 3.2: Min-Cost Flow Network.

If we solve this min-cost flow problem, we find a solution containing a num-

ber of paths that have positive flow value. In the solution to our original

problem, we put two points in the same chain if, in the solution to the min-

cost flow problem, these points appear on the same path with positive flow

value. This corresponds to a minimum-weight set of chains, keeping in mind

that we have disregarded the size requirement on the chains. ¥

We now show that lb1 and lb2 can be arbitrarily bad, even in the unweighted

case. Consider lb1, and suppose we are given a problem instance with B = n,

such that no two elements are comparable, and suppose that each element

has weight 1. One easily verifies that OPT equals n, while lb1 equals 1.

Next, consider lb2, and suppose we have a problem instance with B = 1,

such that all elements are comparable, and that each element has weight 1.

Again, OPT equals n, while lb2 gives a value of 1. So, we cannot give a

constant performance guarantee for either of these lower bounds. However,

no instance exists where both lower bounds are arbitrarily bad. Indeed, let

us now consider the maximum of these two lower bounds, lb3.

Claim 3. For each instance of MWPB: lb3 ≥
1
2OPT . Moreover, this bound

is tight.

We postpone the proof of this inequality to Theorem 6; we first give an

instance for which this bound is tight.
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Figure 3.3: A Tight Example.

Consider the problem instance given in Figure 3.3, with n = B2. So, we

have B2 elements, all with weight 1, such that n− n
B
+ 1 of these elements

are pairwise comparable, and the remaining n
B
− 1 elements are pairwise

incomparable. Observe that, for such instances, lb3 = max(lb1, lb2) = B,

while OPT = ( n
B
− 1) + d(

n− n
B
+1

B
)e = (B − 1) + dB

2−B+1
B

e = (2B − 1).

3.4 A 2-approximation Algorithm for MWPB

In this section we propose a 2-approximation algorithm for MWPB, and

show that it is tight.

Consider the following heuristic H:

Step 1. Omit the size constraint, and find a minimum-weight set of chains

as described in Theorem 5.

Step 2. For each chain consisting of say K elements i1, . . . , iK , with i1 Â

i2 Â . . . Â iK , partition it into dK
B
e B-chains such that elements

i(j−1)B+1, i(j−1)B+2, . . . , imin(jB,K) form B-chain j, j = 1, . . . , dK
B
e.

Theorem 6. H is a 2-approximation algorithm for problem MWPB.
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Proof: Recall that we assume that the elements are ordered such that

w1 ≥ w2 ≥ · · · ≥ wn. Suppose we find a solution using heuristicH with value

vH , where in the first step we find a decomposition into p chains, C1, ..., Cp.

In the second step we partition each of these p chains into a number of B-

chains. The maximal element of C` is referred to as i`, 1 ≤ ` ≤ p. All other

maximal elements of B-chains are referred to as j`, 1 ≤ ` ≤ k. Assume,

without loss of generality, that j1 ≥ j2 ≥ . . . ≥ jk. Notice that we can

associate to each item j` a set of B items that belong to the same chain

found in Step 1 as j`, and are the smallest B items that dominate j` (an

item u dominates another item v if v ≺ u). Let us refer to this set of items

as S(j`), 1 ≤ ` ≤ k (notice that j` /∈ S(j`)).

Claim 4. j` ≥ `B

Argument: Consider the sets S(j`), ` = 1, . . . , k. Since these sets are pair-

wise disjoint, the number of items that must precede j`, 1 ≤ ` ≤ k, equals

at least `B.

The inequality from Claim 4 implies
∑k

`=1wj`
≤

∑k
`=1w`B ≤ lb1. And,

obviously,
∑p

`=1wi` = lb2. Thus, we have that vH =
∑p

`=1wi` +
∑k

`=1wj`
≤

lb1 + lb2 ≤ 2OPT , which proves Theorem 6. Also, notice that lb3 + lb3 ≥

lb1 + lb2 ≥ vH ≥ OPT , implying Claim 3.

It is not clear yet whether the bound derived is tight. Indeed, the example

for which lb3 is shown to be worst possible is solved to optimality by H.

We know that a solution found by heuristic H can be no worse than twice

the optimal value. Can we find problem instances for which this gap is tight?

For the problem instances shown in Figure 3.4, we have n = B2 elements,

all with weight 1, and there are B elements that are pairwise incomparable,

and the remaining B(B − 1) elements are pairwise comparable. For such

an instance, we have OPT = lb1 = lb2 = lb3 = B, while the heuristic H

could give a solution with value (B − 1) + dB
2−B+1
B

e = (2B − 1), so these
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Figure 3.4: Worst-case instance with respect to H.

are asymptotic worst-case instances with respect to H.

3.5 Integrality Gap

In the last section we established a 2-approximation algorithm for parti-

tioning a weighted partial order into chains of bounded size. An interesting

question is whether we can do better than this. A natural approach is then

to look at the integrality gap between the solution to the LP-relaxation

corresponding to some IP model, and the optimal integral solution. This

gap serves as a lower bound for any approximation algorithm that is based

on straightforward rounding of the solution of the linear program. In this

section we analyze the gap between the LP-relaxation corresponding to a

straightforward set-partitioning model and the integer optimum. The set-

partitioning model is similar to the model we used in the branch-and-price

algorithm in Section 2.2.1 of Chapter 2.

We define a decision variable xk for every B-chain k:

xk =

{

1 if B-chain k is in the solution

0 otherwise.
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We define λk as the weight of a B-chain k. The set-partitioning model is

then as follows:

min
∑

k

λkxk (3.1)

s.t.
∑

k:i∈Ik

xk = 1 ∀i (3.2)

xk ∈ {0, 1} ∀k (3.3)

Here, Ik is the set of all elements contained in B-chain k. The objective (3.1)

is to minimize sum of the weights of the B-chains. Constraints (3.2) state

that each element has to be in exactly one B-chain, and constraints (3.3)

are the zero-one constraints on the xk variables. For the LP-relaxation, we

replace constraints (3.3) by constraints (3.4):

xk ≥ 0 ∀k (3.4)

Let us start with a small example:

Example – Integrality Gap

Suppose we are given a problem instance containing three elements α, β,

and γ, each with a weight equal to one, such that all three elements are

pairwise comparable (α ≺ β ≺ γ), and B is equal to 2. In the solution to

the LP-relaxation we find three different B-chains: one B-chain containing

elements α and β, a second B-chain containing elements α and γ, and a

third B-chain containing elements β and γ. All three B-chains occur in the

LP-solution with value 12 , so the value of the solution to the LP-relaxation

vLP is 32 . However, the optimal integral solution has value equal to 2 for

this problem instance: an example of such a solution has a B-chain contain-

ing elements α and β and a second B-chain containing the single element

γ. This means that, for this simple problem instance, the gap between the

LP-solution and the integer optimum is 43 . ¥
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This example shows that, even for a very small problem instance, the in-

tegrality gap is already equal to 4
3 . Now, we can expand the example as

follows: assume we have a problem instance containing B+1 elements, each

with a weight equal to one, such that all elements are pairwise comparable.

In the solution to the LP-relaxation there will be a variable with positive

value for each B-chain containing exactly B elements. There are exactly

B + 1 of these B-chains, and each of them occurs in the LP-solution with

value 1
B
. This means that the solution to the LP-relaxation has value B+1

B
,

while the integer optimum has value equal to 2. For large B, this leads

to an integrality gap of a factor 2, thereby showing that a straightforward

rounding approach will not improve the heuristic H with respect to the per-

formance guarantee.

3.6 Computational Results

We implemented the 2-approximation algorithm in C++, using the CPLEX

network solver to solve the min-cost flow problems, and we tested it on a

number of real-world and randomly generated problem instances. We use

the same 3 data sets that we used for the experiments in Chapter 2: the first

data set contains 50 real-world instances provided to us by Bruynzeel Stor-

age Systems, the second data set contains 50 randomly generated instances,

and the third data set contains 50 randomly generated instances that have

small clique-width. The problem instances for all three data sets contain

between 20 and 200 elements (see Chapter 2). We solve each problem in-

stance for 5 different values of B, so we have 250 experiments for each data

set. (In the real-world setting of Bruynzeel Storage System, B equals 12.)

Since all computation times were less than 0.01 seconds, for all instances,

we omit them from the tables with results.

In Table 3.1 we compare the lower bounds. As lb3 is defined as the maxi-

mum of lb1 and lb2, we want to know how many times lb3 equals lb1, and
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Table 3.1: Results for lower bounds

B Data set 1 Data set 2 Data set 3

lb3 = lb1 lb3 = lb2 lb3 = lb1 lb3 = lb2 lb3 = lb1 lb3 = lb2

3 100% 0% 96% 4% 96% 4%

6 100% 0% 74% 26% 74% 26%

9 98% 2% 50% 50% 28% 72%

12 94% 6% 42% 58% 14% 86%

15 94% 6% 26% 74% 8% 92%

how many times it equals lb2. So in Table 3.1 we give, for each of the three

data sets, the percentage of the number of times that lb3 equals lb1 and the

number of times that lb3 equals lb2.

Tables 3.2, 3.3, and 3.4 show a comparison between the values of the three

lower bounds and the value of the 2-approximation algorithm. In the first

column we give the value of B, and in the next four columns we show

the average values of the three lower bounds (lb1, lb2, and lb3) and the

2-approximation algorithm (vH). Of course, as can be seen in the third col-

umn, the value of B does not influence lb2. Finally, the column labelled ∆3

shows the average (avg∆3) and the maximum (max∆3) difference between

the values of vH and lb3. These differences are all given in percentages (i.e.,
vH−lb3

lb3
· 100).

From these results we see that the performance of the lower bounds is very

different for the different data sets. For the first data set, that contains the

real-world problem instances, lb1 is clearly better than lb2: in 97.20% of all

experiments, the value of lb1 is larger than the value of lb2. If we look at the

second data set, we see that lb1 still performs better compared to lb2, but

the percentage of experiments for which lb1 is larger than lb2 is only 57.60%

for data set 2. However, for data set 3 we see that lb2 performs slightly

better than lb1: in 56.00% of all experiments the value of lb2 is larger than

the value of lb1. The differences concerning the quality of the lower bounds

with respect to the different data sets can be explained by the fact that
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the real-world problem instances from data set 1 have a special structure,

that is not present in the problem instances of the other data sets (see also

Chapter 2, Section 2.5.2). As a consequence of this special structure, we

need very few chains to cover all elements in case B is large, which means

that the quality of lb2 is very poor for these instances.

Table 3.2: Results for data set 1: real-world instances

B lb1 lb2 lb3 vH ∆3 (%)

avg∆3
max∆3

3 1085.06 96.02 1085.06 1096.12 1.45 5.49

6 556.12 96.02 556.12 574.74 4.18 17.39

9 379.96 96.02 380.22 396.66 6.18 27.55

12 293.76 96.02 294.82 316.08 8.12 32.05

15 240.40 96.02 242.18 259.64 8.89 25.16

Table 3.3: Results for data set 2: random instances

B lb1 lb2 lb3 vH ∆3 (%)

avg∆3
max∆3

3 6518.64 1508.44 6589.06 6935.18 11.12 31.73

6 3317.18 1508.44 3338.78 3877.36 19.22 39.22

9 2259.08 1508.44 2314.28 2867.24 18.71 37.17

12 1726.68 1508.44 1818.90 2348.64 18.45 43.90

15 1411.90 1508.44 1585.92 2066.94 17.49 46.88

Table 3.4: Results for data set 3: instances with small clique-width

B lb1 lb2 lb3 vH ∆3 (%)

avg∆3
max∆3

3 3215.70 1357.98 3219.66 3607.64 12.76 29.47

6 1686.28 1357.98 1765.54 2200.00 23.61 38.59

9 1177.96 1357.98 1451.42 1762.92 20.28 43.54

12 926.42 1357.98 1389.50 1574.78 13.72 37.79

15 775.38 1357.98 1364.50 1470.34 9.16 39.91

Next we compare the values of lb3 with the values of the approximation al-

gorithm. The difference between the value of the approximation algorithm
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and the value of lb3 could, in theory, get as large as 100%, however, the max-

imum difference among all experiments from the three data sets is equal to

32.05% for data set 1, 46.88% for data set 2, and 43.54% for data set 3. The

average difference for the three data sets equal 5.76% for data set 1, 17.00%

for data set 2, and 15.91% for data set 3. So again we see that the results

for data set 1 are clearly better compared to the results of data sets 2 and

3, which can be explained by the special structure that is present in the

problem instances of data set 1.

Table 3.5: Comparison with optimal solutions: data set 1

B OPT vH avg ∆ (%) max ∆ (%) % equal

3 31.60 31.90 1.84 12.50 72.00

6 16.04 16.54 4.42 25.00 54.00

9 10.88 11.56 9.61 66.67 38.00

12 8.38 8.86 6.99 33.33 54.00

15 6.80 7.18 6.98 33.33 62.00

Table 3.6: Comparison with optimal solutions: data set 2

B OPT vH avg ∆ (%) max ∆ (%) % equal

3 33.98 39.20 17.17 33.33 2.00

6 18.38 23.64 23.94 44.44 20.00

9 16.68 18.10 6.66 43.75 46.00

12 16.04 16.22 0.82 13.04 86.00

15 16.04 16.04 0.00 0.00 100.00

Table 3.7: Comparison with optimal solutions: data set 3

B OPT vH avg ∆ (%) max ∆ (%) % equal

3 36.58 39.10 7.94 16.00 2.00

6 18.94 21.68 15.05 36.36 8.00

9 13.52 16.02 18.18 42.86 20.00

12 11.28 13.30 16.56 50.00 28.00

15 10.26 11.40 11.11 42.86 44.00

In order to gain more insight in the quality of the 2-approximation algo-
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rithm, we want to compare the results of the approximation algorithm with

the optimal values. However, since we don’t have the optimal solutions to

the problem instances used in the experiments, we do the following: we

create new instances by setting the weight of each element of our problem

instances to 1, and we solve the resulting instances using heuristic H. We

compare the results with the results obtained using the exact algorithms de-

scribed in Chapter 2. Tables 3.5, 3.6, and 3.7 show these results. In the first

column we give the value of B, the next two columns give the average values

of the optimal solution (OPT ) and the approximation algorithm (vH). Then

we give the average difference between these two values (in percentages), the

maximum difference (in percentages), and the number of problem instances

for which the two values are equal. Table 3.5 shows the results for data set 1,

Table 3.6 for data set 2, and finally Table 3.7 shows the results for data set 3.

From these results we see that, in most cases, the solutions found by the

approximation algorithm are very close to the optimal values. For data

set 1, the approximation algorithm gives the optimal solution in 56.00% of

all problem instances. For data set 2 this happened in 50.80% of all in-

stances, and for data set 3 this happened in 20.40% of all instances. While

the maximum difference between the solution of the approximation algo-

rithm and the optimum for the instances we consider is as large as 66.67%,

the average difference between these two values is equal to ca. 6% for data

set 1, ca. 10% for data set 2, and ca. 14% for data set 3. These results

suggest that the approximation algorithm performs satisfactory for problem

instances where the weight of each element is equal to one.

3.7 Rotation Problem

In some applications, for example in the field of pallet loading problems

as discussed in Chapter 2, the items are allowed to be rotated (i.e., the

length and the width of an item are swapped) if that allows us to find a bet-
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ter solution. It is not difficult to exhibit instances where allowing rotation

improves the solution value. So a relevant problem is, when rotation is al-

lowed, to choose the best orientation for each item. Of course this question

is motivated by a two-dimensional representation of the items. However,

each partial order can be embedded in d-dimensional space for some d (Ore,

1962), and, therefore the rotation variant of MWPB is interesting in higher

dimensions as well. In this variant the objective is still to partition X into

a minimum-weight set of B-chains. However, now we are allowed to choose

an orientation for each element of X. We refer to this problem as MWPB-R.

Theorem 7. There exists an optimal solution to MWPB-R such that, for

all points p that are contained in this optimal solution, it holds that

x1p ≥ x2p ≥ . . . ≥ xd
p (3.5)

where d is the number of dimensions, and xi
p is the i-th coordinate of point

p.

Informally said, Theorem 7 states that there is no loss in rotating each item

such that for each item the i-th largest coordinate becomes its size in the

i-th dimension. Before we give a proof of this theorem, we give an example

for the 2-dimensional case.

Example – The 2-dimensional case

Given are n pairs of points {(x1i , x
2
i ), (x

2
i , x

1
i )} (i = 1, . . . , n) in the 2-

dimensional plane. Exactly one point from each of these n pairs must be

present in a solution. Suppose we have an optimal solution that contains

the chain C = {P,Q,R} (see Figure 3.5). Theorem 7 states that there exists

an optimal solution such that for all the selected points in this solution we

have that x1i ≥ x2i . That means that we can exchange all the points that

lie above the line x1 = x2 with their corresponding copies that lie below the

line x1 = x2. This corresponds to the chain C ′ = {P,Q′, R}. To see why
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this is true, consider the following:

Figure 3.5: Example for the 2-dimensional case.

Since the chain containing points P,Q, and R is in the original solution, we

know that P ≺ Q ≺ R, and so we have:

x1P ≤ x1Q ≤ x1R

x2P ≤ x2Q ≤ x2R

We also know that points P and R lie below the line x1 = x2, and point Q

lies above this line, so we also have:

x1P ≥ x2P

x1Q ≤ x2Q

x1R ≥ x2R

Now, in order for C ′ to be feasible, we must have that P ≺ Q′ ≺ R, so we

must show that
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x1P ≤ x2Q ≤ x1R (3.6)

x2P ≤ x1Q ≤ x2R (3.7)

Equation (3.6) is true since x1P ≤ x1Q ≤ x2Q ≤ x2R ≤ x1R. Equation (3.7) is

true since x2P ≤ x1P ≤ x1Q ≤ x2Q ≤ x2R. ¥

Now we continue with the proof of Theorem 7.

Proof: In order to prove Theorem 7, we must show that if we have a chain

C containing points that do not satisfy condition (3.5), then the copies of

these points that do satisfy condition (3.5) form a chain. So, given two

arbitrary points U and V such that U ≺ V , we must show that, for their

copies satisfying condition (3.5), called U ′ and V ′, it holds that U ′ ≺ V ′. So

we have to prove that if U ≺ V , then U ′ ≺ V ′. That means that we have to

show, for each i = 1, . . . , d, that xi
U ′ ≤ xi

V ′ .

Take the smallest i for which this does not hold, so we have xi
V ′ < xi

U ′ .

This means that the ith-largest coordinate of point V ′ is smaller than the

ith-largest coordinate of point U ′, which contradicts U ≺ V .

Observe that in the argument above B plays no role. Hence, using The-

orem 5, we can solve instances of MWPB-R with B ≥ n to optimality in

polynomial time.

Notice that rotating the items as described by (3.5) may increase the num-

ber of pairs of items that are comparable. It would be interesting to see

how this would influence the performance of lb2 and the heuristic H on the

problem instances of Section 3.6.
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3.8 Conclusions

In this chapter we discuss the problem of partitioning a weighted partially

ordered set into chains of bounded size. We proposed three lower bounds for

this problem, and presented a 2-approximation algorithm for solving it. The

approximation algorithm is tested on a number of real-world and randomly

generated problem instances. From the results of the experiments we see

that, although the value of heuristic H could be up to twice the value of

lb3, the largest difference between these values over all 750 experiments is

46.88%, and the average difference equals 12.89%. We conclude from these

results that the approximation algorithm performs reasonably well.



Chapter 4

Connectivity Measures for

Internet Topologies

It is a cliché to state that stability and robustness of the Internet are funda-

mental for securing today’s efficient communication. Maintaining the speed

and the reliability of Internet-based communication is a prime challenge for

service providers, their clients, and other involved institutions. In this chap-

ter, we study the structure and the connectivity of the Internet.

The topology of the Internet has initially been modelled as an undirected

graph, where vertices correspond to so-called Autonomous Systems (ASs),

and edges correspond to physical links between pairs of ASs. However,

in order to capture the impact of routing policies, it has recently become

apparent that one needs to classify the edges according to the existing eco-

nomic relationships (customer-provider, peer-to-peer or siblings) between

the ASs. This leads to a directed graph model in which traffic can be sent

only along so-called valley-free paths. Four different algorithms have been

proposed in the literature for inferring AS relationships using publicly avail-

able data from routing tables. We investigate the differences in the graph

models produced by these algorithms, focussing on connectivity measures.

To this aim, we compute the maximum number of vertex-disjoint valley-free
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paths between ASs as well as the size of a minimum cut separating a pair of

ASs. Although these problems are solvable in polynomial time for ordinary

graphs, they are NP-hard in our setting. We formulate the two problems as

integer programs, and we propose a number of exact algorithms for solving

them. For the problem of finding the maximum number of vertex-disjoint

paths, we discuss two algorithms; the first one is a branch-and-price algo-

rithm based on the IP formulation, and the second algorithm is a non LP

based branch-and-bound algorithm. The minimum cut problem is solved

using a branch-and-cut algorithm, based on the IP formulation of this prob-

lem. Using these algorithms, we obtain exact solutions for both problems in

reasonable time. It turns out that there is a large gap in terms of the connec-

tivity measures between the undirected and directed models. This finding

supports our conclusion that economic relationships need to be taken into

account when building a topology of the Internet.

In Section 4.1 we introduce the problem. Section 4.2 gives formal definitions

of the concepts that we require in this chapter, and we discuss a primal-

dual formulation of the problem. Section 4.3 deals with the computation of

vertex-disjoint valid paths and in Section 4.4 we describe how we compute

minimum cuts with respect to valid paths. Section 4.5 reviews the known

2-approximation algorithms for solving both problems. In Section 4.6, we

present our experimental results concerning the number of vertex-disjoint

valid paths and the sizes of minimum cuts in the four different models with

inferred relationships and the undirected model. We discuss their implica-

tions and also the differences that we observe in the depth of the provider

hierarchy in the different models. Statistics about directed cycles in the

graphs are given and some examples where they can be used to detect mis-

classifications are shown. Finally, in Section 4.7 we summarize our results

and main conclusions.



Chapter 4. Connectivity Measures for Internet Topologies 83

4.1 Introduction

In order to understand the potential vulnerability of Internet-based com-

munication, we need to get an idea of the routes that are being used for

sending traffic, of the routes that could be used for sending traffic, and how

different ways of sending traffic vary with respect to their susceptibility to

failing servers and/or failing connections.

A first step is then retrieving how traffic is being sent over the Internet. This,

however, is already not so easy to find out (Chang et al., 2004). To explain

this, let us view the Internet as a set of Autonomous Systems (ASs; an AS is

a subnetwork under separate administrative control), which are connected

by physical links. ASs exchange routing information using the Border Gate-

way Protocol (BGP); this is a protocol that governs the communication

between a pair of ASs. More specifically, each AS uses a local routing policy

that determines which routes are announced to which neighboring ASs. For

commercial reasons, details about these local policies of individual ASs are

not publicly available. Obviously, this makes it difficult to create an accu-

rate model that can be used in the analysis of the robustness of the Internet.

The goal of this chapter is to contribute to the development of an accurate

model for the Internet topology. We do this by comparing different meth-

ods that have been proposed in the literature to infer the topology of the

Internet using observed traffic-data. The comparison focusses on two con-

nectivity measures, namely the number of (disjoint) paths between a given

pair of ASs, and the size of a minimum cut separating a pair of ASs. Let us

proceed by describing the relevant issues in more detail.

Routing policies depend mostly on the economic relationships between ASs.

They represent an important aspect of Internet structure. Huston (1999a,

1999b) discussed the main trends in the diversity of commercial agreements

between ASs. We will refer to local policies governed by the BGP as BGP
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routing policies, or BGP policies for short. The impact of economic re-

lationships on the engineering level, more precisely on BGP policies, has

been recognized as one of the reasons for BGP path inflation (i.e., the phe-

nomenon that traffic uses paths that are much longer than necessary; see

Gao and Wang (2002)) and one of the important factors in route convergence

analysis (i.e., the fact that, when a previously valid path to a destination

D becomes invalid, it takes a long time until the network has obtained a

new valid path to D (Labovitz et al., 2001)). Thus, the previously adopted

undirected model of the Internet, which ignores BGP policies, is only a

crude approximation of reality and might produce a distorted picture of the

routes used in practice. On the other hand, incorporating all of the peculiar-

ities of the manifold contracts between ASs in a new model would add too

much complexity (assuming one would know these contracts). Therefore,

a coarse classification of AS relationships into three categories—customer-

provider, peer-to-peer and siblings—has been proposed (Gao, 2001). More

recent work has restricted attention to customer-provider and peer-to-peer

relationships only (Subramanian et al., 2002).

If ASs A and B are in a customer-provider relationship, i.e., if A is a cus-

tomer of B, then B announces all its routes to A, but A announces to B

only its own routes and routes of its own customers. If they are peers, they

exchange their own routes and routes of their customers, but not routes of

their providers or other peers. If ASs A and B are siblings, then A announces

all its routes to B and B announces all its routes to A. These policies arise

because customers do not want to act as transit ASs for their providers, i.e.,

a provider cannot route traffic through a customer to a different provider of

that customer. As a consequence, only valley-free paths are valid, i.e., paths

that first go “up” in the hierarchy and then “down” towards the destination.

(A formal definition will be given in Section 4.2. In this chapter we will use

the terms “valley-free path” and “valid path” interchangeably.)

Thus, one arrives at the following model. The Internet is a graph con-
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taining the ASs as vertices. The graph can have directed and undirected

edges. There are three different ways in which two vertices A and B can be

connected:

i) an undirected edge between A and B. This is interpreted as “A and B

are peers.”

ii) a directed edge from A to B, and a directed edge from B to A. This is

interpreted as “A and B are siblings.”

iii) a directed edge from A to B, and no directed edge from B to A. This is

interpreted as “A is customer of B.”

Two ASs with at least one physical link between them are connected by a

single edge (or a single pair of edges, in the case of siblings) in this model,

no matter how many physical links there are between these two ASs. For

comparison, note that the previously adopted undirected graph model of the

Internet consisted of an undirected graph with an undirected edge between

two ASs if there is at least one physical link between them.

Since information about the economic relationships between ASs is not pub-

licly available (such information is often treated like a business secret), it is

not so easy to determine the relationships that ASs have with each other.

This problem of inferring AS relationship is known as the Type of Rela-

tionship (or ToR) problem: given an undirected graph G = (V,E), and a

set of paths P , label each edge as customer-provider, peer-to-peer or sib-

ling, in such a way that the number of valid paths in G is maximized. The

resulting graph is called a ToR graph (see Section 4.2 for formal definitions).

Four algorithms have been proposed for inferring AS relationships from BGP

routing table information (Gao, 2001; Subramanian et al., 2002; Di Battista

et al., 2003; Erlebach et al., 2002). However, it is not known how the topolo-

gies produced by these algorithms differ from each other. Also, it is unknown
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whether the directed model of the Internet is indeed better than the previ-

ously adopted undirected model. Therefore, in view of the large impact of

BGP policies in the Internet, we perform a thorough comparison of these

graph models in this chapter. Since the main effect of BGP policies is that

they restrict the set of paths that traffic can take in the network, we consider

mainly path-related criteria. In particular, we compute the maximum num-

ber of vertex-disjoint valley-free paths between two ASs and the minimum

number of vertices that must be removed from the graph so that no valley-

free path between these two ASs remains. These are natural adaptations of

classical measures of connectivity in graphs to the valley-free path model.

It is well known that in the standard graph models (in the standard model,

a path consists of a sequence of forward arcs in the directed case and of a

sequence of undirected edges in the undirected case) the maximum number

of disjoint paths between s and t is equal to the size of a minimum s-t cut

(provided that s and t are not adjacent); moreover, the corresponding solu-

tions can be computed efficiently (see Ahuja et al. (1993)). In a ToR graph

this is not the case. It is NP-hard to compute the maximum number of

vertex-disjoint s-t paths; it is also NP-hard to compute the minimum size

of a valid s-t cut. The best known approximation ratio is 2 for both prob-

lems. Also, the minimum size of an s-t cut can be up to twice the maximum

number of vertex-disjoint s-t paths. Thus, the max-flow min-cut equality

holds only approximately for ToR graphs (Erlebach et al., 2005). We are

able to obtain optimal solutions with a moderate amount of computation

time using exact approaches, one of which involves applying a branch-and-

price algorithm. We compare the results from the exact methods with those

of the 2-approximation algorithms from Erlebach et al. (2005). We also

compute disjoint paths and minimum cuts in the undirected Internet graph

and compare the results with those of the different directed models.

Furthermore, we investigate directed customer-provider cycles, which are

a somewhat unexpected structure, in the directed models. We claim that

these cycles can help to detect misclassified relationships and thus improve
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the accuracy of the Internet topology. We also give statistics about the

minimum and maximum length of the observed cycles. Finally, we report

statistics concerning the number of ASs that are connected by directed paths

in the different directed models, a quantity that is related to the depth of the

provider hierarchy and to the customer-preference aspect of current inter-

domain routing (Feigenbaum et al., 2002). The latter means that paths

through customers are preferred over paths through peers, and these to

paths through providers.

In summary, our investigations address the following research questions:

• Do the differences between the undirected graph model and the di-

rected graph models with respect to connectivity properties confirm

the importance of incorporating BGP policies in the model?

• How do the directed graph models produced by the four algorithms

proposed by Gao (2001), Subramanian et al. (2002), Di Battista et

al. (2003), and Erlebach et al. (2002) compare to each other? Here,

we are mainly interested in comparing connectivity measures and the

depth of the provider hierarchy.

• How many directed customer-provider cycles occur in the different

directed graph models, and can they be helpful in the detection of

misclassified edges?

• In a graph on the scale of the Internet (containing up to 11,000 vertices

and 30,000 edges), is it feasible to compute exact solutions to the

NP-hard problems of finding a maximum number of vertex-disjoint

valley-free paths between two ASs or the size of a minimum cut? Such

computations could prove useful in future investigations of robustness

issues of the Internet.

• How does the performance of the 2-approximation algorithms proposed

by Erlebach et al. (2005) compare to the performance of the exact al-
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gorithms, both in the quality of the solutions found and in the running

times?

4.1.1 Related Work and Motivation

Our starting point for the interpretation of BGP policies is the work of

Gao (2001) that addressed the problem of unavailable information about

the exact relationships between ASs. A heuristic algorithm was proposed

for inferring AS relationships from BGP routing tables. In addition, it

was observed that a path between a pair of ASs follows a particular struc-

ture: no path contains more than one peer-to-peer relationship, and once a

provider-customer or peer-to-peer relationship is encountered in the path,

no customer-provider relationship can follow. If we ignore sibling relation-

ships for the moment and imagine that providers are at a higher level than

their customers and peers are at the same level, the valid paths are “only

up,” “only down,” or “first up and then down.” Valid paths can have only

one “peak” (which can consist of a single AS or of two ASs connected by a

peer-to-peer relationship) and they must not contain “valleys.” Therefore,

such paths are also called valley-free paths. We use the same characteriza-

tion of valid paths in this chapter.

Further work trying to infer AS relationships is presented by Subramanian

et al. (2002). They formalize the problem by posing it as the optimization

problem of giving an orientation to the edges of an undirected AS graph

with the objective of maximizing the number of paths in the given BGP

tables that become valid for this orientation. They pose the complexity of

this problem as an open question. They also give a heuristic algorithm that

infers relationships by first ranking all ASs and then applying certain rules

to decide about the relationships between pairs of ASs using the rank values.

Independently obtained results from Di Battista et al. (2003) and Erlebach

et al. (2002) resolve the open question of Subramanian et al. (2002) and

prove this inference problem to be NP-hard. Two heuristic algorithms for
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calculating approximately optimal orientations with respect to the number

of valid paths are also presented by Di Battista et al. (2003) and Erlebach

et al. (2002), respectively.

Rimondini et al. (2004) compare the algorithms from Subramanian et al.

(2002) and Di Battista et al. (2003) with respect to two measurements.

First, the AS relationships that are found by a certain algorithm on data

sets from different moments in time are considered (called the stability in

the paper). Second, the AS relationships found by the two algorithms on

the same data set are taken into account (this is referred to as algorithm

independence). They conclude that both algorithms produce highly stable

results, and that the AS relationships found by both algorithms are very

similar. This leads the authors to the conclusion that the valley-free path

approach leads to reliable results.

In another paper by Xia and Gao (2004), a comparison of the algorithms

from Gao (2001) and Subramanian et al. (2002) is done. Also, in this chap-

ter, a new algorithm for inferring AS relationships is proposed, which is also

taken into account in the comparison. The authors evaluate the accuracy

of the three algorithms using partial AS relationships obtained from BGP

community attribute and IRR (Internet Routing Registry) databases. They

conclude that the new algorithm proposed in the paper outperforms the al-

gorithms from Gao (2001) and Subramanian et al. (2002).

In this chapter, we compare the AS relationships computed by all four algo-

rithms proposed by Gao (2001), Subramanian et al. (2002), Di Battista et

al. (2003), and Erlebach et al. (2002), and we try to identify important char-

acteristics of the relationship classifications produced by these algorithms.

The motivation for our investigations comes from several papers that showed

the impact of BGP policies on important features of Internet routing such

as path inflation and routing convergence (see Labovitz et al. (2001), and

Tangmunarunkit et al. (2001a, 2001b, 2003). In addition, recent results
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about measurements on the AS level of the Internet have shown that there

is a need for a simple and accurate algorithm to infer relationships; see

Spring et al. (2003) about path inflation in inter- and intra-domain routing,

Akella et al. (2003a) about multi-homing (i.e., the phenomenon that cus-

tomers tend to have more than one external link to different providers, in

order to guarantee the reliability of their network), and Akella et al. (2003b)

about scaling properties of the Internet regarding link congestion.

Teixeira et al. (2003) compute the number of vertex- and edge-disjoint

paths for the undirected model of the Internet AS topology, as well as for

the topology of one Internet Service Provider. They did not take routing

policies into account. Here, we investigate how the number of vertex-disjoint

paths and the size of a minimum cut can be computed exactly and in reason-

able time for Internet graphs that are constrained by BGP policies. These

results may be helpful for future research on more resilient and efficient

inter-domain routing.

4.2 Problem Description

In order to formulate the problem, we first state some preliminaries in Sec-

tion 4.2.1. Then, in Section 4.2.2 we give a mathematical formulation for

the problems of finding the maximum number of vertex-disjoint paths and

minimum cut sizes.

4.2.1 Preliminaries

Subramanian et al. (2002), Di Battista et al. (2003), and Erlebach et al.

(2002) refer to the problem of inferring the AS relationships in the Internet

as the Type of Relationship (ToR) problem. Following this terminology, we

construct a graph G = (V,E), called a ToR graph, as follows: the vertices

of G are the ASs. As mentioned before, a directed edge from u to v, where

u, v ∈ V , together with a directed edge from v to u means that u and v are
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siblings. A directed edge from u to v means that u is a customer of v, and

an undirected edge means that u and v are in a peer-to-peer relationship.

In a ToR graph, a directed edge from u to v is denoted by (u, v), and an

undirected edge between u and v by {u, v}.

We define a path p = (v1, v2, . . . , vr) from v1 to vr in a ToR graph G = (V,E)

to be valid if it satisfies one of the two following conditions:

1. There exists some j, 1 ≤ j ≤ r, such that (vi, vi+1) ∈ E for 1 ≤ i ≤ j−1

and (vi, vi−1) ∈ E for j + 1 ≤ i ≤ r.

2. There exists some j, 1 ≤ j ≤ r, such that (vi, vi+1) ∈ E for 1 ≤ i ≤

j − 1, {vj , vj+1} ∈ E, and (vi, vi−1) ∈ E for j + 2 ≤ i ≤ r.

Otherwise, a path is called invalid. This definition of valid paths captures

the notion of “valley-free” paths arising from BGP routing policies. From

now on, whenever we talk about paths in a ToR graph, we refer to valid

paths. A path from s to t is also called an s-t path. Note that the reverse

of an s-t path is a t-s path, hence the direction of a valid path is not im-

portant. Two s-t paths are called vertex-disjoint if they do not share any

vertices except s and t.

Let p = (v1, v2, ..., vr) be a valid path from s to t. We can divide p into a

forward part and a backward part at some node vj , such that (vi, vi+1) ∈ E,

i = 1, 2, . . . , j − 1 (we know by definition that such a j exists; if j is not

unique, we simply choose the maximal value for j). If p contains only di-

rected edges, we say that a node vl is on the forward part of p if l < j, vl

is on the backward part of p if l > j and vl is the node where p changes

direction if l = j. If p contains an undirected edge, we say that a node vl is

on the forward part of p if l ≤ j and vl is on the backward part if l > j.

Let G = (V,E) be a ToR graph. For two non-adjacent vertices s and t in G,

a minimum valid s-t cut in G is a set of vertices C ⊆ V \ {s, t} of minimum
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cardinality such that there is no valid s-t path in the ToR graph G \C (i.e.,

in the graph that is obtained from G by deleting the vertices in C and their

incident edges). Note that a minimum valid s-t cut is a smallest set of ASs

whose failure disconnects s and t if only valid paths are allowed.

A directed cycle v = (v1, v2, . . . , vr), r > 2, in a ToR graph G = (V,E) is

defined in the usual sense, i.e., the vertices v1, v2, . . . , vr are distinct and we

have (vi, vi+1) ∈ E for i = 1, . . . , r − 1 and (vr, v1) ∈ E.

Figure 4.1: Gap between number of disjoint paths and minimum cut size.

As mentioned before, the maximum number of vertex-disjoint paths can be

strictly less than the number of nodes in a minimum cut; we give an example

from Erlebach et al. (2005) to illustrate this. In Figure 4.1 we see that the

maximum number of vertex-disjoint paths is equal to 1, while the size of a

minimum cut equals 2. Indeed, one can verify that the set of valid s-t paths

equals {(s, a, b, t), (s, a, b, c, t), (s, a, c, t), (s, a, c, b, t), (s, c, b, t)}, and thus the

maximum number of vertex-disjoint paths is equal to 1. Furthermore, one

can easily verify that a minimum cut has at least size 2, since after removing

one of the nodes a, b or c, there is still a valid path connecting s and t.

4.2.2 Problem Formulation

Let us now give two integer programming formulations; the first formula-

tion (denoted by P) models the problem of finding a maximum number of

vertex-disjoint paths between s and t, the second formulation (denoted by
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D) models the problem of finding a minimum-sized set of nodes such that

each path between s and t contains at least one node from this set.

Let G = (V,E) be a ToR graph and s, t two distinct vertices of G. Assume

that there is no edge between s and t (otherwise, we remove this edge,

compute the maximum number of vertex-disjoint s-t paths, and add one to

the result). Denote by P the set of all valid s-t paths in G, and let Vp be

the set of all vertices contained in path p ∈ P, except for s and t. Further,

we define a decision variable xp for each valid path p, as follows:

xp =

{

1 if valid path p is in the solution

0 otherwise.

Using a set-packing formulation, we get the following integer programming

formulation:

(P) max
∑

p∈P

xp (4.1)

s.t.
∑

p:v∈Vp

xp ≤ 1 ∀v ∈ V \ {s, t} (4.2)

xp ∈ {0, 1} ∀p ∈ P (4.3)

The objective (4.1) is to maximize the number of paths between s and t.

Constraints (4.2) state that each vertex (except for s and t) can belong to

at most one path, and constraints (4.3) are the zero-one constraints on the

xp variables.

The second formulation has a variable yv for every v ∈ V \ {s, t}:

yv =

{

1 if vertex v is in the s-t cut

0 otherwise.

The second formulation can now be given as follows:

(D) min
∑

v∈V \{s,t}

yv (4.4)



94 4.3. Vertex-Disjoint Paths in ToR Graphs

s.t.
∑

v∈Vp

yv ≥ 1 ∀p ∈ P (4.5)

yv ∈ {0, 1} ∀v ∈ V \ {s, t} (4.6)

A property of formulations (P) and (D) is that the LP-relaxation of (P) and

the LP-relaxation of (D) constitute a primal-dual pair of linear programs.

Further, notice that formulation (P) has exponentially many variables (since

the number of valid s-t paths can be exponential in the number of vertices);

equivalently, formulation (D) has exponentially many constraints.

4.3 Vertex-Disjoint Paths in ToR Graphs

In this section we present two exact algorithms for solving problem P; i.e., for

finding the maximum number of vertex-disjoint paths in ToR graphs. The

first one is a branch-and-price algorithm based on the integer programming

formulation (4.1)-(4.3) (Section 4.3.1), and the second algorithm is a branch-

and-bound method in which a max-flow computation has to be performed

in each node of the search tree (Section 4.3.2).

4.3.1 A Branch-and-Price Algorithm

Branch-and-price is a technique for solving integer programs with a huge

number of variables. We refer to Barnhart et al. (1998) or Vanderbeck and

Wolsey (1996) for a thorough description of this technique. Here we apply it

to solving instances of formulation (P). There are (at least) two important

issues to be considered when developing a branch-and-price algorithm: (i)

how to solve the pricing problem (this enables us to conclude that either we

have solved the LP-relaxation of (P), or we have identified a new variable

(column) to be added to the restricted master; (ii) how to branch. We need

to develop a partition of the solution space in such a way that the efficient

solvability of the pricing problem is preserved.
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Column Generation

We start by generating a feasible solution (consisting of a set of vertex-

disjoint paths) as follows. We apply a simple breadth-first search to find a

valid path between s and t, we add this path to the solution, and remove all

nodes in this path (except s and t) from our graph. Then a new iteration

starts, and we repeat the breadth-first search until no more valid paths

can be found. The resulting set of paths found by this iterated breadth-

first search is denoted by P ′, and its value (number of disjoint paths) is

referred to as VP ′ . We consider the restriction of the LP-relaxation of (P)

to the variables xp for p ∈ P ′ (the restricted master problem). We solve the

restricted master using an LP-solver and obtain a solution to the restricted

primal program and its corresponding dual. Let us call the dual solution

y∗. Now, we need to check whether y∗ is also a feasible solution to the dual

program that includes constraints for all paths p ∈ P. In other words, we

need to check whether there exists a valid s-t path p in the graph such that
∑

v∈p y
∗
v < 1. This problem is known as the pricing problem (Vanderbeck

and Wolsey, 1996). We can solve the pricing problem in polynomial time,

thereby implying that the LP-relaxation of formulation (P) (as well as the

LP-relaxation of (D)) can be solved in polynomial time.

Claim 5. The LP-relaxation of (P) can be solved in polynomial time.

Proof. We prove the claim by showing that the pricing problem can be

reduced to a shortest path problem. The result then follows from the “sep-

aration = optimization” result (Grötschel et al., 1988).

Consider the so-called 2-layer graph that has been proposed by Erlebach et

al. (2005) (we first assume that there are no undirected edges in G): two

copies G1 and G2 of graph G are created, but in G2 all edge-directions are

reversed. Then, so called “vertical edges” are added, i.e., directed edges

from the vertices in G1 to their copies in G2. Finally, s in G1 is identified

with its copy in G2 and all edges that end in s are removed, and t in G1 is

identified with its copy in G2 and all edges that start in t are removed. In
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this way, all valid s-t paths in G correspond to directed paths from s to t

in the 2-layer model: If a valid s-t path in G first uses some forward edges

and then some backward edges, its forward part in the 2-layer model lies in

G1, then it switches to the second layer using a vertical edge, and then it

goes again forward to t in G2 because of the inverted edge-directions. (See

Figure 4.2 for an illustration.)

Figure 4.2: The 2-layer graph of the ToR graph depicted in Figure 4.1.

Remark. Notice that we can also convert a path p′ from the 2-

layer graph to a valid path p in the original graph as follows: first

we replace all nodes in p′ by their original copies from the original

graph, and we delete all identical successive nodes (resulting from

the use of a vertical edge). Then we delete all cycles in the

resulting path, which gives us a valid path p in the original graph.

We can deal with undirected edges in the following way. For an undirected

edge {a, b}, we do not add corresponding edges to G1 or G2, but instead add

directed edges (a1, b2) and (b1, a2) to the 2-layer model, where a1, a2 (b1, b2)

are the copies of a (b) in G1 and G2, respectively. This ensures that valid

s-t paths in G that include an undirected edge also have a corresponding

path in the 2-layer model.
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Next, we define the edge weights of the 2-layer graph as follows: edges

entering a copy of vertex v get weight y∗v , except for vertical edges, which

get weight 0. Observe that a shortest directed path from s to t in the 2-layer

model gives us a valid s-t path in G that minimizes the sum of the y∗v values

of the vertices on the path. Since the shortest path problem can be solved

in polynomial time (using for instance Dijkstra’s algorithm), we can solve

the pricing problem in polynomial time.

If the solution of the pricing problem produces a valid s-t path p such that

the sum of y∗v values on this path is less than 1, we add path p to the

restricted master and repeat the procedure. If there is no such path, we are

done and have obtained an optimal solution to the LP-relaxation of (P). If

the obtained solution is fractional, i.e., contains variables whose values are

strictly between 0 and 1, we use a branching strategy in order to arrive at

an integral solution.

Branching

If the optimal solution to the linear programming relaxation is fractional, a

natural approach is to try different ways of fixing these variables to integers

and solving the problem recursively for each of these alternatives (branch-

ing). Here it is important to preserve the form of the pricing problem and

its efficient solvability in the branching procedure. We achieve this as follows.

Given a feasible, optimal solution x∗ to the LP-relaxation of (P), we call a

vertex fractional if it has at least three incident edges that lie on different

valid paths with value x∗p > 0. Notice that if a solution is fractional, it has

at least one fractional vertex. (If we have a fractional solution, there must

be at least one path which has a fractional value. Consider such a path

d. Now, if no fractional vertex exists, each vertex has at most two incident

edges that lie on valid paths with x∗p > 0. However, this means that d can

have value equal to 1 without violating any constraints, resulting in an inte-

gral solution.) Our branching strategy is as follows: for a fractional vertex
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w, we delete all edges incident to w except two that could lie consecutively

on some valid path. Each possible way of doing this forms a branch. Thus,

for instance, if w has k incoming edges and ` outgoing edges, the number of

branches is k`+
(

k
2

)

. If there are many fractional vertices, we choose one for

branching that has a maximum number of incident edges lying on fractional

paths.

In this way we exclude the current fractional solution, but do not exclude any

integral solution, and the problem structure is preserved: in each branch,

we solve a problem of the same type on a graph with fewer edges.

For each branch, if the value of the fractional solution is not larger than the

value of the best integral solution found so far, we do not enter that branch.

Otherwise, we explore all branches in a depth-first traversal. In this way we

are sure to arrive at an optimal integral solution to (P).

We remark that our approach can be adapted easily to a version of the

problem where each vertex v has an integral capacity cv and we allow up

to cv valid paths passing through it. (Here, valid paths could occur more

than once in the solution.) To solve this version of the problem, we simply

replace each vertex v by cv copies and then apply our algorithm as described

above.

The branch-and-price algorithm for a given a ToR graph G and two distinct

vertices s and t is summarized by the pseudo-code given below.

Branch-and-Price Algorithm VertexDisjointPaths

1. Calculate an initial solution consisting of a set of paths P ′ with value

VP ′ using the iterated breadth-first search, and let V ∗ = VP ′ . Create

a list L and add to L a branching node corresponding to the input

graph G.
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2. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next branching node G from L (i.e., the branching node

that was added most recently to L), remove it from L, calculate a

set P ′ of edge-disjoint s-t paths in G using iterated breadth-first

search, and continue with step 3.

3. Solve the LP-relaxation using only those variables that correspond to

a path in P ′.

4. Solve the pricing problem. Is there a variable (a path) with negative

reduced costs?

YES: Add this variable to P ′ and go to step 3.

NO: An optimal solution to the LP-relaxation is found with value VLP .

Continue with step 5.

5. VLP > V ∗?

YES: Continue with step 6.

NO: Go to step 2.

6. Is the solution to the LP-relaxation integral?

YES: V ∗ = VLP . Go to step 2.

NO: Select a fractional vertex v. For each possible way of deleting all

edges incident to v except for two edges that could lie consecu-

tively on some valid path, create a new branching node (i.e., the

graph obtained by deleting the respective edges) and add it to L.

Go to step 2.
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Valid Inequalities

In order to strengthen the LP-relaxation, a natural strategy is to add valid

inequalities. In this section we will discuss a class of inequalities that is valid

for formulation (P) of the vertex-disjoint paths problem. We will refer to

these inequalities as triangle inequalities.

As the name suggests, we consider triangles in the ToR graphs. We define

a triangle as a subset of three vertices which are connected with customer-

provider edges in such a way that they do not form a directed cycle. For

example, if there are three vertices a, b and c, and there is an edge from a

to b, an edge from a to c and a third edge from b to c, this is a triangle. For

each such triangle t = (a, b, c), we define Tabc = {p ∈ P| p contains {a, b} or

{a, c} or {b, c}}.

Now, for every triangle t in a ToR graph the following inequality states that

the sum of all valid paths using one of the three edges in t must be smaller

than or equal to one:

∑

p:p∈Tabc

xp ≤ 1 ∀ triangles (a, b, c) ∈ V 3 (4.7)

It is clear that inequalities (4.7) are valid for (P). One can view inequali-

ties (4.7) (as well as inequalities (4.2)) as a manifestation of clique-inequalities

for the node packing problem. Indeed, when we build a graph in which there

is a node for every path p ∈ P, and where two nodes are connected if and

only if the two corresponding paths share a vertex in the ToR graph, it is

obvious that the node packing problem on this graph is exactly problem

P. Notice that inequalities (4.2) and (4.7) need not constitute all clique in-

equalities in the node packing graph. In Section 4.6.2 we report shortly on

the computational effectiveness of these inequalities.



Chapter 4. Connectivity Measures for Internet Topologies 101

4.3.2 A Branch-and-Bound Algorithm

Our second algorithm for solving the vertex-disjoint paths problem is a non

LP-based branch-and-bound algorithm, in which we use the same 2-layer

graph representation as explained in Section 4.3.1.

We start with an initial solution, computed by the iterated breadth-first

search discussed in Section 4.3.1. The value of this solution is a lower bound

on the integer optimum. Next, we compute a maximum flow in the 2-layer

graph, where we assign a capacity of 1 to each vertex. The flow we find is

not necessarily vertex-disjoint (since it may happen that the maximum flow

found uses a node in G1 and its copy in G2), so it is an upper bound on the

optimal solution. We first check whether the flow found by the maximum

flow procedure is vertex-disjoint, or equal to the lower bound, in which case

we have found the integer optimum. Otherwise, we have to branch, which

we do as follows:

In every node in the search tree, we select a vertex v from the original graph

that is used more than once in the flow found by the maximum flow proce-

dure. This vertex v has a copy v1 in the first layer, and a copy v2 in the

second layer of the 2-layer graph. Now, we generate two new branches as

follows:

In the first branch, we delete vertex v1, and all its adjacent edges, from

the 2-layer graph. In the second branch, we delete all incoming edges of

v2, except for the vertical edge (v1, v2), from the 2-layer graph. Next, we

perform a maximum flow calculation in each branching node, and repeat

this procedure until we have found the integer optimum. The correctness of

the branching step follows from the observation that if a node occurs in a

path of the solution, it is either on the backward part of the path, which is

permitted in the first branch, or it is on the forward path or it is the node

where the path changes direction (see Section 4.2.1), which is permitted in
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the second branch.

The branch-and-bound algorithm is summarized by the pseudo-code given

below. In our implementation, we actually compute min-cost maximum

flows (all edges are assigned a cost of one) instead of standard maximum

flows, as we expect that maximum flows using a minimum total number of

edges can reduce the number of branching nodes required.

Branch-and-Bound Algorithm VertexDisjointPaths

1. Calculate an initial solution consisting of a set of paths P ′ with value

VP ′ using iterated breadth-first search, and let V ∗ = VP ′ . Create a list

L and let L = ∅.

2. Construct the 2-layer graph H, and add to L a branching node corre-

sponding to H.

3. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next node H from L (i.e., the branching node that was

added most recently to L), remove this node from L and continue

with step 4.

4. Calculate a maximum flow MF with value VMF in the 2-layer graph

H.

5. VMF > V ∗?

YES: Continue with step 6.

NO: Go to step 3.

6. Does the maximum flow MF in H correspond to vertex-disjoint paths

in G?

YES: V ∗ = VMF . Go to step 3.
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NO: Select a vertex v that is used more than once in MF . Create two

new branching nodes as follows:

i. Delete copy v1 of v from the 2-layer graph.

ii. Delete all incoming edges of copy v2 of v from the 2-layer

graph, except for the edge (v1, v2).

Add the branching node corresponding to each of these two branches

to L. Go to step 3.

4.4 Minimum Cuts in ToR Graphs

We solve the minimum cut problem using the dual (D) presented in Sec-

tion 4.2.2. Since (D) might have exponentially many constraints, we first

compute a set P ′ of vertex-disjoint s-t paths using the iterated breadth-first

search as described in Section 4.3.1 and start by solving the LP-relaxation

of (D) using only the constraints for paths in P ′. Solving this small linear

program gives us a solution y∗. Then we check whether there is a valid path

such that
∑

v∈p y
∗
v < 1, again using a shortest-path algorithm in the 2-layer

model of the graph (i.e., we solve the separation problem with respect to

constraints (4.5)). If such a path is found, we add the corresponding con-

straint to our linear program (D) and repeat the procedure until no more

valid paths with
∑

v∈p y
∗
v < 1 can be found. The resulting solution y is an

optimal solution to the LP-relaxation of (D). In case the resulting solution

y is fractional, we branch.

The branching is more straightforward than for the vertex-disjoint paths

problem. If there is a vertex v such that 0 < yv < 1, we add a constraint

yv = 0 (an exclusion constraint) in one branch and yv = 1 (an inclusion

constraint) in the other branch to the linear program and solve it again,

thus having two branches for a fractional vertex. If there are many frac-

tional vertices, we simply branch on the first one that we find. Similarly

to the previous case, we do not enter a branch where the optimal fractional
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solution is at least as large as the smallest integral solution found so far. The

branch-and-cut algorithm is summarized by the pseudo-code given below.

Branch-and-Cut Algorithm MinCut

1. Let V ∗ = ∞. Create a list L and add to L a branching node corre-

sponding to an empty set of inclusion/exclusion constraints.

2. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next node C from L (i.e., the branching node that was

added most recently to L), remove this node from L, calculate

a set of vertex-disjoint s-t paths P ′ using iterated breadth-first

search, and continue with step 3.

3. Solve the LP-relaxation using only the constraints that correspond to

a path in P ′ and the inclusion/exclusion constraints from C.

4. Solve the separation problem. Is there a variable (a path) with negative

reduced costs?

YES: Add this variable to P ′ and go to step 3.

NO: An optimal solution to the LP-relaxation is found with value VLP .

Continue with step 5.

5. VLP < V ∗?

YES: Continue with step 6.

NO: Go to step 2.

6. Is the solution to the LP-relaxation integral?

YES: V ∗ = VLP . Go to step 2.

NO: Select a vertex v such that yv is fractional. Create two new

branching nodes as follows:
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• In the first node, add the exclusion constraint yv = 0 to C.

• In the second node, add the inclusion constraint yv = 1 to

C.

Add these two nodes to L.

Remark. We remark that the same approach can be used

to solve the generalization of the problem where each vertex

v has a weight wv and the objective is to find a valid s-t cut

of minimum weight. The only difference is that the objective

function becomes min
∑

v∈V \{s,t} wvyv.

Notice that we use two different approaches for solving the linear program-

ming relaxations of formulations (P) and (D). We found that there were no

significant differences in running-time between these two approaches.

4.5 Approximation Algorithms

In this section we discuss two 2-approximation algorithms for finding the

maximum number of vertex-disjoint paths and the size of minimum cuts.

Both algorithms are presented by Erlebach et al. (2005). In order to make

the presentation self-contained, we repeat the description of these algorithms

in this section. Section 4.5.1 deals with the algorithm for the problem of

finding the maximum number of vertex-disjoint paths, and in Section 4.5.2

we give the algorithm for calculating the size of a minimum cut.

4.5.1 Vertex-Disjoint Paths

Before stating the approximation algorithm, we need some definitions. If

the forward part of a path p1 intersects a backward part of a path p2 at

a node v, we speak of a crossing at v. The two paths p1 and p2 can be

recombined at the crossing to form a new path, consisting of the first part

of p1 and the last part of p2. Given a graph G = (V,E) and two vertices s
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and t, the algorithm is as follows.

2-Approximation algorithm DisjointPaths (Erlebach et al., 2005)

1. Construct the 2-layer graph, and calculate a maximum flow in this

graph.

2. Add, for each path in this maximum flow, the corresponding path in

the original graph G to P ′.

3. Define F as the set of all forward parts of paths in P ′, and B as the

set of all backward parts.

4. Label all forward parts and all crossings as unscanned. Recombine the

forward and backward parts as follows:

(a) Select an unscanned forward part pf from F that has at least one

unscanned crossing.

(b) Select the first unscanned crossing c on pf , and let pb in B corre-

spond to a backward part containing c.

(c) Recombine pf and pb at c. Label pf and all previous crossings

on pb as scanned. If pb was already recombined with some other

forward part p′f , mark p′f as unscanned.

(d) Are there any unscanned forward parts with unscanned crossings

left?

YES: Go to step 4a.

NO: STOP. A solution is found that is vertex-disjoint.

4.5.2 Minimum Cut Sizes

We now give the approximation algorithm for finding the minimum cut be-

tween two vertices s and t. Assume again we have a ToR graph G = (V,E)

and two vertices s, t ∈ V . We also assume there is no direct edge in G
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between s and t, since a s-t cut does not exist in that case. The algorithm

is then as follows:

2-Approximation algorithm MinCut (Erlebach et al., 2005)

1. Construct the 2-layer graph, and calculate a minimum cut in this

graph.

2. From the cut found in step 1, construct a cut C in G as follows: C

contains all vertices v ∈ V for which at least one copy is in the cut

found in step 1.

3. STOP. C is a cut in G containing at most twice the number of nodes

as in a minimum cut.

4.6 Computational Experiments

In this section we first give a description of the data we used for our ex-

periments (Section 4.6.1). Next, in Section 4.6.2, we discuss some issues

concerning the implementation of the algorithms, and finally we present

our results. In Section 4.6.3 we give computational results and discuss the

performance of the different algorithms. The algorithms described in Sec-

tions 4.3, 4.4 and 4.5 are executed on a number of different ToR graphs,

and we compare these results with those in the undirected model (where

routing policies that are consequences of established economic relationships

are not included) in order to quantify what the differences are with respect

to the size of a minimum cut and the number of disjoint paths. Finally, in

Section 4.6.4, we focus on the interpretation of the results.

4.6.1 Description of the Data

We use BGP tables from five different dates (April 2001, February 2002,

April 2002, January 2003 and February 2004), available from the University
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of Oregon Route Views project web-site (OREGON), to construct undi-

rected graphs and four types of ToR graphs. This means that we have five

different graphs for each of the five points in time, giving five undirected

graphs and 20 ToR graphs in total. The undirected graphs are obtained

by creating an undirected edge between two ASs if they appear consecu-

tively in some path in the BGP tables. We also used one undirected graph

model representing the Internet of April 1–16, 2002 that we obtained from

CAIDA’s Internet Topology Data Kit, ITDK0204 (CAIDA). We refer to

this graph as the CAIDA graph, to the undirected graphs based on Oregon

Route Views data as undirected BGP graphs, and to the graphs that include

AS relationships as ToR graphs. The types of ToR graphs are denoted by

A, B, C, and D as follows:

• ToR graphs of type A are obtained using the algorithm from Erlebach

et al. (2002). They contain only customer-provider edges, no peer-to-

peer or sibling edges.

• ToR graphs of type B are obtained using the algorithm from Di Bat-

tista et al. (2003) by running the software bgpSat publicly available

from their web-page (BGPSAT). A majority of the edges are classified

by bgpSat as customer-provider edges, but the classification of some

edges is left undetermined. We classify the latter edges as peer-to-peer

edges. Thus, type B graphs contain customer-provider edges and a few

peer-to-peer edges.

• ToR graphs of type C are obtained from the web-page (CIMVP)

and have been produced with the algorithm from Subramanian et al.

(2002). The algorithm classifies edges as peer-to-peer edges, customer-

provider edges, or unknown edges. We treat the unknown edges as

sibling edges.

• ToR graphs of type D are obtained with the algorithm from Gao (2001)

(using the implementation (LRIP)) and contain customer-provider

edges, peer-to-peer edges, and sibling edges.
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Table 4.1: Comparison of edge classifications.

ToR Graphs Percentages of identically classified edges

18.04.2001 04.02.2002 06.04.2002 09.01.2003 10.02.2004

A vs. B 95.53 95.41 95.40 95.88 95.08

A vs. C 91.70 91.57 92.21 92.24 91.02

A vs. D 90.96 91.43 91.67 93.16 91.23

B vs. C 89.71 90.30 90.55 90.40 90.28

B vs. D 89.37 90.46 90.59 91.50 90.24

C vs. D 89.60 90.55 90.72 91.35 90.75

All of the inference algorithms that we have used for the construction of

ToR graphs are heuristics. Thus, it is interesting to see how many edges

between ASs are classified in the same way by the different algorithms. In

Table 4.1 the percentages of identically classified edges are given for all six

combinations of ToR graphs. For example, 95.53% of the edges are classified

in the same way in A and B graphs from April 2001, as is shown in the first

entry of the table. From this table we see that approximately 90% of all

edges are classified the same.

Since computing the maximum number of vertex-disjoint paths and the min-

imum cut size for all pairs of ASs would have taken prohibitively long (even

after pruning vertices of degree 1, the graphs still contain roughly 7,000 to

11,000 vertices), we confine our calculations to approximately 1000 pairs

of ASs per graph. For this reason, we select 47 ASs as representatives and

carry out the computations for all possible 1081 pairs of these ASs. We have

selected the ASs by taking 47 vertices among the vertices of largest degree

in the biggest R component of the undirected BGP graph of April 2002. (A

partition of Internet graphs into P, Q, R and I components was proposed by

Vukandinović et al. (2002). The biggest R component is the biggest con-

nected component in the graph that is obtained after deleting all vertices of

degree 1 and their neighbors.) All of the 47 selected ASs are vertices in that

component that have at least 7 neighbors within that component. Their

AS numbers and descriptions are given in Table 4.2. As one can see, the
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ASs are geographically well spread—they are from Europe, USA, and Asia.

Furthermore, there are representatives of bigger and smaller ISPs (Internet

Service Providers), telecom nodes (e.g. Japanese and Belgian telecom), well-

connected universities and research centers (e.g. University of Stanford, Uni-

versity of Oregon, and National Center for Supercomputing Applications),

exchange points (e.g. London and Hongkong Internet Exchange), etc. This

means that we have chosen well-connected ASs with diverse functionalities

and good geographic coverage while avoiding the highest-degree nodes in

the Internet (which are neighbors of leaves) as well as nodes with very small

degree.

4.6.2 Implementation Issues

We have implemented the algorithms in C++ using CPLEX 9.0 to solve

linear programs and the LEDA library to process graphs. Our experiments

were done on a Sun Fire 480R workstation with two 900MHz processors (our

code uses only one of them) and 4GB main memory.

For all computations we have removed vertices with degree 1, since they do

not affect the number of disjoint paths or the cut sizes for any other pair

of ASs. After pruning the leaf vertices, the graphs contain about 7,000 to

11,000 vertices and 20,000 to 30,000 edges.

For the computation of disjoint paths and cuts, we replaced each peer-to-

peer edge {u, v} by two edges (u, d) and (v, d), where d is a new dummy

vertex. In this way the valley-free path policy is preserved, while the graph

consists of directed edges only.

At the start of the branch-and-price algorithm for computing the maximum

number of disjoint s-t paths, we do some additional preprocessing on the

graphs. First, we delete all vertices (except s and t) for which the indegree
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Table 4.2: The 47 selected ASs with AS numbers and short descriptions obtained from Internet registries.
AS nr. Description AS nr. Description

32 Stanford University 5413 GX Networks

237 Merit Network Inc.(USA) 5459 LINX-AS,London Internet Exchange Ltd.

600 OARnet(USA) 6079 RCN Corporation (USA)

680 DFN-IP service G-WiN 6402 One Call Communications, Inc.(USA)

1136 KPN Telecom OVN IO 6774 BELBONE BELGACOM

1237 Korea Institute of Science and Technology Information 6830 UPC Distribution Services european broadband ISP services

2500 Japan Network Information Center WIDE Project 7091 ViaNet Communications (USA)

2514 NTT PC Communications, Inc., Japan 7623 HPCNET-AS High Performance Computing NETwork(HPCNET)Korea

2518 C&C Internet Service mesh(NEC Corporation), Japan 7660 APAN-JP Asia Pacific Advanced Network - Japan

2647 SITA France 7679 QTNET Kyushu Telecommunication Network Co.,Inc.

2687 IBM, NH USA 8426 CLARANET-AS ClaraNET UK AS of European ISP

2818 BBC Internet Services, UK 8553 AVENSYS Avensys Networks Ltd UK

3112 OARnet(USA) 9270 APAN-KR-AS Asia Pacific Adv. Neets Korea Consort. Net. Oper.Center

3304 KPNBELGIUM 9335 CIP-JAPAN-AS-AP ATT IPlus Asia and Pacific IP Network

3333 RIPE NCC Operations 9497 DIGITELONE Digital Telecommunications Philippines Inc.

3491 CAIS Internet(USA) 10099 HKUNICOM1-AP Voice over IP, ISP

3557 INTERNET SOFTWARE CONSORTIUM, INC. (USA) 10764 National Center for Supercomputing Applications

3582 University of Oregon 11854 Internap Network Services (USA)

3754 NYSERNet(USA) 12359 INTELIDEAS Intelideas Autonomous System Madrid, Spain

4197 ERX-GLOBALONLINE, Japan 12457 ONO-SERVICE-PROVIDER, Spain

4635 Hong Kong Internet Exchange–Route Server 1 13129 Global Access Telecommunications, Inc.

4725 ODN JAPAN TELECOM CO.,LTD. 13646 Cignal Global Communications, Inc.(USA)

5000 Internet Online Services (USA) 14390 Core Communications, Inc (USA)

5056 Iowa Network Services(USA)
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is equal to zero. These vertices can never belong to a valid path, so remov-

ing them will not affect the solution we find. Next, we check whether s and

t belong to the same biconnected component of the underlying undirected

graph. (A biconnected component of an undirected graph G is a subgraph of

G such that we can remove any vertex of this subgraph without disconnect-

ing it (Harary, 1969).) If so, we can run the algorithm on this component

only (which is usually much smaller than the original graph), and in this

way we still get the optimal solution. If s and t do not belong to the same

biconnected component, the number of valid paths between s and t will be

either 0 or 1. So we check whether there exists a valid path from s to t,

in which case the number of vertex-disjoint paths is equal to one. If no

valid s-t path exists, our solution is equal to zero. Finally, we found that

adding the valid inequalities discussed in Section 4.3.1 actually slows down

the branch-and-price algorithm. In fact, the number of branching nodes

needed to solve the problem decreases, as expected, but the time needed to

process a single node increases more heavily than the decrease in number

of branching nodes, so the computational results presented next are those

obtained without the additional valid inequalities.

For the minimum cut problem, we need to get a well-defined notion of min-

imum s-t cuts also for adjacent vertices. We handle such vertex pairs as

follows: we remove the direct edge (or pair of edges, in the case of a sibling

relationship between s and t) between the two vertices s and t, compute

the size of a minimum s-t cut in the graph without that edge, and add 1

to the result. We do this in the undirected graphs as well as in the ToR

graphs. Note that in the undirected model, the number of disjoint paths

between two vertices is equal to the size of a minimum cut separating these

two vertices. In ToR graphs, these values can differ.
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4.6.3 Computational Results

Next, we are interested in the number of disjoint paths and the minimum cut

size between pairs of ASs in the different graphs. First we discuss the per-

formance of the two exact algorithms for solving the vertex-disjoint paths

problem. Then we give results for the performance of the algorithm for

solving the minimum cut problem, and finally we give results from the ap-

proximation algorithms.

Vertex-Disjoint Paths

We have tested both the branch-and-price and the branch-and-bound algo-

rithm described in Section 4.3 to calculate the maximum number of vertex-

disjoint paths for any pair of ASs. In Tables 4.3 and 4.4 we give the results

of these computations.

Tables 4.3 and 4.4 give the computational results for the branch-and-price

and branch-and-bound algorithms, respectively. The first two columns show

the graph type and date. The third column contains the value of the integer

optimum. The last four columns show the computation times (in seconds),

the number of branching nodes needed to solve the problems, the percent-

age of problem instances that are solved in less than one second, and the

percentage of instances that are solved in more than 10 seconds. All val-

ues in these tables are average values over the 1081 pairs of ASs, so they

contain results of over 20,000 problem instances. While we could run the

branch-and-price algorithm to completion on all pairs in all graphs, we had

to terminate the branch-and-bound algorithm on a few pairs (at most 10

out of 1081 pairs in each of the graphs) after several hours of computation

time. The running-time and the number of branching nodes shown for the

branch-and-bound algorithm in Table 4.4 are thus the averages over the

pairs for which the algorithm could be run to completion.
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Table 4.3: Results for branch-and-price algorithm.

Type Date OPT Branch&Price

Time #BN %≤1 %>10

A 18.04.2001 6.38 0.83 1.96 98.06 0.65

04.02.2002 7.88 1.26 2.02 94.36 1.30

06.04.2002 8.66 2.61 4.55 93.15 1.85

09.01.2003 7.35 0.80 1.58 94.91 0.65

10.02.2004 8.10 6.26 6.77 86.12 3.79

B 18.04.2001 6.42 3.34 7.59 91.77 3.15

04.02.2002 8.49 7.61 11.21 81.41 5.46

06.04.2002 9.39 10.69 10.94 78.08 7.77

09.01.2003 7.52 2.82 5.06 86.40 3.61

10.02.2004 8.44 12.12 10.90 79.19 5.64

C 18.04.2001 6.14 1.25 2.29 94.54 1.30

04.02.2002 7.98 2.04 2.76 86.86 2.68

06.04.2002 8.46 2.96 3.71 86.77 2.41

09.01.2003 6.61 0.88 1.57 93.06 0.83

10.02.2004 7.80 1.94 1.97 80.48 2.50

D 18.04.2001 6.34 2.63 3.06 83.63 4.26

04.02.2002 8.01 2.20 2.42 85.38 3.70

06.04.2002 8.69 5.96 4.31 81.41 3.98

09.01.2003 7.30 1.80 2.20 88.53 2.41

10.02.2004 7.92 8.36 4.16 73.64 4.81

From Tables 4.3 and 4.4 we conclude that, on the average, both algorithms

perform well on the selected pairs of ASs. The running-times of the branch-

and-bound algorithm are much more variable. On 71.78% of all instances,

the branch-and-bound algorithm was faster than the branch-and-price algo-

rithm. On the other hand, the branch-and-price algorithm could solve all

instances in reasonable time (the average running-time over all instances is

3.92 seconds, while the instance with the longest running-time took slightly

more than one hour), while the running-time of the branch-and-bound algo-

rithm increased drastically for a few instances, thus leading to a larger aver-

age running-time on most graphs. The number of branching nodes needed to

find the integer optimum is much larger for the branch-and-bound algorithm

in comparison to the branch-and-price algorithm. For the branch-and-price

algorithm, the average number of branching nodes is surprisingly small, since
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Table 4.4: Results for branch-and-bound algorithm.

Type Date OPT Branch&Bound

Time #BN %≤1 %>10

A 18.04.2001 6.38 9.44 34.42 94.26 1.11

04.02.2002 7.88 2.63 10.84 88.99 2.59

06.04.2002 8.66 4.40 16.25 87.60 3.61

09.01.2003 7.35 2.28 5.31 94.63 1.85

10.02.2004 8.10 15.40 32.86 86.96 4.44

B 18.04.2001 6.42 2.16 10.45 83.44 3.33

04.02.2002 8.49 25.62 71.69 71.14 8.33

06.04.2002 9.39 42.63 115.76 68.55 12.86

09.01.2003 7.52 11.62 33.28 82.79 3.05

10.02.2004 8.44 18.13 40.19 72.34 8.97

C 18.04.2001 6.14 3.81 11.02 86.12 4.53

04.02.2002 7.98 18.50 43.59 69.29 6.94

06.04.2002 8.46 4.28 10.68 69.47 3.33

09.01.2003 6.61 1.73 4.38 84.55 2.59

10.02.2004 7.80 70.27 133.88 71.14 10.73

D 18.04.2001 6.34 30.43 67.72 71.51 9.44

04.02.2002 8.01 47.57 116.08 73.64 9.90

06.04.2002 8.69 45.04 88.61 58.19 13.97

09.01.2003 7.30 14.20 31.43 79.56 5.00

10.02.2004 7.92 59.74 79.00 66.51 16.37

in about 89% of the problem instances the solution to the LP-relaxation is

integral and we do not need to branch at all.

Minimum Cuts

The algorithm described in Section 4.4 to calculate the size of a minimum

cut for a pair of ASs has also been executed on the ToR graphs. The results

of these computations can be found in Table 4.5. The first two columns show

the graph type and the date, the third column contains the optimal value of

the minimum cuts, and finally we give the computation times (in seconds),

the number of branching nodes needed to find the integer optimum, the

percentage of problem instances that are solved in less than one second, and

the percentage of instances that are solved in more than 10 seconds. Again,
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all values are average values over all 1081 pairs of ASs for a specific graph

type and date.

Table 4.5: Results for the minimum cut problem in ToR graphs.

Type Date OPT Time #BN %≤1 %>10

A 18.04.2001 6.38 0.69 1.03 94.73 0.09

04.02.2002 7.88 0.95 1.01 77.15 0.00

06.04.2002 8.66 1.04 1.02 67.07 0.09

09.01.2003 7.35 1.01 1.01 70.68 0.19

10.02.2004 8.11 1.90 1.06 49.68 0.74

B 18.04.2001 6.43 0.82 1.11 89.18 0.46

04.02.2002 8.52 1.86 1.33 59.85 2.41

06.04.2002 9.42 1.85 1.16 47.92 2.22

09.01.2003 7.53 1.23 1.03 60.13 0.09

10.02.2004 8.44 1.83 1.05 41.81 1.11

C 18.04.2001 6.15 1.02 1.06 81.22 0.37

04.02.2002 7.99 1.43 1.07 60.22 0.46

06.04.2002 8.47 1.58 1.12 57.45 0.93

09.01.2003 6.61 1.14 1.02 65.22 0.09

10.02.2004 7.81 2.15 1.14 34.97 1.39

D 18.04.2001 6.35 1.26 1.17 71.42 0.74

04.02.2002 8.02 1.34 1.05 63.74 0.28

06.04.2002 8.70 3.04 1.32 49.58 1.02

09.01.2003 7.30 1.22 1.01 50.32 0.09

10.02.2004 7.93 2.08 1.11 27.10 1.76

As can be seen from Table 4.5, the algorithm for finding the minimum cut

sizes in ToR graphs is very fast, also compared to the computation times

for the algorithms for finding the maximum number of vertex-disjoint paths.

Again, the number of branching nodes needed to find the integer optimum

is small, since the solution to the LP-relaxation is integral in 98.5% of the

problem instances.

Approximation Algorithms

In Table 4.6 we give results for the 2-approximation algorithms presented

in Section 4.5. In the first two columns we show the graph types and the



Chapter 4. Connectivity Measures for Internet Topologies 117

different dates. Columns three to five contain information on the number

of vertex-disjoint paths, namely the optimal value, the value found by the

approximation algorithm and the computation times, and in the last three

columns we give the same results for the sizes of minimum cuts. Again, all

values are average values over all 1081 problem instances for a specific graph

type and date.

Table 4.6: Results for approximation algorithms.

Type Date Disjoint paths Cut sizes

OPT Approx Time OPT Approx Time

A 18.04.2001 6.38 5.32 0.18 6.38 6.40 0.19

04.02.2002 7.88 6.61 0.23 7.88 8.03 0.24

06.04.2002 8.66 7.23 0.24 8.66 8.84 0.25

09.01.2003 7.35 6.36 0.26 7.35 7.41 0.28

10.02.2004 8.10 6.86 0.32 8.11 8.23 0.34

B 18.04.2001 6.42 5.28 0.18 6.43 6.53 0.19

04.02.2002 8.49 6.82 0.24 8.52 8.70 0.25

06.04.2002 9.39 7.45 0.26 9.42 9.57 0.27

09.01.2003 7.52 6.18 0.28 7.53 7.66 0.30

10.02.2004 8.44 6.93 0.35 8.44 8.66 0.37

C 18.04.2001 6.14 5.18 0.22 6.15 6.19 0.23

04.02.2002 7.98 6.70 0.27 7.99 8.14 0.28

06.04.2002 8.46 7.08 0.28 8.47 8.64 0.29

09.01.2003 6.61 5.79 0.29 6.61 6.70 0.31

10.02.2004 7.80 6.71 0.37 7.81 8.01 0.41

D 18.04.2001 6.34 5.19 0.22 6.35 6.49 0.23

04.02.2002 8.01 6.57 0.27 8.02 8.09 0.27

06.04.2002 8.69 7.20 0.27 8.70 8.97 0.28

09.01.2003 7.30 6.24 0.28 7.30 7.37 0.30

10.02.2004 7.92 6.74 0.35 7.93 8.08 0.38

From these results we conclude that both approximation algorithms perform

really well. For the problem of finding the maximum number of disjoint

paths we find that in 41.14% of all instances we get an optimal solution,

and for 67.63% the difference between the optimal value and the value found

by the approximation algorithm is at most 1. For the problem of finding

the minimum cut sizes, 90.82% of the instances are solved optimally, and in



118 4.6. Computational Experiments

97.63% of the instances the difference between the optimum and the value of

the approximation algorithm is at most 1. So, the heuristic for finding the

minimum cut sizes is extremely well suited for these type of instances. The

computation times for both algorithms are really fast: all problem instances

for both problems are solved within less than one second of computation

time.

4.6.4 Interpretation of the Results

In this section we describe how the results that we obtained can be inter-

preted. First we discuss the connectivity of the Internet as measured by the

number of disjoint paths and minimum cut sizes. Then, in all four types

of ToR graphs we also compute the number of edges that are contained in

directed customer-provider cycles as well as the fraction of pairs of ASs that

are connected with directed customer-provider paths in order to gain more

insight into the AS hierarchy produced by the different inference algorithms.

Connectivity Measures for the Internet

In Table 4.7 we compare the number of vertex-disjoint paths for the different

types of ToR graphs, the undirected BGP graphs and the CAIDA graph.

In the second column we give the average number of vertex-disjoint paths,

averaged over all pairs of ASs and all dates of the specified graph type.

The third column gives the minimum number of paths found, and the last

column shows the maximum number of vertex-disjoint paths (the CAIDA

graph is available only for one date, and 3 of our 47 selected ASs are missing

from that graph; AS pairs involving a missing AS node were thus ignored

for the CAIDA graph).

In Table 4.8 we compare the size of the minimum cuts in ToR graphs with

results from the undirected models, and for all graph types we give the aver-

age over all pairs and dates, the minimum value of a minimum cut, and the

maximum value. For the undirected BGP graphs and the CAIDA graph,
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Table 4.7: Vertex-disjoint paths in ToR and undirected graphs.

Graph Type avg VDP min VDP max VDP

A 7.67 1 55

B 8.05 1 65

C 7.40 0 60

D 7.65 1 48

undirected BGP 13.46 2 107

CAIDA 12.74 6 108

Table 4.8: Minimum cut sizes in ToR and undirected graphs.

Graph Type avg CS min CS max CS

A 7.68 1 56

B 8.07 1 65

C 7.40 0 60

D 7.66 1 48

undirected BGP 13.46 2 107

CAIDA 12.74 6 108

these values are the same as for the vertex-disjoint paths problem, since the

max-flow min-cut equality holds for the undirected graphs.

If we compare the connectivity of the ToR graphs with the undirected mod-

els, we see a big difference (see Tables 4.7 and 4.8). The number of disjoint

paths, and the cut sizes, are much larger in the undirected models. For

about 72% of all pairs, the number of disjoint paths (and the minimum cut

size) is at least 1.5 times bigger in the undirected models, as compared to

the ToR graphs, and for approximately 44%, these values in the undirected

models are at least twice as large than in the ToR graphs.

When we look at the differences in connectivity between the four different

ToR graphs we see that there is no striking difference between the number

of disjoint paths and the sizes of minimum cuts. Generally speaking, graphs

of type B have the highest connectivity and graphs of type C have the lowest

connectivity (see third column of Tables 4.3, 4.4, and 4.5). However, the

connectivity of the different ToR graphs seems to be similar.
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In Figure 4.3, the four types of ToR graphs are represented together with

the undirected BGP graph and the CAIDA graph, all graphs taken from

April 2002. We obtained similar results for the other four dates, but since

we had the CAIDA graph only for April 2002, we chose to use this date

for the illustration. The number of disjoint paths and the minimum cut

size are shown for each of the 1081 AS pairs in all six graphs. The values

are sorted in order of non-decreasing values in the undirected BGP graph.

As the figure shows, there is no striking difference among the ToR graphs.

The values for the undirected BGP graph, however, are significantly higher

than those for the ToR graphs. This clear difference between the undirected

and ToR models indicates that, in order to get an accurate picture of the

Internet structure and connectivity, it is important to take routing policies

into account.

The values for the CAIDA graph, which has about 6% more edges than the

undirected BGP graph, are somewhat incomparable to those of the undi-

rected BGP graph. For about 35% of the AS pairs, the CAIDA graph has

more disjoint paths (up to 100 more paths for one pair), and for about 59%

of the pairs, the undirected BGP graph has more disjoint paths (up to 69

more paths for one pair). This indicates that some parts of the Internet are

denser (higher number of edges) in the CAIDA graph, while other parts are

denser in the undirected BGP graph.

Let us now discuss trends over time. The trends for the number of disjoint

paths between the different time periods are shown in Figure 4.4 for each of

the four types of ToR graphs and for the undirected BGP graphs. There are

four plots, each of them corresponding to a particular time period. In each

plot, there is a bar for each of the five graph types. The white part of the

bar represents the number of pairs of ASs for which the number of disjoint

paths increased in this time period; the shaded part of the bar corresponds

to the number of pairs for which the number of disjoint path stayed the
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Figure 4.3: Comparison of ToR and undirected graphs.

same, and the black part is the number of pairs for which the number of

paths decreased in this time period. The results for the minimum cut sizes

are similar, so we omit them here.

The figure shows that the ToR graphs behave similarly for all time periods.

In the first two time periods, the AS pairs with increasing connectivity form

the majority. Then, in the third time period, more than half of the AS pairs

display decreasing connectivity. Finally, in the fourth time period, the ToR

graphs have roughly the same number of AS pairs with increasing and de-

creasing connectivity, respectively, while about 70% of the AS pairs display
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increasing connectivity in the undirected BGP graphs.

Figure 4.4: Trends over time for ToR and undirected BGP graphs.

When we study the differences between the number of disjoint paths and the

cut size in ToR graphs, we find that these numbers are equal for about 99%

of all AS pairs in each of the ToR graphs (see third column of Tables 4.3,

4.4, and 4.5). The absolute difference between the minimum cut size and

the number of disjoint paths was never larger than 2 for any of the AS

pairs in any of the ToR graphs. Thus, the minimum cut size does not differ

significantly from the maximum number of disjoint valid paths in our ToR

graphs. Notice that this difference could be as large as a factor of 2 in

general graphs (Erlebach et al., 2005).

Directed Customer-Provider Cycles

We call a directed cycle (as defined in Section 4.2) in a ToR graph a

customer-provider cycle if it contains only customer-provider edges. If the

Internet was a strictly hierarchical network (i.e., if levels can be assigned

to the ASs in such a way that, in any customer-provider relationship, the

customer is on a lower level than the provider), one would expect that there

are no customer-provider cycles in ToR graphs at all. Therefore, one might

use the existence of such cycles as a sign of a misclassification.
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We check the existence of such cycles in each of the ToR graphs as follows.

First, we remove all sibling edges and peer-to-peer edges from the graph.

Then, for each customer-provider edge from ASi to ASj , we calculate a

shortest directed path (i.e, a path with the smallest number of edges) from

ASj to ASi. Such a path exists if and only if the edge from ASi to ASj is

contained in at least one directed cycle. If such a path is found, it gives us

a shortest customer-provider cycle containing the edge.

We find that there are no customer-provider cycles in the ToR graphs of

type C, except in the graph for 09.01.2003; for the latter date, the type C

graph contains a single customer-provider cycle with four nodes (AS11563,

AS19035, AS17819, AS1668). In Table 4.9, we give the results that we ob-

tained for ToR graphs of type A, B and D. For each of the graphs, we show

the total number of customer-provider edges that are contained in cycles,

the minimum length of the shortest cycle containing a customer-provider

edge, and the maximum length of the shortest cycle containing a customer-

provider edge. We find that type B graphs have the largest number of edges

contained in customer-provider cycles, type A graphs have about half as

many, and type D graphs have much fewer edges contained in cycles than

both A and B graphs.

As the ToR graphs of type A and B contain no sibling edges and either no or

very few peer-to-peer edges, a larger number of edges contained in customer-

provider cycles could be expected in these graphs. Table 4.9 confirms that

significantly more edges are contained in customer-provider cycles in these

graphs. Most of the cycles in the graphs of type A and B are caused by

edges classified as customer-provider in A or B graphs, but classified in D

graphs as peer-to-peer, sibling or provider-customer edges.

In the A graph from 18.04.2001, there are 2571 edges contained in cycles.

Each of these edges is contained in a shortest cycle. Among these 2571
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Table 4.9: Results for directed customer-provider cycles.

Type Date Total Min Max

A 18.04.2001 2571 3 9

04.02.2002 2441 3 9

06.04.2002 2278 3 10

09.01.2003 2182 3 10

10.02.2004 3453 3 8

B 18.04.2001 4046 3 8

04.02.2002 4710 3 8

06.04.2002 4825 3 9

09.01.2003 4858 3 9

10.02.2004 6802 3 9

D 18.04.2001 318 3 20

04.02.2002 16 3 5

06.04.2002 9 3 3

09.01.2003 69 3 11

10.02.2004 428 3 14

shortest customer-provider cycles (we consider a cycle multiple times if it

is the shortest customer-provider cycle of several edges), 1909 have an edge

classified as peer-to-peer in the corresponding D graph, 574 of the remaining

ones have an edge classified as sibling edge in the D graph, and 67 of the

remaining ones have an edge classified as provider-customer edge in D. Only

21 of the 2571 cycles are also present in the D graph. Qualitatively similar

results are obtained for all dates for the A and B graphs.

Analyzing the directed cycles in the D graphs, we found that all customer-

provider cycles can be eliminated by deleting a very small number of edges

(12, 4, 3, 8, and 11 edges, respectively, in the five D graphs from 18.04.2001

to 10.02.2004).

We checked manually 10 edges that were contained in more than 50 discov-

ered cycles (up to 348 cycles) in the D graph from 10.02.2004, using the

Nemecis tool (NEMECIS) to access data from Internet Routing Registries.

For three of these edges there was no information in the Internet Registries,
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6 of them were classified as peer-to-peer edges (i.e., at least one of the two

ASs registered this particular edge as peer-to-peer) and only one edge was

registered as customer-provider (confirming its classification in the D graph).

Although it is still possible that some of the directed customer-provider

cycles are not caused by misclassifications, we think that they are a good

starting point for the detection of misclassifications, in particular if their

analysis is combined with a comparison between the different ToR graphs

and checking of entries in Internet Registries. Such cycles could be used to

introduce peer-to-peer edges and sibling edges into the ToR graphs of type A

and B, which contain essentially only customer-provider edges (in our type

B graphs, the only peer-to-peer edges are those that were left unclassified

by the algorithm from Di Battista et al. (2003)).

The Depth of the Provider Hierarchy in ToR Graphs

Finally, in order to examine the typical nature of AS paths in the differ-

ent ToR graphs, we investigated how many pairs of vertices can be con-

nected by directed paths, i.e., by paths going “only up” or “only down.”

A path AS1, . . . , ASk between two ASs AS1 and ASk such that each ASi

is a customer of ASi−1, for 2 ≤ i ≤ k, is called a customer chain. In our

experiments, we check for all pairs of ASs in ToR graphs (except the pairs

involving leaf vertices) whether one of the two ASs is connected to the other

via a customer chain. For such pairs of vertices, it is possible to use paths

only through customers (at least in one of the two directions) and thus take

advantage of the “customer-preference” policy. Namely, routing through a

customer brings profit, through a peer is neutral, and through a provider

incurs costs for the sender (Spring et al., 2003).

The statistics about customer chains in all four types of ToR graphs are

given in Table 4.10. This table shows for each of the five dates the percent-
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Table 4.10: Percentage of pairs of ASs connected by customer chains.

Date A B C D

18.04.2001 10.01% 14.93% 0.52% 2.25%

04.02.2002 7.52% 14.03% 0.56% 0.67%

06.04.2002 7.02% 14.05% 0.53% 0.59%

09.01.2003 6.84% 13.62% 0.47% 0.84%

10.02.2004 7.60% 14.65% 0.53% 1.42%

ages of pairs of ASs that are connected by customer chains in all our types

of ToR graphs.

About 6–10% of all pairs in type A graphs and 13–15% of all pairs in type

B graphs are connected by customer chains. For graphs of type C and D

the number is significantly smaller, which was to be expected because they

contain substantially more edges that are not customer-provider edges. This

indicates that in graphs of type A and B, the hierarchy seems to be similar

and tends to be deep. In type C and D graphs, the hierarchy seems to be

wider, as there are many more pairs that are connected only through paths

going “up and then down.”

4.7 Conclusions

We have compared different types of graphs with inferred AS relationships

(ToR graphs) regarding connectivity measures and path characteristics. We

have studied the maximum number of disjoint valid paths and the mini-

mum cut size for selected AS pairs. Since both problems are NP-hard, we

have designed and implemented several algorithms that allowed us to com-

pute optimal values for all pairs among a set of representative ASs. For the

problem of finding the maximum number of disjoint paths between any pair

of ASs, we have implemented two exact algorithms, the first one being a

branch-and-price algorithm based on an integer programming formulation

of the problem, and the second one being a branch-and-bound algorithm in
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which we perform a max-flow calculation in each node of the search tree.

From the results we conclude that the latter algorithm is often faster than

the first but may require excessive computation times on certain inputs,

while the computation times for the branch-and-price algorithm are always

acceptable and do not display such a variability. For the problem of finding

the minimum cut sizes, we have implemented a branch-and-cut algorithm

that performs really well, with average computation times around one to

two seconds for instances with up to 11,000 nodes and 30,000 edges.

The results of these algorithms allow us to quantify the differences in con-

nectivity between ToR graphs and the traditional undirected model of the

Internet, which ignores routing policies. We find that about 44% of the

selected AS pairs have more than twice as many disjoint paths in the undi-

rected model than in the ToR graphs, which implies that the use of ToR

graphs is crucial for Internet analysis and simulations that are sensitive to

connectivity properties, e.g. in studies concerning topological robustness,

multi-path routing, etc. We have also investigated the increase of connec-

tivity over time and found that the number of disjoint paths between ASs

seems to grow for fewer AS pairs in the ToR graphs than in the undirected

graph model.

Comparing the ToR graphs with each other, we find that on the average

they do not differ much with respect to the number of disjoint paths and

the minimum cut sizes between AS pairs. On the other hand, concern-

ing the hierarchy (observed indirectly by counting the number of AS pairs

connected through customer chains) it turns out that A and B graphs are

relatively similar to each other, but different from C and D graphs—their

hierarchy appears to be deeper than that of C and D graphs. In addition,

we find that the investigation of short directed customer-provider cycles in

the ToR graphs can help to detect misclassifications and may lead to new

approaches for introducing peer-to-peer or sibling relationships into A and

B graphs, which can make these models more realistic.
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While our investigations provide some insight into the properties of the ToR

graphs produced by the different available inference algorithms, it is not

possible for us to identify one of these algorithms as better than the others.

Researchers who employ ToR graphs in their research should be aware of the

differences in the ToR models produced by different algorithms and make

sure that their conclusions are not biased by the choice of ToR graph. Our

findings can help in making informed decisions about the choice of a ToR

graph model.

Furthermore, our approach of adapting the classical connectivity measures,

maximum number of disjoint paths and minimum cut size, to valley-free

paths in ToR graphs can be useful in further research on robustness issues

in the Internet. Besides, it may be possible to adapt our branch-and-price

approach to incorporate other types of constraints on valid paths, thus al-

lowing the analysis of connectivity properties of other networks with special

routing constraints as well.

The known algorithms for inferring AS relationships from Gao (2001), Sub-

ramanian et al. (2002), Di Battista et al. (2003), and Erlebach et al. (2002)

all need data from BGP routing tables as input. As the data from BGP

routing tables is not always complete or accurate (the impact of this is

demonstrated convincingly by the huge difference in the number of disjoint

paths for certain AS pairs in the undirected BGP graph and the CAIDA

graph, see Figure 4.3), it would be an interesting question for future re-

search whether good inference of AS relationships is also possible without

knowledge of BGP routing tables. Such an inference algorithm could then

also be used for classifying AS relationships in more complete undirected

AS graphs (such as the union of the undirected BGP graph and the CAIDA

graph) or in synthetic graph models obtained from Internet topology gen-

erators. A different approach in the latter direction has been explored by

Chang et al. (2003), where a new optimization-driven model for Internet
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growth is presented that allows the generation of synthetic AS graphs con-

taining only customer-provider relationships.

Finally, let us summarize our findings by answering the research question

posed in Section 4.1.

• The undirected graph model of the Internet topology is not suited

for studying stability issues of the Internet. Of course, any graph-

theoretical model of the Internet is an approximation of reality. How-

ever, some approximations are better than others: our results show

that from the viewpoint of connectivity, using the undirected graph

model may lead to serious misjudging of the connectivity.

• The different heuristics (Gao, 2001; Subramanian et al., 2002; Di Bat-

tista et al., 2003; Erlebach et al., 2002) used for constructing a topology

do not differ much with respect to the connectivity measures. On the

average, they all have a similar number of disjoint paths and minimum

cut size between pairs of ASs.

• Graphs of type A and B do not have sibling edges and no or very

few peer-to-peer edges, and this causes the existence of a relatively

large number of customer-provider cycles. Graphs of type D contain

a significant number of peer-to-peer and sibling edges, and they have

few customer-provider cycles. Graphs of type C contain no customer-

provider cycles at all (except for a single cycle of length 4 for one date).

Depending on the question one wants to investigate, this could be

relevant. The directed customer-provider cycles in ToR graphs can be

useful for the detection of misclassified edges, especially if the analysis

is combined with a comparison between the different ToR graphs.

• We obtain optimal solutions to the problems of finding the maximum

number of vertex-disjoint paths and minimum cut sizes, using the ex-

act algorithms proposed in this chapter. The algorithms require, on

average, a small amount of time to find these optimal values. However,
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for a small number of instances, the branch-and-bound algorithm was

unable to find the optimal solution.

• The performance of the approximation algorithms is reasonable. Espe-

cially for the problem of finding minimum cut sizes, the approximation

algorithm performs really well. Both these algorithms are much faster

than the exact algorithms.



Chapter 5

Topics for Future Research

To conclude this thesis, we describe a number of topics for future research

in this chapter. In Section 5.1 we discuss some topics for future research on

partitioning partially ordered sets, and Section 5.2 deals with the connec-

tivity of the Internet.

5.1 Partitioning Partially Ordered Sets

In Chapters 2 and 3 we analyzed the problem of partitioning a (weighted)

partially ordered set into chains of bounded size. This problem is a general-

ization of a fundamental problem in operations research, with many practical

applications. Since this generalization has not yet been studied extensively,

there are many questions left that need to be answered. In the following, we

describe a number of these matters that are interesting for future research.

5.1.1 The Clique Width of Graphs

An outcome from this dissertation is that the concept of (bounded) clique

width is relevant for our setting described in Chapter 2. This is a relatively

new concept from the field of graph theory. Since we are dealing with a new

131
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concept, some issues are not yet completely understood. For instance, it is

still unknown how to compute the clique width for an arbitrary graph. It is

widely believed that it is NP-complete to determine the clique width of an

arbitrary graph, but so far there is no proof of this claim. There are some

positive results for specific graph classes, for example, the clique width of

trees is easy to compute, as well as the clique width of co-graphs (a graph G

is a co-graph if it can be constructed from isolated vertices by disjoint union

and join operations (Brandstädt et al., 2002)). However, for partial orders

it is unknown how to compute the corresponding clique width. Moreover,

it is even unknown whether it is possible to do this efficiently. It would be

interesting to find out whether it is possible to compute the clique-width of

an arbitrary partial order efficiently, and if so, how this can be done. This

would certainly be relevant for the design of new algorithms.

5.1.2 Improving the Approximation Ratio

Another topic concerns the approximation ratio of 2 that was established

in Chapter 3. We have shown that the gap between the value of the LP-

relaxation of a straightforward set-partitioning formulation and the value

of an optimal solution is as large as a factor 2. This implies that we can’t

improve the approximation ratio of 2 using a straightforward rounding ap-

proach.

As a start one could analyze the problem with unit weights (as described

in Chapter 2) in more detail. So far, we only focussed on exact solution

methods for solving this problem, but it is interesting to find good approxi-

mation algorithms that can deal with larger problem instances. So far, the

best approximation ratio for this problem is equal to 2, since the approx-

imation algorithm described in Chapter 3 can be applied to the case with

unit-weights. However, it seems not unlikely that one can do better than an

approximation ratio of 2 for this problem.
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It also would be nice to be able to obtain the optimal solutions to the

problem of partitioning a weighted partial order, as described in Chapter 3,

in order to gain more insight to the quality of the 2-approximation algorithm

for solving this problem.

5.1.3 The Price of Stability

In the application from the field of pallet loading described in Chapter 2,

there is a restriction stating that we can only put smaller items on top of

larger ones. This stability restriction guarantees that the pallets are stable,

and that they arrive at the clients in good shape. However, in many appli-

cations this restriction is unnecessary. Therefore, we want to consider the

problem disregarding this stability restriction.

For the problem with unit weights (i.e., the objective is to minimize the total

number of pallets), it might be interesting to look at the effect of the stabil-

ity restriction, however, the solution to the problem without this stability

constraint is trivial (for the case that the pallets must have bounded size, as

well as for the case that there is no restriction on the number of items on a

pallet). However, for the weighted problem (i.e., in terms of the application

this means that all items have a weight corresponding to its area, and the

objective is to minimize total area; see also Section 3.1.2), this is not the

case. We can solve the problem in which the pallets can hold as many items

as possible (see Section 2.4), but for the problem with the size-constraint,

we have no results yet; even the complexity of this variant is unknown.

5.1.4 The Online Problem

In my thesis we only consider the off-line version of the problem of par-

titioning a partial order, that is, the version where all elements are given

before we start solving the problem. In the on-line version of this problem,
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we are given a number of elements, and while we are solving the problem,

more and more elements become available. Obviously, it is more difficult to

solve the on-line problem, since we do not have all information at the start

of the algorithm. However, in production environments we are often dealing

with on-line problems, since it is not known in advance which orders are

produced at what time. Therefore it could be interesting to explore the on-

line problem in more detail. More specifically, we are interested in finding

efficient algorithms for solving the on-line problem. Competitive analysis

is a tool to measure the quality of an on-line algorithm: the performance

of the on-line algorithm is compared to the optimal off-line solutions. We

are interested in finding on-line algorithm for which we are able to give a

performance guarantee with respect to the competitive ratio.

5.2 Connectivity of the Internet

In Chapter 4 we focussed on creating an accurate model of the Internet. We

evaluated four different algorithms for inferring AS relationships, and we

compared the topologies produced by these algorithms with each other and

with the previously adopted undirected model. Although the results of our

analysis clearly show that incorporating AS relationships leads to more ac-

curate models of the Internet, we were unable to identify one of the directed

graph models as the best one. It might be interesting to extend the analysis

in some way in order to obtain a model of the Internet that incorporated the

strengths of all four inference algorithms that are considered in this thesis.

A part of our analysis dealt with the detection of directed customer-provider

cycles, which can be seen as misclassifications. An interesting problem would

be to determine the minimum number of customer-provider edges that need

to be deleted from the graph (or given a different label) in order to ensure

that the resulting graph is acyclic. This problem is known as the feedback

arc set problem. Solving this problem might provide us with a more accu-
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rate model of the AS relationships.



136 5.2. Connectivity of the Internet



List of Figures

1.1 Rounding an LP . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The first branching step . . . . . . . . . . . . . . . . . . . . . 7

1.3 The entire branching tree . . . . . . . . . . . . . . . . . . . . 8

1.4 Branch-and-Price procedure . . . . . . . . . . . . . . . . . . . 10

1.5 An instance of the shortest path problem . . . . . . . . . . . 12

1.6 Reduction between two optimization problems (Ausiello et al.,

1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Example of a permutation graph. . . . . . . . . . . . . . . . . 21

2.2 Point set S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Matching diagram corresponding S. . . . . . . . . . . . . . . 23

2.4 (a) K4: the complete graph with 4 vertices. (b) C6: the cycle

with 6 vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Problem instance for algorithm ENUM . . . . . . . . . . . . . 42

2.6 Tree of partial solutions . . . . . . . . . . . . . . . . . . . . . 42

2.7 Directed graph corresponding to D = {a, b, c}. . . . . . . . . . 47

3.1 Subgraph for triple ti = {xi, yi, zi}, see Shum and Trotter

(1996). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Min-Cost Flow Network. . . . . . . . . . . . . . . . . . . . . . 67

3.3 A Tight Example. . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Worst-case instance with respect to H. . . . . . . . . . . . . . 70

3.5 Example for the 2-dimensional case. . . . . . . . . . . . . . . 78

137



138 List of Figures

4.1 Gap between number of disjoint paths and minimum cut size. 92

4.2 The 2-layer graph of the ToR graph depicted in Figure 4.1. . 96

4.3 Comparison of ToR and undirected graphs. . . . . . . . . . . 121

4.4 Trends over time for ToR and undirected BGP graphs. . . . . 122



List of Tables

2.1 Characteristics of the Data Sets . . . . . . . . . . . . . . . . . 48

2.2 Performance of lower bounds for data set 1 . . . . . . . . . . 49

2.3 Performance of lower bounds for data set 2 . . . . . . . . . . 50

2.4 Performance of lower bounds for data set 3 . . . . . . . . . . 51

2.5 Comparison of algorithms for data set 1 . . . . . . . . . . . . 52

2.6 Performance of branch-and-price algorithm for data set 2 . . 53

2.7 Comparison of algorithms for data set 3 . . . . . . . . . . . . 54

3.1 Results for lower bounds . . . . . . . . . . . . . . . . . . . . . 73

3.2 Results for data set 1: real-world instances . . . . . . . . . . 74

3.3 Results for data set 2: random instances . . . . . . . . . . . . 74

3.4 Results for data set 3: instances with small clique-width . . . 74

3.5 Comparison with optimal solutions: data set 1 . . . . . . . . 75

3.6 Comparison with optimal solutions: data set 2 . . . . . . . . 75

3.7 Comparison with optimal solutions: data set 3 . . . . . . . . 75

4.1 Comparison of edge classifications. . . . . . . . . . . . . . . . 109

4.2 The 47 selected ASs with AS numbers and short descriptions

obtained from Internet registries. . . . . . . . . . . . . . . . . 111

4.3 Results for branch-and-price algorithm. . . . . . . . . . . . . 114

4.4 Results for branch-and-bound algorithm. . . . . . . . . . . . . 115

4.5 Results for the minimum cut problem in ToR graphs. . . . . . 116

4.6 Results for approximation algorithms. . . . . . . . . . . . . . 117

4.7 Vertex-disjoint paths in ToR and undirected graphs. . . . . . 119

139



140 List of Tables

4.8 Minimum cut sizes in ToR and undirected graphs. . . . . . . 119

4.9 Results for directed customer-provider cycles. . . . . . . . . . 124

4.10 Percentage of pairs of ASs connected by customer chains. . . 126



Bibliography

Aarts, E. H. L. and Lenstra, J. K., editors (1997). Local Search in Combi-

natorial Optimization. John Wiley & Sons, Chichester.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs,

NJ.

Akella, A., Chawla, S., Kannan, A., and Seshan, S. (2003a). Scaling proper-

ties of the internet graph. In Proceedings of the 22nd ACM Symposium

on Principles of Distributed Computing (PODC 2003), Boston, MA.

Akella, A., Maggs, B., Seshan, S., Shaikh, A., and Sitaraman, R. (2003b).

A measurement-based analysis of multihoming. In Proceedings of the

ACM SIGCOMM 2003 Conference, Karlsruhe, Germany.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela,

A., and Protasi, M. (1999). Complexity and Approximation: Combi-

natorial Optimization Problems and Their Approximability Properties.

Springer-Verlag, Berlin.

Baker, B. S. and Coffman, Jr., E. G. (1996). Mutual exclusion scheduling.

Theoretical Computer Science, 162:225–245.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and

Vance, P. H. (1998). Branch-and-price: column generation for solving

huge integer programs. Operations Research, 46:316–329.

141



142 BIBLIOGRAPHY

Bellman, R. (1957). Dynamic Programming. Princeton University Press,

Princeton, NJ.

BGPSAT. Di Battista, G., Patrignani, M., and Pizzonia, M. Computing

the types of the relationships between Autonomous Systems. Project

webpage: http://www.dia.uniroma3.it/∼compunet/relationships/.

Bischoff, E. E. (1991). Stability aspects of pallet loading. OR Spektrum,

13:189–197.

Bodlaender, H. L. and Jansen, K. (1993). On the complexity of schedul-

ing incompatible jobs with unit-times. Mathematical Foundations of

Computer Science, LNCS 711:291–300.

Boudhar, M. (2003). Scheduling a batch processing machine with bipartite

compatibility graphs. Mathematical Methods of Operations Research,

57:513–527.
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1982. 2 V.

47. LANJONG, Mohammad Nasir (1983)

A study of market efficiency and risk-return relationships in the Malaysian

capital market. s.l., s.n., 1983. XVI, 287 pp.

48. PROOST, Stef (1983)

De allocatie van lokale publieke goederen in een economie met een centrale

overheid en lokale overheden. Leuven, s.n., 1983. onregelmatig gepagineerd.

49. VAN HULLE, Cynthia (1983)

Shareholders’ unanimity and optimal corporate decision making in imperfect

capital markets. s.l., s.n., 1983. 147 pp. + appendix.

50. VAN WOUWE, Martine (2/12/83)

Ordening van risico’s met toepassing op de berekening van ultieme rüınekansen.
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