4 research outputs found

    Neighbor-locating colorings in graphs

    Get PDF
    A k -coloring of a graph G is a k -partition ¿ = { S 1 ,...,S k } of V ( G ) into independent sets, called colors . A k -coloring is called neighbor-locating if for every pair of vertices u,v belonging to the same color S i , the set of colors of the neighborhood of u is different from the set of colors of the neighborhood of v . The neighbor-locating chromatic number ¿ NL ( G ) is the minimum cardinality of a neighbor-locating coloring of G . We establish some tight bounds for the neighbor-locating chromatic number of a graph, in terms of its order, maximum degree and independence number. We determine all connected graphs of order n = 5 with neighbor-locating chromatic number n or n - 1. We examine the neighbor-locating chromatic number for two graph operations: join and disjoint union, and also for two graph families: split graphs and Mycielski graphsPreprin

    DIMENSI PARTISI DAN DIMENSI PARTISI BINTANG GRAF HASIL OPERASI COMB DUA GRAF TERHUBUNG

    Get PDF
    Misalkan GG adalah sebuah graf nontrivial dan terhubung dengan himpunan simpul V(G)V(G), himpunan sisi E(G)E(G) dan S⊆V(G)S\subseteq V(G) dengan simpul v∈V(G)v\in V(G), jarak antara vv dan SS adalah d(v,S)=d(v,S)=min{d(v,x)∣x∈S}\{d(v,x)|x\in S\}. Untuk sebuah partisi Π={S1,S2,S3,...,Sk}\Pi=\{S_1,S_2,S_3,...,S_k\} dari V(G)V(G), representasi simpul vv terhadap Π\Pi didefinisikan oleh pasangan r(v∣Π)=(d(v,S1),d(v,S2),...,d(v,Sk))r(v|\Pi)=(d(v,S_1),d(v,S_2),...,d(v,S_k)). Partisi Π\Pi disebut partisi pembeda dari GG jika semua representasi dari setiap simpul v∈V(G)v\in V(G) berdeda. Kardinalitas minimum dari partisi pembeda disebut dimensi partisi dari GG dan dinotasikan sebagai pd(GG). Ragam lain dari konsep dimensi partisi yaitu dimensi partisi bintang. Misalkan Π={S1,S2,S3,...,Sk}\Pi=\{S_1,S_2,S_3,...,S_k\} disebut partisi pembeda bintang jika setiap kelas-kelas partisi Si,1≤i≤kS_i, 1\leq i\leq k menginduksi sebuah graf bintang di GG dan semua representasi dari setiap simpul v∈V(G)v\in V(G) berdeda. Kardinalitas minimum dari partisi pembeda bintang disebut dimensi partisi bintang dari GG dan dinotasikan sebagai spd(GG). Dalam Penelitian ini, kami akan menentukan dimensi partisi dan dimensi partisi bintang dari graf hasil operasi produk combcomb. Operasi combcomb dinotasikan ▹\triangleright. Untuk graf GG dan HH, graf hasil operasi combcomb G▹HG\triangleright H didefinisikan sebagai graf yang diperoleh dengan mengambil satu duplikat GG dan ∣G∣|G| duplikat dari HH dan melekatkan simpul uu dari masing masing graf HH duplikat ke-ii pada simpul ke-ii dari graf GG. Misalkan GG dan HH adalah graf terhubung meliputi lintasan, lingkaran, dan graf lengkap. ================================================================= Let GG be a nontrivial and connected graphs with vertex set V(G)V(G), edge set E(G)E(G) and S⊆V(G)S\subseteq V(G) with vertex v∈V(G)v\in V(G). The distance between vv and SS is d(v,S)=d(v,S)=min{d(v,x)}\{d(v,x)\} for x∈Sx\in S. For an ordered partition Π={S1,S2,S3,...,Sk}\Pi=\{S_1,S_2,S_3,...,S_k\} of vertex set V(G)V(G), the representation of vv with respect to Π\Pi is defined by the ordered r(v∣Π)=(d(v,S1),d(v,S2),...,d(v,Sk))r(v|\Pi)=(d(v,S_1),d(v,S_2),...,d(v,S_k)). The minimum cardinality of resolving partition is partition dimension of GG, denoted by pd(GG). A variant of partition dimension concept called star partition dimension of a graph. Let Π={S1,S2,S3,...,Sk}\Pi = \{S_1,S_2,S_3,...,S_k\} be a star resolving partition for GG if each partition class Si, 1≤i≤kS_i, \,1\leq i\leq k, induces a star in GG and all representation of vertices v∈V(G)v\in V(G) are unique. The minimum cardinality of resolving partition is a star partition dimension of GG, denoted by spd(GG). In this research, we determine the partition dimension and star partition dimension of comb product of graphs. For graphs GG and HH, the comb product G▹HG\triangleright H is defined as the graph obtained by taking one copy of GG and ∣V(G)∣|V(G)| copies of HH and grafting the ii-th copy of HH at the vertex oo to the ii-th vertex of GG. In this work GG and HH are restricted to path, cycle and complete graph
    corecore