4,821 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    QUOIN: Incentive Mechanisms for Crowd Sensing Networks

    Get PDF
    Crowd sensing networks play a critical role in big data generation where a large number of mobile devices collect various kinds of data with large-volume features. Although which information should be collected is essential for the success of crowd-sensing applications, few research efforts have been made so far. On the other hand, an efficient incentive mechanism is required to encourage all crowd-sensing participants, including data collectors, service providers, and service consumers, to join the networks. In this article, we propose a new incentive mechanism called QUOIN, which simultaneously ensures Quality and Usability Of INformation for crowd-sensing application requirements. We apply a Stackelberg game model to the proposed mechanism to guarantee each participant achieves a satisfactory level of profits. Performance of QUOIN is evaluated with a case study, and experimental results demonstrate that it is efficient and effective in collecting valuable information for crowd-sensing applications

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    A survey of spatial crowdsourcing

    Get PDF

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    CommuniSense: Crowdsourcing Road Hazards in Nairobi

    Get PDF
    Nairobi is one of the fastest growing metropolitan cities and a major business and technology powerhouse in Africa. However, Nairobi currently lacks monitoring technologies to obtain reliable data on traffic and road infrastructure conditions. In this paper, we investigate the use of mobile crowdsourcing as means to gather and document Nairobi's road quality information. We first present the key findings of a city-wide road quality survey about the perception of existing road quality conditions in Nairobi. Based on the survey's findings, we then developed a mobile crowdsourcing application, called CommuniSense, to collect road quality data. The application serves as a tool for users to locate, describe, and photograph road hazards. We tested our application through a two-week field study amongst 30 participants to document various forms of road hazards from different areas in Nairobi. To verify the authenticity of user-contributed reports from our field study, we proposed to use online crowdsourcing using Amazon's Mechanical Turk (MTurk) to verify whether submitted reports indeed depict road hazards. We found 92% of user-submitted reports to match the MTurkers judgements. While our prototype was designed and tested on a specific city, our methodology is applicable to other developing cities.Comment: In Proceedings of 17th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2015

    CENTURION: Incentivizing Multi-Requester Mobile Crowd Sensing

    Full text link
    The recent proliferation of increasingly capable mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to a crowd of participating workers that carry various mobile devices. Aware of the paramount importance of effectively incentivizing participation in such systems, the research community has proposed a wide variety of incentive mechanisms. However, different from most of these existing mechanisms which assume the existence of only one data requester, we consider MCS systems with multiple data requesters, which are actually more common in practice. Specifically, our incentive mechanism is based on double auction, and is able to stimulate the participation of both data requesters and workers. In real practice, the incentive mechanism is typically not an isolated module, but interacts with the data aggregation mechanism that aggregates workers' data. For this reason, we propose CENTURION, a novel integrated framework for multi-requester MCS systems, consisting of the aforementioned incentive and data aggregation mechanism. CENTURION's incentive mechanism satisfies truthfulness, individual rationality, computational efficiency, as well as guaranteeing non-negative social welfare, and its data aggregation mechanism generates highly accurate aggregated results. The desirable properties of CENTURION are validated through both theoretical analysis and extensive simulations

    Mobile crowd sensing architectural frameworks: A comprehensive survey

    Get PDF
    Mobile Crowd Sensing has emerged as a new sensing paradigm, efficiently exploiting human intelligence and mobility in conjunction with advanced capabilities and proliferation of mobile devices. In order for MCS applications to reach their full potentials, a number of research challenges should be sufficiently addressed. The aim of this paper is to survey representative mobile crowd sensing applications and frameworks proposed in related research literature, analyze their distinct features and discuss on their relative merits and weaknesses, highlighting also potential solutions, in order to take a step closer to the definition of a unified MCS architectural framework
    • …
    corecore