812 research outputs found

    About Nonstandard Neutrosophic Logic (Answers to Imamura 'Note on the Definition of Neutrosophic Logic')

    Full text link
    In order to more accurately situate and fit the neutrosophic logic into the framework of nonstandard analysis, we present the neutrosophic inequalities, neutrosophic equality, neutrosophic infimum and supremum, neutrosophic standard intervals, including the cases when the neutrosophic logic standard and nonstandard components T, I, F get values outside of the classical real unit interval [0, 1], and a brief evolution of neutrosophic operators. The paper intends to answer Imamura criticism that we found benefic in better understanding the nonstandard neutrosophic logic, although the nonstandard neutrosophic logic was never used in practical applications.Comment: 16 page

    Extended Nonstandard Neutrosophic Logic, Set, and Probability Based on Extended Nonstandard Analysis

    Get PDF
    We extend for the second time the nonstandard analysis by adding the left monad closed to the right, and right monad closed to the left, while besides the pierced binad (we introduced in 1998) we add now the unpierced binad—all these in order to close the newly extended nonstandard space under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations

    Infinity and Continuum in the Alternative Set Theory

    Full text link
    Alternative set theory was created by the Czech mathematician Petr Vop\v enka in 1979 as an alternative to Cantor's set theory. Vop\v enka criticised Cantor's approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vop\v enka grasps the phenomena of vagueness. Infinite sets are defined as sets containing proper semisets, i.e. vague parts of sets limited by the horizon. The new interpretation extends the field of applicability of mathematics and simultaneously indicates its limits. This incidentally provides a natural solution to some classic philosophical problems such as the composition of a continuum, Zeno's paradoxes and sorites. Compared to strict finitism and other attempts at a reduction of the infinite to the finite Vop\v enka's theory reverses the process: he models the finite in the infinite.Comment: 25 page

    Improved Definition of NonStandard Neutrosophic Logic and Introduction to Neutrosophic Hyperreals (Fifth version)

    Get PDF
    In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that NonStandard Neutrosophic Logic was never used by neutrosophic community in no application, that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never utilized since they were improved shortly after but he omits to tell their development, and that in real world applications we need to convert/approximate the NonStandard Analysis hyperreals, monads and binads to tiny intervals with the desired accuracy – otherwise they would be inapplicable. We point out several errors and false statements by Imamura [21] with respect to the inf/sup of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the same for his definition of nonstandard unit interval, and we prove that there is not a total order on the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are indeterminate), whence the Transfer Principle from R to R* is questionable. After his criticism, several response publications on theoretical nonstandard neutrosophics followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and unpierced binad - all these in order to close the newly extended nonstandard space (R*) under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations [23, 24]. Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together with NonStandard Neutrosophic Operators are presented

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Infinity and Continuum in the Alternative Set Theory

    Get PDF
    Alternative set theory was created by the Czech mathematician Petr Vopěnka in 1979 as an alternative to Cantor's set theory. Vopěnka criticised Cantor's approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vopěnka grasps the phenomena of vagueness. Infinite sets are defined as sets containing proper semisets, i.e. vague parts of sets limited by the horizon. The new interpretation extends the field of applicability of mathematics and simultaneously indicates its limits. Compared to strict finitism and other attempts at a reduction of the infinite to the finite Vopenka's theory reverses the process: he models the finite in the infinite
    • …
    corecore