3,003 research outputs found

    An enhanced Multipath Strategy in Mobile Ad hoc Routing Protocols

    Full text link
    The various routing protocols in Mobile Ad hoc Networks follow different strategies to send the information from one node to another. The nodes in the network are non static and they move randomly and are prone to link failure which makes always to find new routes to the destination. This research mainly focused on the study of the characteristics of multipath routing protocols in MANETS. Two of the multipath routing protocols were investigated and a comparative study along with simulation using NS2 was done between DSR and AODV to propose an enhanced approach to reach the destination maintaining the QoS. A possible optimization to the DSR and AODV routing protocols was proposed to make no node to be overburdened by distributing the load after finding the alternate multipath routes which were discovered in the Route discovery process. The simulation shows that the differences in the protocol highlighted major differences with the protocol performance. These differences have been analyzed with various network size, mobility, and network load. A new search table named Search of Next Node Enquiry Table (SONNET) was proposed to find the best neighbor node. Using SONNET the node selects the neighbor which can be reached in less number of hops and with less time delay and maintaining the QoS

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Maximum Multipath Routing Throughput in Multirate Wireless Mesh Networks

    Full text link
    In this paper, we consider the problem of finding the maximum routing throughput between any pair of nodes in an arbitrary multirate wireless mesh network (WMN) using multiple paths. Multipath routing is an efficient technique to maximize routing throughput in WMN, however maximizing multipath routing throughput is a NP-complete problem due to the shared medium for electromagnetic wave transmission in wireless channel, inducing collision-free scheduling as part of the optimization problem. In this work, we first provide problem formulation that incorporates collision-free schedule, and then based on this formulation we design an algorithm with search pruning that jointly optimizes paths and transmission schedule. Though suboptimal, compared to the known optimal single path flow, we demonstrate that an efficient multipath routing scheme can increase the routing throughput by up to 100% for simple WMNs.Comment: This paper has been accepted for publication in IEEE 80th Vehicular Technology Conference, VTC-Fall 201

    Local heuristic for the refinement of multi-path routing in wireless mesh networks

    Full text link
    We consider wireless mesh networks and the problem of routing end-to-end traffic over multiple paths for the same origin-destination pair with minimal interference. We introduce a heuristic for path determination with two distinguishing characteristics. First, it works by refining an extant set of paths, determined previously by a single- or multi-path routing algorithm. Second, it is totally local, in the sense that it can be run by each of the origins on information that is available no farther than the node's immediate neighborhood. We have conducted extensive computational experiments with the new heuristic, using AODV and OLSR, as well as their multi-path variants, as underlying routing methods. For two different CSMA settings (as implemented by 802.11) and one TDMA setting running a path-oriented link scheduling algorithm, we have demonstrated that the new heuristic is capable of improving the average throughput network-wide. When working from the paths generated by the multi-path routing algorithms, the heuristic is also capable to provide a more evenly distributed traffic pattern

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Ad hoc network security and modeling with stochastic petri nets

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. These networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. Unlike the existing commercial wireless systems and fixed infrastructure networks, they do not rely on specialized routers for path discovery and traffic routing. Security is an important issue in such networks. Typically, mobile nodes are significantly more susceptible to physical attacks than their wired counterparts. This research intends to investigate the ad hoc network routing security by proposing a performance enhanced Secure ad hoc On-demand Routing protocol (SOR). Specifically, it presents a method to embed Security Level into ad hoc on-demand routing protocols using node-disjoint multipath, and to use maximum hopcount to restrict the number of routing packets in a specific area. The proposed scheme enables the use of security as a marked factor to improve the relevance of the routes discovered by ad hoc routing protocols. It provides customizable security to the flow of routing protocol messages. In general, SOR offers an alternative way to implement security in on-demand routing protocols. Ad hoc network is too complex to allow analytical study for explicit performance expressions. This research presents a Stochastic Petri net-based approach to modeling and analysis of mobile ad hoc network. This work illustrates how this model is built as a scalable model and used to exploit the characteristics of the networks. The proposed scheme is a powerful analytical model that can be used to derive network performance much more easily than a simulation-based approach. Furthermore, the proposed model is extended to study the performance of ad hoc network security by adding multipath selection and security measurement parameters. This research gives a quantificational measurement to analyze the performance of a modified SPN model under the effect of multipath and attack of a hypothetical compromised node
    • …
    corecore