540 research outputs found

    Implementation of High Speed Railway Mobile Communication System

    Get PDF
    High speed railways (HSR) provide highly efficient transport mode which improves the quality of railway services, saves time of the passengers which leads to greater customer satisfaction as well as improves the economics of the society. This has introduced significant challenges like developing new technologies, improving the existing architecture and controlling costs etc. Due to the improvements in the speed, ability to access internet and stream live media there is a requirement of an advanced high speed communication and signaling system. This system demands higher bandwidth, higher reliability and shorter response time for efficient operation and safety. This paper introduces the existing system deployed by the railway based on Global System for Mobile communication (GSM) , analyzes it and presents a much more advanced communication and signaling system based on 4G Long Term Evolution (LTE) technology

    CO-OFDM Elastic Optical Networks - Issues on Transmission, Routing, and Bandwidth Allocation

    Get PDF
    The use of orthogonal frequency division multiplexing (OFDM) technology helps an optical transmission system to break the limitation of wavelength grids by wavelength division multiplexing (WDM), in which a flexible and elastic transmission paradigm is created, so as to achieve better energy and spectrum efficiency and flexibility of the fiber resource. By jointly considering the nonlinear effect of Mach-Zehnder modulator (MZM) and amplified spontaneous emission (ASE) noise, we first provide an analytical model on the bit error rate (BER) performance for a single elastic optical transmission line. A novel adaptive transmission strategy in OFDM-based elastic optical transmission systems is proposed. Based on the adaptive transmission strategy, an optimization problem is formulated and solved via mathematical programming. By using proposed adaptive transmission strategy, the routing and bandwidth allocation (RBA) problem is formulated in elastic optical networks and numerically solved to route a set of lightpaths into a network according to the static or dynamic traffic demands with the best energy efficiency, where the laser transmit power, modulation level, number of subcarriers, and routing path of each node pair, are jointly determined. Case studies via extensive numerical experiments are conducted to verify the proposed strategy and gain better understanding on the solutions of formulated optimization problem. By further extending proposed adaptive transmission strategy, we propose a novel adaptive radio-over-fiber (RoF) transmission system for next-generation cloud radio access network (C-RAN). By considering nonlinear distortion from both MZM and high power amplifier (HPA), a 2 x 2 MIMO-OFDM baseband model for simulating the required ESNR of end-to-end RoF transmission system is developed. The RoF system for current C-RAN and proposed RoF system for future C-RAN are presented. We also propose a model to analyze the power consumption for the optical part of RoF transmission system. By performing case studies, proposed RoF system is demonstrated to be more energy efficient than current RoF system.4 month

    A new hybrid model of dengue incidence rate using negative binomial generalised additive model and fuzzy c-means model: a case study in Selangor

    Get PDF
    Dengue is one of the top reason for illness and mortality in the world with beyond one­third of the world's population living in the risk areas of dengue infection. In this study, there are five stages to achieve the research objectives. Firstly, the verification of predetem1ined variables. Secondly, the identification of new datasets after clustered by district and Fuzzy C-Means Model (FCM). Thirdly, the development of models using the existing dataset and the new datasets which clustered by the two different clustering categories. Then, to assess the models developed by using three measurement methods which are deviance (D), Akaike Jnfonnation Criteria (AIC) and Bayesian Infonnation Criteria (BIC} Lastly, the validation of model developed by comparing the value of D, AIC and BIC between the existing model and the new models developed which used the new datasets. There are two different clustering techniques applied which are clustering the data by district and by FCM. This study proposed a new modelling hybrid framework by using two statistical models which are FCM and negative binomial Generalised Additive Model (GAM). This study successfully presents the significant difference in the climatic and non-climatic factors that influenced dengue incidence rate (DIR) in Selangor, Malaysia. Results show that the climatic factors such as rainfall with current month up to 3 months and number of rainy days with current month up to lag 3 months are significant to DIR. Besides, the interaction between rainfall and number of rainy days also shows strong positive relationship to DIR. Meanwhile, non-climatic vaiiables such as population density, number of locality and lag DIR from I month until 3 months also show significant relationship towards DIR For both clustering techniques, there are two clusters fonned and there are four new models developed in this study. After comparing the values of D, AIC ai1d BIC between the existing model and the new models, this study concluded that four new models recorded lower values compared to the existing model. Therefore, the four new models are selected to present the dengue incidence in Selangor

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters
    • …
    corecore