141,623 research outputs found

    Geometric lattice structure of covering and its application to attribute reduction through matroids

    Full text link
    The reduction of covering decision systems is an important problem in data mining, and covering-based rough sets serve as an efficient technique to process the problem. Geometric lattices have been widely used in many fields, especially greedy algorithm design which plays an important role in the reduction problems. Therefore, it is meaningful to combine coverings with geometric lattices to solve the optimization problems. In this paper, we obtain geometric lattices from coverings through matroids and then apply them to the issue of attribute reduction. First, a geometric lattice structure of a covering is constructed through transversal matroids. Then its atoms are studied and used to describe the lattice. Second, considering that all the closed sets of a finite matroid form a geometric lattice, we propose a dependence space through matroids and study the attribute reduction issues of the space, which realizes the application of geometric lattices to attribute reduction. Furthermore, a special type of information system is taken as an example to illustrate the application. In a word, this work points out an interesting view, namely, geometric lattice to study the attribute reduction issues of information systems

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Axiomatic Testing of Structure Metrics

    Get PDF
    Axiomatic testing of software metrics is described, based on axioms from representational measurement theory. In a case study, the axioms are given for the formal relational structure and the empirical relational structure. Two approaches to axiomatic testing are elaborated: deterministic testing and probabilistic testin

    Indeterministic Handling of Uncertain Decisions in Duplicate Detection

    Get PDF
    In current research, duplicate detection is usually considered as a deterministic approach in which tuples are either declared as duplicates or not. However, most often it is not completely clear whether two tuples represent the same real-world entity or not. In deterministic approaches, however, this uncertainty is ignored, which in turn can lead to false decisions. In this paper, we present an indeterministic approach for handling uncertain decisions in a duplicate detection process by using a probabilistic target schema. Thus, instead of deciding between multiple possible worlds, all these worlds can be modeled in the resulting data. This approach minimizes the negative impacts of false decisions. Furthermore, the duplicate detection process becomes almost fully automatic and human effort can be reduced to a large extent. Unfortunately, a full-indeterministic approach is by definition too expensive (in time as well as in storage) and hence impractical. For that reason, we additionally introduce several semi-indeterministic methods for heuristically reducing the set of indeterministic handled decisions in a meaningful way

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    Computing fuzzy rough approximations in large scale information systems

    Get PDF
    Rough set theory is a popular and powerful machine learning tool. It is especially suitable for dealing with information systems that exhibit inconsistencies, i.e. objects that have the same values for the conditional attributes but a different value for the decision attribute. In line with the emerging granular computing paradigm, rough set theory groups objects together based on the indiscernibility of their attribute values. Fuzzy rough set theory extends rough set theory to data with continuous attributes, and detects degrees of inconsistency in the data. Key to this is turning the indiscernibility relation into a gradual relation, acknowledging that objects can be similar to a certain extent. In very large datasets with millions of objects, computing the gradual indiscernibility relation (or in other words, the soft granules) is very demanding, both in terms of runtime and in terms of memory. It is however required for the computation of the lower and upper approximations of concepts in the fuzzy rough set analysis pipeline. Current non-distributed implementations in R are limited by memory capacity. For example, we found that a state of the art non-distributed implementation in R could not handle 30,000 rows and 10 attributes on a node with 62GB of memory. This is clearly insufficient to scale fuzzy rough set analysis to massive datasets. In this paper we present a parallel and distributed solution based on Message Passing Interface (MPI) to compute fuzzy rough approximations in very large information systems. Our results show that our parallel approach scales with problem size to information systems with millions of objects. To the best of our knowledge, no other parallel and distributed solutions have been proposed so far in the literature for this problem
    corecore