57 research outputs found

    Bounds on the Capacity of the Relay Channel with Noncausal State at Source

    Full text link
    We consider a three-terminal state-dependent relay channel with the channel state available non-causally at only the source. Such a model may be of interest for node cooperation in the framework of cognition, i.e., collaborative signal transmission involving cognitive and non-cognitive radios. We study the capacity of this communication model. One principal problem is caused by the relay's not knowing the channel state. For the discrete memoryless (DM) model, we establish two lower bounds and an upper bound on channel capacity. The first lower bound is obtained by a coding scheme in which the source describes the state of the channel to the relay and destination, which then exploit the gained description for a better communication of the source's information message. The coding scheme for the second lower bound remedies the relay's not knowing the states of the channel by first computing, at the source, the appropriate input that the relay would send had the relay known the states of the channel, and then transmitting this appropriate input to the relay. The relay simply guesses the sent input and sends it in the next block. The upper bound is non trivial and it accounts for not knowing the state at the relay and destination. For the general Gaussian model, we derive lower bounds on the channel capacity by exploiting ideas in the spirit of those we use for the DM model; and we show that these bounds are optimal for small and large noise at the relay irrespective to the strength of the interference. Furthermore, we also consider a special case model in which the source input has two components one of which is independent of the state. We establish a better upper bound for both DM and Gaussian cases and we also characterize the capacity in a number of special cases.Comment: Submitted to the IEEE Transactions on Information Theory, 54 pages, 6 figure

    Cooperative Relaying with State Available Non-Causally at the Relay

    Full text link
    We consider a three-terminal state-dependent relay channel with the channel state noncausally available at only the relay. Such a model may be useful for designing cooperative wireless networks with some terminals equipped with cognition capabilities, i.e., the relay in our setup. In the discrete memoryless (DM) case, we establish lower and upper bounds on channel capacity. The lower bound is obtained by a coding scheme at the relay that uses a combination of codeword splitting, Gel'fand-Pinsker binning, and decode-and-forward relaying. The upper bound improves upon that obtained by assuming that the channel state is available at the source, the relay, and the destination. For the Gaussian case, we also derive lower and upper bounds on the capacity. The lower bound is obtained by a coding scheme at the relay that uses a combination of codeword splitting, generalized dirty paper coding, and decode-and-forward relaying; the upper bound is also better than that obtained by assuming that the channel state is available at the source, the relay, and the destination. In the case of degraded Gaussian channels, the lower bound meets with the upper bound for some special cases, and, so, the capacity is obtained for these cases. Furthermore, in the Gaussian case, we also extend the results to the case in which the relay operates in a half-duplex mode.Comment: 62 pages. To appear in IEEE Transactions on Information Theor

    Capacity of a Class of State-Dependent Orthogonal Relay Channels

    Full text link
    The class of orthogonal relay channels in which the orthogonal channels connecting the source terminal to the relay and the destination, and the relay to the destination, depend on a state sequence, is considered. It is assumed that the state sequence is fully known at the destination while it is not known at the source or the relay. The capacity of this class of relay channels is characterized, and shown to be achieved by the partial decode-compress-and-forward (pDCF) scheme. Then the capacity of certain binary and Gaussian state-dependent orthogonal relay channels are studied in detail, and it is shown that the compress-and-forward (CF) and partial-decode-and-forward (pDF) schemes are suboptimal in general. To the best of our knowledge, this is the first single relay channel model for which the capacity is achieved by pDCF, while pDF and CF schemes are both suboptimal. Furthermore, it is shown that the capacity of the considered class of state-dependent orthogonal relay channels is in general below the cut-set bound. The conditions under which pDF or CF suffices to meet the cut-set bound, and hence, achieve the capacity, are also derived.Comment: This paper has been accepted by IEEE Transactions on Information Theor

    On the Capacity of the Two-user Gaussian Causal Cognitive Interference Channel

    Full text link
    This paper considers the two-user Gaussian Causal Cognitive Interference Channel (GCCIC), which consists of two source-destination pairs that share the same channel and where one full-duplex cognitive source can causally learn the message of the primary source through a noisy link. The GCCIC is an interference channel with unilateral source cooperation that better models practical cognitive radio networks than the commonly used model which assumes that one source has perfect non-causal knowledge of the other source's message. First the sum-capacity of the symmetric GCCIC is determined to within a constant gap. Then, the insights gained from the derivation of the symmetric sum-capacity are extended to characterize the whole capacity region to within a constant gap for more general cases. In particular, the capacity is determined (a) to within 2 bits for the fully connected GCCIC when, roughly speaking, the interference is not weak at both receivers, (b) to within 2 bits for the Z-channel, i.e., when there is no interference from the primary user, and (c) to within 2 bits for the S-channel, i.e., when there is no interference from the secondary user. The parameter regimes where the GCCIC is equivalent, in terms of generalized degrees-of-freedom, to the noncooperative interference channel (i.e., unilateral causal cooperation is not useful), to the non-causal cognitive interference channel (i.e., causal cooperation attains the ultimate limit of cognitive radio technology), and to bilateral source cooperation are identified. These comparisons shed lights into the parameter regimes and network topologies that in practice might provide an unbounded throughput gain compared to currently available (non cognitive) technologies.Comment: Under second round review in IEEE Transactions in Information Theory - Submitted September 201

    Inner and Outer Bounds for the Gaussian Cognitive Interference Channel and New Capacity Results

    Full text link
    The capacity of the Gaussian cognitive interference channel, a variation of the classical two-user interference channel where one of the transmitters (referred to as cognitive) has knowledge of both messages, is known in several parameter regimes but remains unknown in general. In this paper we provide a comparative overview of this channel model as we proceed through our contributions: we present a new outer bound based on the idea of a broadcast channel with degraded message sets, and another series of outer bounds obtained by transforming the cognitive channel into channels with known capacity. We specialize the largest known inner bound derived for the discrete memoryless channel to the Gaussian noise channel and present several simplified schemes evaluated for Gaussian inputs in closed form which we use to prove a number of results. These include a new set of capacity results for the a) "primary decodes cognitive" regime, a subset of the "strong interference" regime that is not included in the "very strong interference" regime for which capacity was known, and for the b) "S-channel" in which the primary transmitter does not interfere with the cognitive receiver. Next, for a general Gaussian cognitive interference channel, we determine the capacity to within one bit/s/Hz and to within a factor two regardless of channel parameters, thus establishing rate performance guarantees at high and low SNR, respectively. We also show how different simplified transmission schemes achieve a constant gap between inner and outer bound for specific channels. Finally, we numerically evaluate and compare the various simplified achievable rate regions and outer bounds in parameter regimes where capacity is unknown, leading to further insight on the capacity region of the Gaussian cognitive interference channel.Comment: submitted to IEEE transaction of Information Theor
    corecore