17,343 research outputs found

    DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning

    Full text link
    We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explainability in the field of visual analytics

    The Power of Linear Recurrent Neural Networks

    Full text link
    Recurrent neural networks are a powerful means to cope with time series. We show how a type of linearly activated recurrent neural networks, which we call predictive neural networks, can approximate any time-dependent function f(t) given by a number of function values. The approximation can effectively be learned by simply solving a linear equation system; no backpropagation or similar methods are needed. Furthermore, the network size can be reduced by taking only most relevant components. Thus, in contrast to others, our approach not only learns network weights but also the network architecture. The networks have interesting properties: They end up in ellipse trajectories in the long run and allow the prediction of further values and compact representations of functions. We demonstrate this by several experiments, among them multiple superimposed oscillators (MSO), robotic soccer, and predicting stock prices. Predictive neural networks outperform the previous state-of-the-art for the MSO task with a minimal number of units.Comment: 22 pages, 14 figures and tables, revised implementatio
    corecore