40,300 research outputs found

    A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles

    Get PDF
    AbstractThis paper proposes a motion planner for autonomous parking. Compared to the prevailing and emerging studies that handle specific or regular parking scenarios only, our method describes various kinds of parking cases in a unified way regardless they are regular parking scenarios (e.g., parallel, perpendicular or echelon parking cases) or not. First, we formulate a time-optimal dynamic optimization problem with vehicle kinematics, collision-avoidance conditions and mechanical constraints strictly described. Thereafter, an interior-point simultaneous approach is introduced to solve that formulated dynamic optimization problem. Simulation results validate that our proposed motion planning method can tackle general parking scenarios. The tested parking scenarios in this paper can be regarded as benchmark cases to evaluate the efficiency of methods that may emerge in the future. Our established dynamic optimization problem is an open and unified framework, where other complicated user-specific constraints/optimization criteria can be handled without additional difficulty, provided that they are expressed through inequalities/polynomial explicitly. This proposed motion planner may be suitable for the next-generation intelligent parking-garage system

    A Novel Chaotic Particle Swarm Optimization Algorithm for Parking Space Guidance

    Get PDF
    An evolutionary approach of parking space guidance based upon a novel Chaotic Particle Swarm Optimization (CPSO) algorithm is proposed. In the newly proposed CPSO algorithm, the chaotic dynamics is combined into the position updating rules of Particle Swarm Optimization to improve the diversity of solutions and to avoid being trapped in the local optima. This novel approach, that combines the strengths of Particle Swarm Optimization and chaotic dynamics, is then applied into the route optimization (RO) problem of parking lots, which is an important issue in the management systems of large-scale parking lots. It is used to find out the optimized paths between any source and destination nodes in the route network. Route optimization problems based on real parking lots are introduced for analyzing and the effectiveness and practicability of this novel optimization algorithm for parking space guidance have been verified through the application results

    Static Pricing Problems under Mixed Multinomial Logit Demand

    Full text link
    Price differentiation is a common strategy for many transport operators. In this paper, we study a static multiproduct price optimization problem with demand given by a continuous mixed multinomial logit model. To solve this new problem, we design an efficient iterative optimization algorithm that asymptotically converges to the optimal solution. To this end, a linear optimization (LO) problem is formulated, based on the trust-region approach, to find a "good" feasible solution and approximate the problem from below. Another LO problem is designed using piecewise linear relaxations to approximate the optimization problem from above. Then, we develop a new branching method to tighten the optimality gap. Numerical experiments show the effectiveness of our method on a published, non-trivial, parking choice model

    Two-stage trajectory optimization for autonomous ground vehicles parking maneuver

    Get PDF
    This paper proposes a two-stage optimization framework for generating the optimal parking motion trajectory of autonomous ground vehicles. The motivation for the use of this multi-layer optimization strategy relies on its enhanced convergence ability and computational efficiency in terms of finding optimal solutions under the constrained environment. In the first optimization stage, the designed optimizer applies an improved particle swarm optimization technique to produce a near-optimal parking movement. Subsequently, the motion trajectory obtained from the first stage is used to start the second optimization stage, where gradient-based techniques are applied. The established methodology is tested to explore the optimal parking maneuver for a car-like autonomous vehicle with the consideration of irregularly parked obstacles. Simulation results were produced and comparative studies were conducted for different mission cases. The obtained results not only confirm the effectiveness but also reveal the enhanced performance of the proposed optimization framework

    Optimalisasi Retribusi Pelayanan Parkir pada Dinas Perhubungan di Kabupaten Gowa

    Get PDF
    This study aimed to determine, Optimization of Parking Service Levies at the Transportation Department in Gowa Regency. Data collection techniques used  observation, interview and documentation. While the informants in this study were 4 people who were the head of the terminal and parking section, the head of the traffic management facility infrastructure, and the Parking Attendant. Data analysis techniques used data reduction, data presentation and verification. The results of this study indicated that the Optimization of Parking Service Retribution at the Transportation Department in Gowa Regency had been carried out optimally because the achievement of the realization of the target had been going well. One form of parking supervision in an effort to collect fees was done directly and coordinated by field officers. This purposed to fulfill whether the implementation of tasks in accordance with the plans that had been set in strengthening the process of collecting parking service fees
    • …
    corecore