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evaluate the efficiency of methods that may emerge in the future. Our established dynamic optimization
problem is an open and unified framework, where other complicated user-specific constraints/optimiza-
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1. Introduction

Autonomous vehicles (sometimes called self-driving cars or
driverless cars) refer to robotic vehicles that travel between desti-
nations without human operators [1]. Such vehicles are expected
to bring a variety of benefits, e.g., improving road network capacity
and freeing up driver-occupants’ time [2]. One industry analyst
firm, Navigant Research, predicted that 75% of the vehicles sold
in 2035 will have some sort of autonomous capability [3].
Although fully autonomous vehicles will not travel on the streets
in the near future (because of the lack of legislation and mature
technologies), yet the commercial availability of local vehicular
automation systems (i.e., driver assistance systems and
semi-autonomous systems) is increasing [4].

Autonomous parking is a critical application of driver assistance
technologies. Relevant products have been designed by car manu-
facturers such as Audi, BMW, Ford, Land Rover, Mercedes-Benz,
Nissan, and Toyota [5]. Nevertheless, these products are challenged
in terms of thoroughly easing parking burdens. For instance,
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recognizing the environment during heavy rainstorms, inducing
smart maneuvers to park in a narrow spot or grasping user prefer-
ences remains to be difficult issues [6,7]. In this sense, autonomous
parking technologies deserve further investigation.

A successful autonomous parking process involves three
sequential procedures: circumstance recognition, open-loop
motion planning and closed-loop control execution [8]. Among
these three procedures, motion planning alone is responsible for
decision-making. In other words, the motion planning procedure
largely determines how intelligent the entire parking system will
be. Therefore, it is necessary to develop a reliable method in the
motion planning phase.

Motion planning research studies in autonomous parking orig-
inated with [9], which systematically formulated a generalized
autonomous parking problem for the first time. Ref. [10] catego-
rized the prevailing motion planning algorithms into two types
that are respectively applied in environments with complete or
incomplete knowledge. Although many studies focus on motion
planning in environments with incomplete knowledge [11], we
believe that methods based on complete knowledge of the envi-
ronment are not fully mature (the reasons will be presented later).
This current study is based on an assumption that knowledge of
the environment should be completely available before the motion
planning procedure is implemented.
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The prevailing motion planning methods on the basis of com-
plete environmental knowledge can be broadly classified into three
categories: geometric-based methods, heuristic-based methods,
and methods based on control theories. Geometric-based
approaches commonly compute reference paths first and then gen-
erate trajectories following the obtained paths (e.g., [12-16]). Here,
a path refers to a geometric curve y = f(x) in the xy coordinate
frame, whereas a trajectory attaches the time course along a path,
i.e., the determination of x = x(t) [17]. Heuristic-based methods
usually seek solutions from artificial intelligence techniques, e.g.,
fuzzy logics [18,19], search-based methods [20,21], random sam-
pling methods [22] and machine learning methods [23].
Commonly the heuristic methods determine merely paths rather
than trajectories, thus additional efforts must be exerted to convert
the computed paths into trajectories. References regarding control
theories are relatively scarce [24-26]. Such analytical methods
usually deal with specific cases only, lacking generalization abili-
ties [21]. Most of the previous publications mentioned above have
validated their concerned methods effective through simulations,
and some of those methods have even been executed on real
robots in the field (e.g., [18,19]). In spite of their success, three
issues stil deserve consideration. First, many existing methods do
not solve the motion control problem directly. Typically, those
heuristic-based path planning methods suffer from this limitation
because kinematic descriptions of the vehicle are either missing or
incomplete (e.g., [15,16,19-21]). In fact, quite few works have for-
mulated complete kinematics (e.g., [27]). Second, it is better to
generate optimal/optimized motions (based on some predefined
criteria) rather than generate merely feasible motions. Third, we
notice that a parking spot has been assumed as a slot region (see
Fig. 1(a)) in most of the previous publications. The requirement
that a car should not collide with the shaded regions in Fig. 1(a)
is impractical. In fact, we only need the car terminally stay inside
a rectangular parking spot. That is to say, the car can temporarily
“invade” a neighboring spot region during its parking maneuvers
provided that no collision happens. On the other hand, even when
one is reluctant to invade temporarily into others’ parking regions,
he may find his target parking spot partly occupied by a parked car.
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Fig. 1. Schematic of regular and irregular parking scenarios: (a) collision-free
requirements in previous studies where a car should not hit the shaded regions
during its parking maneuvers and (b) collision-free requirements considered in this
current study, where a vehicle only needs to avoid colliding with neighboring cars
during its parking maneuvers.

Such parking scenarios (see Fig. 1(b)) are irregular but indeed ordi-
nary in our daily life. Research studies that considered general
parking scenarios are scarce. Apart from Paromtchik & Laugier’s
three publications in the early years (i.e., [28-30]), no other rever-
ent studies can be found, to the best of our knowledge. As a brief
summary, no study has solved or can solve the aforementioned
three issues altogether.

This work aims to address the original motion planning prob-
lem directly. To this end, differential equations are formulated to
describe the vehicle kinematics and geometric analyses are con-
ducted to strictly constrain the vehicle from hitting surrounding
cars regardless they are regularly parked or not. We pursue for
the time-optimal motions, thus formulating an optimal control
problem (also can be regarded as a dynamic optimization problem)
which is identical to the original parking motion planning scheme.
A simultaneous approach based on interior point method (IPM) is
applied to solve the formulated dynamic optimization problem.

The rest of this paper is organized as follows. In Section 2, the
kinematics of an autonomous vehicle and the collision-free
requirements are presented so as to formulate a dynamic opti-
mization problem. In Section 3, the IPM-based simultaneous
approach is introduced. In Section 4, simulations on several park-
ing scenarios are presented, followed by Section 5, where detailed
analyses on the simulation results are provided. Finally in
Section 6, our conclusions are drawn.

2. Dynamic optimization problem formulation

This section formulates a dynamic optimization problem on the
basis of the original parking motion planning mission. Detailedly,
the vehicle kinematics, mechanical constraints and collision-free
constraints will be introduced respectively. At the end of this sec-
tion, we will show the overall formulation.

2.1. Kinematics of a car-like vehicle

The kinematics of a concerned front-steering autonomous vehi-
cle can be expressed by

O — y(t) - cos O(t)
YO — y(t) - sinO(t)
Ge=a (1)

do(t) v(t)-sin ¢(t)
T
do(t)

%= o)

where t € [0, t;] refers to time, t; indicates the terminal moment of
the entire dynamic process, (x,y) refers to the mid-point of the front

Fig. 2. Parametric notations related to vehicle size and kinematics.
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wheel axis (see the reference point P in Fig. 2), 0 refers to the orien-
tation angle, v refers to the linear velocity of point P, a refers to the
corresponding acceleration, ¢ refers to the steering angle of front
wheels and o refers to the corresponding angular velocity.
Moreover, | denotes the wheelbase length, n denotes the front over-
hang length, m denotes the rear overhang length and 2b denotes the
car width.

Here, w(t) and a(t) are selected as control variables and the
remaining five variables (i.e, x(t),y(f), »(t),0(t) and ¢(t)) are
regarded as state variables. Given their initial values, the state vari-
ables can be determined successfully one after another through
integral once w(t) and a(t) are known.

2.2. Mechanical and physical constraints

Aside from the vehicle kinematics described through differen-
tial equations in the preceding subsection, the bounded constraints
on state/control variables should be considered as well. In detail,
we express these mechanical/physical constraints as

[a(t)] < amax
v(t)| < Vmax
|o(t)] < Wimax

The reasons for the imposition of boundaries on a(t), »(t) and ¢(t)
are obvious. Imposing bounds on (t) has been widely applied with
the aim of planning continuous-curvature trajectories in a number
of previous publications (e.g., [12,15,16,27]). The rationale behind

this issue is that, the instantaneous curvature x(t) = M as well

as its derivative %5 = 2095390 shoyld be bounded so as to avoid
generating non-smooth trajectories. Commonly, non-smooth trajec-
tories are not recommended due to the resulting undesirable wear
of tires [12]. Given that ¢(t) is mechanically limited, if there is no
boundaries imposed on w(t), one cannot guarantee that % is
bounded, and then the continuous-curvature property cannot be
guaranteed.

Till now, the mechanical and physical constraints associated
with the vehicle have been formulated. Besides that, there are also
collision-avoidance conditions that should be satisfied when an
autonomous vehicle moves in the environment, which is intro-
duced in the next subsection.

2.3. Collision-free restrictions in the environment

This subsection concerns the environmental collision-avoidance
descriptions through strict geometrics. Unlike previous works that
assume the obstacles form ideal slots, we merely require the
to-be-parked car to avoid colliding with other parked cars during
its maneuvers. Assuming that cars are rectangular, this subsection
first introduces how to precisely describe one rectangle locates
outside the other. Then, the collision-free constraints are
formulated.

All of the scenarios in which one rectangle collides with another
can be divided into two categories. One refers to the cases in which
at least one edge point of a rectangle is located within the region of
the other rectangle (see Fig. 3(a)). The other case refers to the pos-
sibility that no such edge point is involved (see Fig. 3(b)).
Nonetheless, the second possibility always originates from the first
one. Therefore, if we require that none of the four edge points on
one rectangle remaining within the other rectangular region dur-
ing the entire dynamic process, we can guarantee that the two
rectangles do not collide. Here, a question that would arise is,
how to determine whether or not each edge point is located inside

(a) (b)

Fig. 3. Schematic of two possibilities in which one rectangle collides with the other.

a
@)

(a) (b)

Fig. 4. Schematic of a “triangle area criterion”, which judges whether or not point P
is located within the rectangle region ABCD.

a given rectangle region? The following formula addresses this
issue when Fig. 4 is taken as an example:

Sapag + Sapsc + Sapcp + Sappa > Stuscp, 3)

where S, denotes the triangle area and S5 denotes the rectangle
area. This judgment can be proven analytically (through simple
mathematical knowledge), but we omit this part so as to avoid los-
ing focus of this paper.

Collision-free constraints can be formulated on the basis of the
triangle area judgment mentioned above. In detail, when we
expect two rectangles not collide, all the four edge points on one
rectangle should remain outside the other rectangular region.
Therefore, if there are N, parked cars in the environment, there
will be as many as 8N, inequalities that should be satisfied during
the entire dynamic parking process so as to avoid collision.

To briefly summarize here, compared to the prevailing methods
that can only deal with specific cases (e.g., [13,15,16,18,20,21,
26,27]), our formulated model describes various kinds of cases
in a unified way regardless they are regular parking scenarios
(i.e., parallel, perpendicular or echelon parking cases) or irregular
ones.

2.4. Terminal conditions

In addition to the kinematics and constraints, there are terminal
conditions that should be met at the moment t = t;.

First, a parking process should end with a full stop, that is,
v(ty) = 0.

Second, with regard to terminal location, we require a car to
park itself within a given region. According to the box region
depicted in Fig. 5, we define the following:

Ax(ty) € [Xo,Xo + BL] Ay(tr) € Vo, Yo + BW]
Bu(ty) € [xo.% +BL . | By(ty) € Yo,y +BW] @
Cx(tr) € [Xo,%0 + BL] Cy(tr) € Yo, Yo +BW]’
Dy(ty) € [xo0,Xo + BL] Dy(ty) € [vo, Yo + BW]
where
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Fig. 5. Parametric notations related to size and location of the box region where the vehicle is terminally parked.

Ay=x+n-cosf—b-sinf
Ay=y+n-sin0+b-cosf
By=x+n-cos0+b-sind
B,=y+n-sinf—b-cos0
CX:x—(m+l)~cos()+b-sin()'
C,=y—(m+1)-sin0—b-cos0
DX:X—(m—H) cosf —b-sind
Dy=y—(m+1)-sin0+b-cos0

Third, compared to some studies that additionally required
0(tr) = 0 and/or ¢(tr) = 0, our formulation does not contain such
terminal conditions. At this point, we believe that once the con-
cerned vehicle fully stops inside a desired parking spot, it needs
not worry about other issues. In fact, it is unrealistic to park a
car exactly in line with the spot frontiers or to let the terminal
steering angle be zero.

2.5. Overall dynamic optimization formulation

In this work, we aim to find the motions associated with mini-
mum ¢. In other words, min-time control motions are expected.
Our dynamic optimization formulation is not a specific optimiza-
tion model but a unified optimization framework, which can cater
for different optimization demands/conditions/constraints. Fig. 6
schematically illustrates our formulated optimization framework.
The unification of that framework lies in the following few aspects:
(i) it does not make any distinction between regular and irregular
parking scenarios; (ii) it utilizes complete kinematics (i.e., Eq. (1))
to provide sufficient and necessary principles about how a con-
cerned vehicle moves; (iii) extra user-specific conditions/require-
ments can be considered in our framework provided that they
can be explicitly described through algebraic equalities/inequali-
ties; and (iv) although we pursue for time-optimal motions, this
framework is capable of considering other optimization criterions
with ease.

min 7,

kinematic principles (defined in Eq. (1)) for z € [0, #]

mechanical constraints (Eq. (2)) for 7 € [0, 7]

collision-free conditions (described based on Eq. (3)) for ¢ € [0, #,]
initial conditions when ¢ = 0

terminal conditions (defined in Eqs. (4) and (5)) when 7 = #,

other user-specified constraints

Fig. 6. Schematic of our formulated unified dynamic optimization framework.

Till now we have formulated an optimization framework for
the parking motion planning scheme. It is far beyond the analyt-
ical methods’ ability to solve such a complicated dynamic opti-
mization problem in general, thus the adoption of numerical
methods may be the only way to provide solutions. In the next
section, the IPM-based simultaneous approach we utilize to
solve the formulated dynamic optimization problem will be
introduced.

3. IPM-based simultaneous approach for dynamic optimization

In this section, the IPM-based simultaneous approach is pre-
sented to solve the dynamic optimization problem formulated in
the preceding section.

The IPM-based simultaneous approach consists of two phases,
namely the discretization phase and programming phase. First, in
the discretization phase, all the state and control profiles in time
are discretized through the collocation of finite elements. In this
way, the original dynamic optimization problem is transformed
into a nonlinear programming (NLP) formulation. Thereafter, the
resulting NLP problem is solved in the second phase. The simulta-
neous method utilized in the discretization phase is equivalent to a
fully implicit Runge-Kutta method with high order accuracy and
excellent stability. It possesses various merits over its competitors
when tackling dynamic optimization problems, especially ones
with complicated constraints and with input instabilities.
Interested readers may consult [31] for a detailed review of the
simultaneous method. On the other hand, the resulting NLP prob-
lem is usually in large scale (because an infinite-dimensional
dynamic optimization problem has been converted into a
finite-dimension programming problem in the first phase), thus a
highly efficient NLP solver is needed in the second phase. IPM is
such an efficacious large-scale NLP solver, which applies a logarith-
mic barrier strategy to handle inequality constraints, solves a set of
equality constrained optimization problems for a monotonically
decreasing sequence of the barrier parameter, and quickly con-
verges to the solution of the given NLP. In fact, IPM is capable of
solving an NLP with up to several million variables, constraints
and degrees of freedom [32]. The remainder of this section is orga-
nized as follows. First, we present the principles of the two phases
respectively. Then, we focus on how this approach can be utilized
to solve the unified dynamic optimization problem we have
formulated.

3.1. Discretization phase

Without loss of generality, we consider the following general
dynamic optimization problem [31]:
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(6)
S.t. Z(O) =2y 5
z(tf) - sz
te[0,t]

where z(t) refers to differential state variables, y(t) temporarily
denotes the algebraic state variables in this subsection and u(t)
denotes the control variables. The unknowns in the concerned opti-
mization problem (i.e., Eq. (6)) include z(t),y(t) and u(t). They are
functions of the scalar time parameter t.

First, the time domain [0, t7] is divided into Nfe finite intervals
{lti-1, 6] |i=1,2,...,Nfe}, where to =0 and tye = t;. Then the
duration of each element can be written as h;=t; —t 1,
i=1,2,...,Nfe. This work considers equidistant division in [0, t],
thus the duration h of every interval equals t;/Nfe. For consistency
with the previous studies in the area of computational science, we
refer to such intervals as “finite elements”.

Second, we choose (K + 1) interpolation points in the ith ele-
ment and approximate the state using the following Lagrange
polynomial:

K K _
Z(t) = Z(Zu H T_Z’;) (7)

where t=t_+h-1,71€[0,1,70=0 and O0<7t7;<1(j=1,2,

.,K). Each 7; refers to either Gauss or Radau points, which can

be calculated off-line according to Gaussian Quadrature Accuracy

Theorem when K is determined. Interested readers can consult
[33] for the computation of ;.

As illustrated in Fig. 7, the Lagrange polynomial representation

in Eq. (7) possesses a desirable property that z(t;) = z;, where

tj = ti_1 + h-7;. In other words, the polynomial in Eq. (7) passes
the (K + 1) interpolation points directly once they are determined
on the ith finite element. This merit largely simplifies the optimiza-
tion procedure in the next phase.

In addition, since z(t) refer to states to be differentiated, conti-
nuity of the differential state variables across element boundaries
should be guaranteed; otherwise, the derivative will not exist.
Thus we have

2=z [ 9= 120 M- (8a)
i+1,0 — . i .(T‘ 7Tk) ) — L&y ey )
j=0 k=0,%#j \ J

K Ko (1_
2, = _Z(szeJ- ] fo)) (8b)

Zy = 2Z10- (SC)

Similarly, the control variables u(t) and algebraic states y(t) can
be represented by Lagrange interpolation profiles at K collocation
points:

K K _
u(t) = Z(uq 1 %) 9)

=1 =

K K
—ZQgH)tZ> (10)
k

Unlike (8a) for differential states z(t), here u(t) and y(t) can be dis-
continuous at finite element boundaries in Eq. (9) or (10). In other
words, we do not enforce ujj0=Ujx O y;,10=VYix (i=1,2,...,
Nfe — 1) as depicted in Fig. 8.

By substituting Egs. (8)-(10) into Eq. (6), we yield:
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Formulate a dynamic optimization problem from
the original parking motion planning scheme

v

Normalize the concerned dynamic
optimization problem in the form of Eq. (6)

v

Divide the time domain into
a finite number of clements

v

Discretize the differential state variables in
cach clement using Egs. (7) and (8)

¥

Discretize the control variables in each
clement using Eq. (9)

'

Discretize the algebraic state variables
in each clement using Eq. (10)

!

Reform the original differential
cquations in the form of Eq. (11)

!

Formulate an NLP problem
in the form of Eq. (12)

Discretization
phase

yovoadde snodueynuis paseq-JAdI

A 4

Optimize the discretized variables in the
converted NLP problem using IPM

phase

Programming

¥

Output the optimized solution

Fig. 9. Flowchart of the IPM-based simultaneous approach for dynamic optimiza-
tion problems.

Table 1
User-specific parametric settings.
Parameter Description Setting
Etol Convergence tolerance in IPM 10712
K Minimum absolute distance from the initial point to 1074
bound in IPM
K+1 Interpolation point number in the simultaneous 4
approach
Nfe Number of finite elements in the simultaneous 20
approach
BL Terminal parking box region length -
BW Terminal parking box region width
n Front overhang length 0.960
I Distance between the front and back wheel axes 2.800
m Rear overhang length 0.929
2b Car width 1.942
K_(dgi(t ,
Z( ZS:) ‘Zik>_h'F(zikzyikyuik)_Oz i=12,...,
j=0 T=Tk
Nfe.k=1,2,... K, (11)

where ‘:j( ) Hk 0,7#j ( rj ‘rk

Given a fixed number of elements, the NLP formulation origi-
nated from the original dynamic optimization problem (i.e., Eq.
(6)) can be written in the form of Eq. (12):

min ¢(z(t)),

ZijYij Uij
K
Z dsj(f)
dt

G%wa <0

st K . 7 (12)
Zl1+10 Z i " H 1—] T’;

z,k) hi - 2,y ) = O

j=0 =0,#

210 =20
ZNfek = Zt;
i=12,...,Nfe,ij=1,2,....Nfe-1,j=1,2,...,K.

Through this, the original dynamic optimization problem is
converted into an NLP formulation in the discretization phase.

3.2. Programming phase

In this phase, IPM is adopted to optimize the discretized vari-
ables z;,y; and u; (i=1,2,...,Nfe,j = 0,2,...,K) in the converted
NLP formulation (i.e., Eq. (12)). The details of IPM are not discussed
here for reasons of length and the focus of our paper. Interested
readers should refer to [32].

3.3. Overall approach for dynamic optimization

The preceding two subsections present the two phases in the
[PM-based simultaneous approach. This subsection mainly focuses
on how this IPM-based simultaneous approach is used to solve the
unified dynamic optimization problem we have formulated in
Section 2.

It is worthwhile to notice that our formulated dynamic opti-
mization problem (see Fig. 6) can be directly expressed in the form
of Eq. (6). First, now that the time-optimal parking motions are
pursued, the minimization criterion ¢(z(t;)) refers to tf in our
scheme. Second, z(t) represents all the differential state variables
in Eq. (1) (i.e., x(t),y(¢t), v(t),0(t) and ¢(t) in Section 2). Third, the
variable y(t) emerges in Section 3 stands for all the state variables
that are not differentiated (i.e., A(t), Bx(t), Cx(t), etc.). Fourth, u(t)
represents the control variables (i.e, w(t) and a(t)). Fifth,
G(z(t),y(t),u(t)) <0 in Eq. (6) can cover those inequalities in
Section 2. At this point, it should be noted that equalities are spe-
cial cases of inequalities (because any an equality g, = 0 can be
converted into a combination of two inequalities: g, > 0 and
g, < 0). Sixth, Eq. (6) also contains two-point boundary conditions
that should be met (e.g., v(t;) = 0).

Through the analyses mentioned above, we manage to fit the
adopted method into our formulated model. At the end of this
whole section, an overall flowchart of the IPM-based simultaneous
approach is illustrated in Fig. 9.

4. Simulation results

This section presents the results of simulations that were con-
ducted in “A Mathematical Programming Language” (AMPL) envi-
ronment [34] and executed on an Intel Core 2 Duo CPU with 2 GB
RAM that runs at 2.53 GHz under Microsoft Windows XP. We
employed version 3.11.9 of IPOPT (a commercial software package
of IPM) [32]. The notations and settings of critical parameters are
listed in Table 1.

In this study, we designed four scenarios to reflect the unified
capability of our formulated model (as well as the optimization
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Table 2
Details of four parking motion planning cases.
Case  Two-point boundary conditions Constraints (Vt € [0, tf]) Parametric settings®
no.
1 x(0) = —10 —2<a(t)<15 Piax = —3.390, Py, = 0.601 Pany = 7.156, Pypy = 1.193 X0 =-3
y(0) =3 B o e <2 Pypy = —3.577,Pypy = —1.094 Papy = 7.576, Popy = —0.646 yo=-125
90)—0 - Ylp)=0andinside- ¢ 5 -7y and Picx = ~8.100,Picy — ~0.594" | Pacy — 2.844. Pycy — —1.727 ™ Y BL— 6
2(0)=0 [ w(t) |< 1 Pipx = —7.913,Pyp, = 1.100 Papyx = 2.424, Papy = 0.111 BW =25
box terminal condition collision-free requirements
2 x(0) = —10 —2<ait)<15 Pyax = —5.998, Pypy = —1.462 Popx = 7.492, Py, = 1.034 X0 = -3
y(0) =3 B o e 2 Pigx = —7.431,Pipy = —2.385 | Popy — 7.348, Py, — —0.846 yo=-125
00)—0 - Ylp)=0andinside- ¢ 5 714 and Pix = ~9.894.Piy = 1441 | Py, = 2.508,Pcy — 0474 2" { Bl —6
2(0)=0 [ w(t) |< 1 Pipx = —8.461,Pyp, = 2.364 Papx = 2.652, Pypy = 1.406 BW =2.5
slot terminal requirement collision-free requirements
3 x(0) = —10 —2<a(t)<15 Pyax = —1.944, Py, = —2.353 Paax = 2.175,Pypy = —2.585 Xo = -3
y(0) =6 B v <2 Pygy = —3.650, Pyg, = —2.355 Papx = 0.375, Pypy = —2.021 Yo =—2.75
00)—0 - Ylp)=0andinside- ¢ 05 714 and Piox — —3.656,Picy — 2.195 | Pacy — 1.825.Pycy — 2611 24 V816
2(0)=0 [w(t) <1 Pipx = —1.951,Pypy = 2.197 Papx = 3.625, Pypy = 2.047 BW =55
slot terminal requirement collision-free requirements
4 x(0)=8 —2<a(t)<15 Piax = —4.750,P1ay = 0.917  ( Paay = 6.193, P55, = 2.425
y(0)=6 B | v(t) |< 2 Pipyx = —4.702,Pygy = —0.787 | Pypx = 7.443,Pyp, = 1.012
0(0) = —027 V) =0and [p(t) |< 0714 2nd Picx = ~9.250, Picy = —0.917" | Pacy = 3.807, Pacy = —2.204 °
2(0)=0 [w(t) <1 Pipx = —9.298,Pipy = 0.787 | Papx = 2.557, Papy = —0.791
inside-slot terminal requirement collision-free requirements P3px = —0.845,P3py = 7.420 ( Pypx = 1.471,Pypy = —1.679 X0 = -3
P3px = 0.620, P3gy = 8.291 Papx = 1.377,P4py = —3.563 and 4 Yo = -1.25
Pscy = 2.945,Pacy = 4.380 | Pacx = —3.471,Pycy = —3.321" BL=6
P3px = 1.480, P3py = 3.509 Pspx = —3.377,P4py = —1.437 BW =25

? Xo and y, originate from Fig. 5. These two parameters, together with BL and BW, determine the location and size of the terminal parking box region.
(Piax: Piay), (Pipx: Pipy) s (Picx, Picy) and (Pipy, Pipy) respectively denote the four (clockwise) edge points of the ith rectangular obstacle in the environment.
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Fig. 13. Optimization results for Case 4: (a) optimized parking motions and (b) optimized control/state variables associated with the optimized motions. The optimized

objective t; = 11.121.

approach) to handle parking motion planning problems. The park-
ing scenario details are listed in Table 2. The optimization results
are illustrated in Figs. 10-13.

5. Discussions

This section focuses on some analyses behind the obtained sim-
ulation results.

5.1. On the performance of the simulation results

Case 1 is often regarded as a parallel parking scenario. Unlike
most of the previous studies that consider circumstances with reg-
ularly placed obstacles around, Case 1 is concerned with the possi-
bility that a target parking region is occupied in part by a parked
car. As shown in Fig. 10(a), our autonomous car manages to find
a trajectory toward the destination. Interestingly, the car fully
stops as soon as its last one edge point locates on the terminal
parking box’s borderline. This observed phenomenon is easy to
understand: once all the terminal conditions are met, if the car still
moves, t; increases. Recall that t; is the minimization objective, a
relatively “economic” trajectory should be arranged in the opti-
mization procedure. Similar phenomenon can be easily found in
the remaining three cases. Case 2 considers a slightly different

scenario in which one parked car is in the way of the
to-be-parked car. As illustrated in Fig. 11(a), motions are computed
accordingly to avoid collision. Case 3 involves a perpendicular
parking scenario with two irregularly parked cars. The obtained
motions presented in Fig. 12(a) accord with common sense move-
ments. In Case 4, we placed more obstacles in the environment to
complicate the parking mission. Given the optimized motions in
Fig. 13(a), two maneuvers are necessary. In the first maneuver,
the car reverses in an appropriate direction. The second maneuver
assists the car inside the box region completely.

The optimized control/state profiles deserve discussion also.
Taking Case 1 for example (see Fig. 10(b)), we find that those
three state variables depicted in the first row (i.e., ¢(t),0(t) and
v(t)) are smoother than the control profiles plotted in the second
row (i.e., w(t) and a(t)). The rationale behind this phenomenon is
follows. First, since there are only bounded constraints imposed
on the control variables, the control profiles are not prohibited
to present an oscillation form. Those state variables, on the other
hand, should be differentiable in addition to satisfying the
bounded constraints, thus the state profiles should be continuous.
Another way to comprehend is, those state variables are com-
puted through integral, which reduces the oscillation that exists
in the integrand (i.e., w(t) or a(t)). Besides the smoothness issue,
one can also notice that ¢(t;) does not necessarily equal zero.
That is because we do not impose that sort of unrealistic
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Fig. 14. Local perspectives of the optimized motions in four parking scenarios.

constraints in our formulation. In the authors’ viewpoint, if the
autonomous vehicle finally stops in a target box region, no other
issues deserve consideration.

Viewing the four parking scenarios, we may notice that there is
not any parked car (i.e., obstacle) that locates exactly parallel/ver-
tical to the x coordinate. This is common. In fact, there are far more
parking scenario categories than the three prevailing ones (i.e., par
allel/perpendicular/echelon parking) that deserve investigation.
Instead of developing motion generation principles for more clas-
sified parking scenario categories, we view all the possible parking
scenarios in a same framework and then try to find solutions in a
same manner. This is where the unification of our model/method
lies in.

Besides that, in all four cases, the car does not collide with the
parked cars during its movements because the environment
description has been formulated accurately in Section 2 without
any abstraction or approximation. This accuracy can be validated
with the magnified view in Fig. 14.

Due to the unification of our model, a strong optimization sol-
ver is required to solve the formulated dynamic optimization prob-
lem. An analytical method that solves such generalized optimal
control problems has not been developed. Thus, a numerical
method is adopted in this work. However, numerical methods
commonly discretize the continuous variables into pieces, result-
ing in a large number of discretized variables to optimize and con-
straints to consider. In fact, given that Nfe = 20, there are as many
as 1167 variables to optimize in the transformed NLP formulation,
where 2458 equality/inequality constraints exist as well (for Cases
1-3). In Case 4, the number of equality/inequality constraints soars
to 3722 (because the obstacle number doubles). The successful
motion planning results indicate that IPM is an efficient
large-scale NLP solver. In spite of the success, it is still possible
what we have achieved are local optimal solutions. For the conve-
nience of future comparisons that might be conducted by other
researchers, we provide all the scenario details in Table 2, making
those four scenarios benchmark cases for subsequent methods to
compare with.

5.2. On the prospect of the concerned technique

Some readers may wonder how this technique can be applied in
the industry. Two questions that may be raised are (i) how to cap-
ture the environmental obstacles accurately before a car intends to
park along the road side? (ii) even when a car manages to park
itself, it may be difficult for the passengers to open the car doors
to get off (e.g., see Fig. 12(a)).

Instead of roadside parking, our proposed technique is designed
for parking an autonomous car in an indoor intelligent garage. The
passengers get off the car at the garage gate before the car drives
itself into the garage and then finds a vacant spot in a fully auton-
omous manner. Moreover, there will be a sufficient number of sen-
sors distributed on the garage ceiling/floor so as to collect a
complete knowledge of the environment. Audi revealed the con-
cept of such a parking-garage system at 2013 Consumer
Electronics Show in Las Vegas. We believe that this concept will
be widely applied soon. At that time, our concerned motion plan-
ning technique will be more useful.

6. Conclusions and future work

In this paper, we have proposed a motion planner for the auton-
omous parking missions. The potential highlights of this work are
listed as follows.

First, our proposed technique targets directly on the industrial
frontier and caters for true needs. When a car enters such an intel-
ligent garage, it makes decisions in a fully automated manner. We
believe that such a parking-garage system helps form a “small
world” of intelligent transportation. Investigations on this small
world act as a preliminary but critical step to establishing an urban
intelligent transportation system with fully autonomous cars trav-
elling in the streets.

Second, our formulated dynamic optimization model aims to
describe the parking missions in a unified, accurate, realistic and
flexible way. In detail, (i) various kinds of parking scenarios are
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described in a unified manner; (ii) no abstraction or approximation
exists in the dynamic optimization model; (iii) the inside-box ter-
minal condition and the thought to let ¢(t;) free cater for true
needs; and (iv) other user-specific constraints/conditions/criteria
we did not mention or consider can still be added in this frame-
work provided that they can be described explicitly through
equalities/inequalities.

Third, the strong capability of the IPM-based simultaneous
approach guarantees the success to solve the formulated unified
dynamic optimization problems. Although no analytical solutions
are achieved, the formulated dynamic optimization problem can

be solved at a precision of 107", In fact, this is the first time that
the high-efficient simultaneous approach has been applied in this
research area.

Most importantly, our proposed technique is based on a com-
plete and objective knowledge of the world (because all the neces-
sary knowledge, i.e., the kinematic principle and environment
information are accurately described in our formulation). In this
sense, compared to the prevailing methods which are based on
the assimilated (subjective) human parking knowledge, our unique
thought enriches the concept of knowledge-based systems and
opens a brand-new gate for this industry.

Our proposed technique will be implemented on a real robot.
Then, providing real-time solutions efficiently (like that in [35])
is a critical issue, which will be our future work.
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