31 research outputs found

    Wavelet-based Edge Multiscale Parareal Algorithm for subdiffusion equations with heterogeneous coefficients in a large time domain

    Full text link
    We present the Wavelet-based Edge Multiscale Parareal (WEMP) Algorithm, recently proposed in [Li and Hu, {\it J. Comput. Phys.}, 2021], for efficiently solving subdiffusion equations with heterogeneous coefficients in long time. This algorithm combines the benefits of multiscale methods, which can handle heterogeneity in the spatial domain, and the strength of parareal algorithms for speeding up time evolution problems when sufficient processors are available. Our algorithm overcomes the challenge posed by the nonlocality of the fractional derivative in previous parabolic problem work by constructing an auxiliary problem on each coarse temporal subdomain to completely uncouple the temporal variable. We prove the approximation properties of the correction operator and derive a new summation of exponential to generate a single-step time stepping scheme, with the number of terms of O(logτf2)\mathcal{O}(|\log{\tau_f}|^2) independent of the final time, where τf\tau_f is the fine-scale time step size. We establish the convergence rate of our algorithm in terms of the mesh size in the spatial domain, the level parameter used in the multiscale method, the coarse-scale time step size, and the fine-scale time step size. Finally, we present several numerical tests that demonstrate the effectiveness of our algorithm and validate our theoretical results.Comment: arXiv admin note: text overlap with arXiv:2003.1044

    Learning Coarse Propagators in Parareal Algorithm

    Full text link
    The parareal algorithm represents an important class of parallel-in-time algorithms for solving evolution equations and has been widely applied in practice. To achieve effective speedup, the choice of the coarse propagator in the algorithm is vital. In this work, we investigate the use of learned coarse propagators. Building upon the error estimation framework, we present a systematic procedure for constructing coarse propagators that enjoy desirable stability and consistent order. Additionally, we provide preliminary mathematical guarantees for the resulting parareal algorithm. Numerical experiments on a variety of settings, e.g., linear diffusion model, Allen-Cahn model, and viscous Burgers model, show that learning can significantly improve parallel efficiency when compared with the more ad hoc choice of some conventional and widely used coarse propagators.Comment: 24 page

    Towards Faster-than-real-time Power System Simulation Using a Semi-analytical Approach and High-performance Computing

    Get PDF
    This dissertation investigates two possible directions of achieving faster-than-real-time simulation of power systems. The first direction is to develop a semi-analytical solution which represents the nonlinear dynamic characteristics of power systems in a limited time period. The second direction is to develop a parallel simulation scheme which allows the local numerical solutions of power systems to be developed independently in consecutive time intervals and then iteratively corrected toward the accurate global solution through the entire simulation time period. For the first direction, the semi-analytical solution is acquired using Adomian decomposition method (ADM). The ADM assumes the analytical solution of any nonlinear system can be decomposed into the summation of infinite analytical expressions. Those expressions are derived recursively using the system differential equations. By only keeping a finite number of those analytical expressions, an approximation of the analytical solution is yielded, which is defined as a semi-analytical solution. The semi-analytical solutions can be developed offline and evaluated online to facilitate the speedup of simulations. A parallel implementation and variable time window approach for the online evaluation stage are proposed in addition to the time performance analysis. For the second direction, the Parareal-in-time algorithm is tested for power system simulation. Parareal is essentially a multiple shooting method. It decomposes the simulation time into coarse time intervals and then fine time intervals within each coarse interval. The numerical integration uses a computational cheap solver on the coarse time grid and an expensive solver on the fine time grids. The solution within each coarse interval is propagated independently using the fine solver. The mismatch of the solution between the coarse solution and fine solution is corrected iteratively. The theoretical speedup can be achieved is the ratio of the coarse interval number and iteration number. In this dissertation, the Parareal algorithm is tested on the North American eastern interconnection system with around 70,000 buses and 5,000 generators

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach
    corecore