143,817 research outputs found

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    Two-Photon Polarization Interference for Pulsed SPDC in a PPKTP Waveguide

    Get PDF
    We study the spectral properties of Spontaneous Parametric Down Conversion in a periodically poled waveguided structure of KTP crystal pumped by ultra-short pulses. Our theoretical analysis reveals a strongly multimode and asymmetric structure of the two-photon spectral amplitude for type-II SPDC. Experimental evidence, based on Hong-Ou-Mandel polarization interference with narrowband filtering, confirms this result.Comment: Submitted for publicatio

    Interaction of cavity solitons in degenerate optical parametric oscillators

    Get PDF
    Numerical studies together with asymptotic and spectral analysis establish regimes where soliton pairs in degenerate optical parametric oscillators fuse, repel, or form bound states. A novel bound state stabilized by coupled internal oscillations is predicted.Comment: 3 page

    Detecting long-range dependence in non-stationary time series

    Full text link
    An important problem in time series analysis is the discrimination between non-stationarity and longrange dependence. Most of the literature considers the problem of testing specific parametric hypotheses of non-stationarity (such as a change in the mean) against long-range dependent stationary alternatives. In this paper we suggest a simple approach, which can be used to test the null-hypothesis of a general non-stationary short-memory against the alternative of a non-stationary long-memory process. The test procedure works in the spectral domain and uses a sequence of approximating tvFARIMA models to estimate the time varying long-range dependence parameter. We prove uniform consistency of this estimate and asymptotic normality of an averaged version. These results yield a simple test (based on the quantiles of the standard normal distribution), and it is demonstrated in a simulation study that - despite of its semi-parametric nature - the new test outperforms the currently available methods, which are constructed to discriminate between specific parametric hypotheses of non-stationarity short- and stationarity long-range dependence.Comment: Keywords and phrases: spectral density, long-memory, non-stationary processes, goodness-of-fit tests, empirical spectral measure, integrated periodogram, locally stationary process, approximating model

    Parametric spectral analysis: scale and shift

    Get PDF
    We introduce the paradigm of dilation and translation for use in the spectral analysis of complex-valued univariate or multivariate data. The new procedure stems from a search on how to solve ambiguity problems in this analysis, such as aliasing because of too coarsely sampled data, or collisions in projected data, which may be solved by a translation of the sampling locations. In Section 2 both dilation and translation are first presented for the classical one-dimensional exponential analysis. In the subsequent Sections 3--7 the paradigm is extended to more functions, among which the trigonometric functions cosine, sine, the hyperbolic cosine and sine functions, the Chebyshev and spread polynomials, the sinc, gamma and Gaussian function, and several multivariate versions of all of the above. Each of these function classes needs a tailored approach, making optimal use of the properties of the base function used in the considered sparse interpolation problem. With each of the extensions a structured linear matrix pencil is associated, immediately leading to a computational scheme for the spectral analysis, involving a generalized eigenvalue problem and several structured linear systems. In Section 8 we illustrate the new methods in several examples: fixed width Gaussian distribution fitting, sparse cardinal sine or sinc interpolation, and lacunary or supersparse Chebyshev polynomial interpolation

    Blind extraction of an exoplanetary spectrum through Independent Component Analysis

    Full text link
    Blind-source separation techniques are used to extract the transmission spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument. Such a 'blind' analysis of the data is based on the concept of independent component analysis. The de-trending of Hubble/NICMOS data using the sole assumption that nongaussian systematic noise is statistically independent from the desired light-curve signals is presented. By not assuming any prior, nor auxiliary information but the data themselves, it is shown that spectroscopic errors only about 10 - 30% larger than parametric methods can be obtained for 11 spectral bins with bin sizes of ~0.09 microns. This represents a reasonable trade-off between a higher degree of objectivity for the non-parametric methods and smaller standard errors for the parametric de-trending. Results are discussed in the light of previous analyses published in the literature. The fact that three very different analysis techniques yield comparable spectra is a strong indication of the stability of these results.Comment: ApJ accepte
    • …
    corecore