34,760 research outputs found

    MultiVeStA: Statistical Model Checking for Discrete Event Simulators

    Get PDF
    The modeling, analysis and performance evaluation of large-scale systems are difficult tasks. Due to the size and complexity of the considered systems, an approach typically followed by engineers consists in performing simulations of systems models to obtain statistical estimations of quantitative properties. Similarly, a technique used by computer scientists working on quantitative analysis is Statistical Model Checking (SMC), where rigorous mathematical languages (typically logics) are used to express systems properties of interest. Such properties can then be automatically estimated by tools performing simulations of the model at hand. These property specifications languages, often not popular among engineers, provide a formal, compact and elegant way to express systems properties without needing to hard-code them in the model definition. This paper presents MultiVeStA, a statistical analysis tool which can be easily integrated with existing discrete event simulators, enriching them with efficient distributed statistical analysis and SMC capabilities

    Model the System from Adversary Viewpoint: Threats Identification and Modeling

    Full text link
    Security attacks are hard to understand, often expressed with unfriendly and limited details, making it difficult for security experts and for security analysts to create intelligible security specifications. For instance, to explain Why (attack objective), What (i.e., system assets, goals, etc.), and How (attack method), adversary achieved his attack goals. We introduce in this paper a security attack meta-model for our SysML-Sec framework, developed to improve the threat identification and modeling through the explicit representation of security concerns with knowledge representation techniques. Our proposed meta-model enables the specification of these concerns through ontological concepts which define the semantics of the security artifacts and introduced using SysML-Sec diagrams. This meta-model also enables representing the relationships that tie several such concepts together. This representation is then used for reasoning about the knowledge introduced by system designers as well as security experts through the graphical environment of the SysML-Sec framework.Comment: In Proceedings AIDP 2014, arXiv:1410.322

    Social working memory: neurocognitive networks and directions for future research.

    Get PDF
    Navigating the social world requires the ability to maintain and manipulate information about people's beliefs, traits, and mental states. We characterize this capacity as social working memory (SWM). To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the "mentalizing network") that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires SWM and that both the mentalizing and canonical working memory neurocognitive networks support SWM. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed

    TEMPOS: A Platform for Developing Temporal Applications on Top of Object DBMS

    Get PDF
    This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered: a query language and a visual browser. The query language, namely TempOQL, is an extension of OQL supporting the manipulation of histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals with regard to applications' requirements has been validated through concrete case studies

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin
    corecore