478 research outputs found

    Parameterized verification

    Get PDF
    The goal of parameterized verification is to prove the correctness of a system specification regardless of the number of its components. The problem is of interest in several different areas: verification of hardware design, multithreaded programs, distributed systems, and communication protocols. The problem is undecidable in general. Solutions for restricted classes of systems and properties have been studied in areas like theorem proving, model checking, automata and logic, process algebra, and constraint solving. In this introduction to the special issue, dedicated to a selection of works from the Parameterized Verification workshop PV \u201914 and PV \u201915, we survey some of the works developed in this research area

    Finite Model Finding for Parameterized Verification

    Get PDF
    In this paper we investigate to which extent a very simple and natural "reachability as deducibility" approach, originated in the research in formal methods in security, is applicable to the automated verification of large classes of infinite state and parameterized systems. The approach is based on modeling the reachability between (parameterized) states as deducibility between suitable encodings of states by formulas of first-order predicate logic. The verification of a safety property is reduced to a pure logical problem of finding a countermodel for a first-order formula. The later task is delegated then to the generic automated finite model building procedures. In this paper we first establish the relative completeness of the finite countermodel finding method (FCM) for a class of parameterized linear arrays of finite automata. The method is shown to be at least as powerful as known methods based on monotonic abstraction and symbolic backward reachability. Further, we extend the relative completeness of the approach and show that it can solve all safety verification problems which can be solved by the traditional regular model checking.Comment: 17 pages, slightly different version of the paper is submitted to TACAS 201

    Parameterized Verification of Safety Properties in Ad Hoc Network Protocols

    Full text link
    We summarize the main results proved in recent work on the parameterized verification of safety properties for ad hoc network protocols. We consider a model in which the communication topology of a network is represented as a graph. Nodes represent states of individual processes. Adjacent nodes represent single-hop neighbors. Processes are finite state automata that communicate via selective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this model we consider a decision problem that can be expressed as the verification of the existence of an initial topology in which the execution of the protocol can lead to a configuration with at least one node in a certain state. The decision problem is parametric both on the size and on the form of the communication topology of the initial configurations. We draw a complete picture of the decidability and complexity boundaries of this problem according to various assumptions on the possible topologies.Comment: In Proceedings PACO 2011, arXiv:1108.145

    Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    Full text link
    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presentation of rewrite rules as well as the involved order, and using results for well-structured transition systems. We apply the resulting procedure to the analysis of the Distributed Dining Philosophers protocol on an arbitrary network structure.Comment: Extended version of a submittion accepted at RP'14 Worksho

    Parameterized Verification of Algorithms for Oblivious Robots on a Ring

    Full text link
    We study verification problems for autonomous swarms of mobile robots that self-organize and cooperate to solve global objectives. In particular, we focus in this paper on the model proposed by Suzuki and Yamashita of anonymous robots evolving in a discrete space with a finite number of locations (here, a ring). A large number of algorithms have been proposed working for rings whose size is not a priori fixed and can be hence considered as a parameter. Handmade correctness proofs of these algorithms have been shown to be error-prone, and recent attention had been given to the application of formal methods to automatically prove those. Our work is the first to study the verification problem of such algorithms in the parameter-ized case. We show that safety and reachability problems are undecidable for robots evolving asynchronously. On the positive side, we show that safety properties are decidable in the synchronous case, as well as in the asynchronous case for a particular class of algorithms. Several properties on the protocol can be decided as well. Decision procedures rely on an encoding in Presburger arithmetics formulae that can be verified by an SMT-solver. Feasibility of our approach is demonstrated by the encoding of several case studies
    corecore