4 research outputs found

    The 2CNF Boolean Formula Satisfiability Problem and the Linear Space Hypothesis

    Full text link
    We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL) decision, search, and optimization problems parameterized by size parameters using simultaneously polynomial time and sub-linear space on multi-tape deterministic Turing machines. We are particularly focused on a special NL-complete problem, 2SAT---the 2CNF Boolean formula satisfiability problem---parameterized by the number of Boolean variables. It is shown that 2SAT with nn variables and mm clauses can be solved simultaneously polynomial time and (n/2clogn)polylog(m+n)(n/2^{c\sqrt{\log{n}}})\, polylog(m+n) space for an absolute constant c>0c>0. This fact inspires us to propose a new, practical working hypothesis, called the linear space hypothesis (LSH), which states that 2SAT3_3---a restricted variant of 2SAT in which each variable of a given 2CNF formula appears at most 3 times in the form of literals---cannot be solved simultaneously in polynomial time using strictly "sub-linear" (i.e., m(x)εpolylog(x)m(x)^{\varepsilon}\, polylog(|x|) for a certain constant ε(0,1)\varepsilon\in(0,1)) space on all instances xx. An immediate consequence of this working hypothesis is LNL\mathrm{L}\neq\mathrm{NL}. Moreover, we use our hypothesis as a plausible basis to lead to the insolvability of various NL search problems as well as the nonapproximability of NL optimization problems. For our investigation, since standard logarithmic-space reductions may no longer preserve polynomial-time sub-linear-space complexity, we need to introduce a new, practical notion of "short reduction." It turns out that, parameterized with the number of variables, 2SAT3\overline{\mathrm{2SAT}_3} is complete for a syntactically restricted version of NL, called Syntactic NLω_{\omega}, under such short reductions. This fact supports the legitimacy of our working hypothesis.Comment: (A4, 10pt, 25 pages) This current article extends and corrects its preliminary report in the Proc. of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), August 21-25, 2017, Aalborg, Denmark, Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2017, vol. 83, pp. 62:1-62:14, 201

    Power of Counting by Nonuniform Families of Polynomial-Size Finite Automata

    Full text link
    Lately, there have been intensive studies on strengths and limitations of nonuniform families of promise decision problems solvable by various types of polynomial-size finite automata families, where "polynomial-size" refers to the polynomially-bounded state complexity of a finite automata family. In this line of study, we further expand the scope of these studies to families of partial counting and gap functions, defined in terms of nonuniform families of polynomial-size nondeterministic finite automata, and their relevant families of promise decision problems. Counting functions have an ability of counting the number of accepting computation paths produced by nondeterministic finite automata. With no unproven hardness assumption, we show numerous separations and collapses of complexity classes of those partial counting and gap function families and their induced promise decision problem families. We also investigate their relationships to pushdown automata families of polynomial stack-state complexity.Comment: (A4, 10pt, 21 pages) This paper corrects and extends a preliminary report published in the Proceedings of the 24th International Symposium on Fundamentals of Computation Theory (FCT 2023), Trier, Germany, September 18-24, 2023, Lecture Notes in Computer Science, vol. 14292, pp. 421-435, Springer Cham, 202
    corecore