7,037 research outputs found

    Parameterized Algorithms for Finding Square Roots

    Get PDF
    We show that the following two problems are fixed-parameter tractable with parameter k: testing whether a connected n-vertex graph with m edges has a square root with at most n − 1 + k edges and testing whether such a graph has a square root with at least m − k edges. Our first result implies that squares of graphs obtained from trees by adding at most k edges can be recognized in polynomial time for every fixed k ≄ 0; previously this result was known only for k = 0. Our second result is equivalent to stating that deciding whether a graph can be modified into a square root of itself by at most k edge deletions is fixed-parameter tractable with parameter k

    Sparse square roots.

    Get PDF
    We show that it can be decided in polynomial time whether a graph of maximum degree 6 has a square root; if a square root exists, then our algorithm finds one with minimum number of edges. We also show that it is FPT to decide whether a connected n-vertex graph has a square root with at most n − 1 + k edges when this problem is parameterized by k. Finally, we give an exact exponential time algorithm for the problem of finding a square root with maximum number of edges

    Nested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams

    Full text link
    Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite rules, based on which also some general patterns emerging in the process can be obtained.Comment: 13 pages LATEX, one style file, Proceedings of Loops and Legs in Quantum Field Theory -- LL2014,27 April 2014 -- 02 May 2014 Weimar, German

    The Bane of Low-Dimensionality Clustering

    Get PDF
    In this paper, we give a conditional lower bound of nΩ(k)n^{\Omega(k)} on running time for the classic k-median and k-means clustering objectives (where n is the size of the input), even in low-dimensional Euclidean space of dimension four, assuming the Exponential Time Hypothesis (ETH). We also consider k-median (and k-means) with penalties where each point need not be assigned to a center, in which case it must pay a penalty, and extend our lower bound to at least three-dimensional Euclidean space. This stands in stark contrast to many other geometric problems such as the traveling salesman problem, or computing an independent set of unit spheres. While these problems benefit from the so-called (limited) blessing of dimensionality, as they can be solved in time nO(k1−1/d)n^{O(k^{1-1/d})} or 2n1−1/d2^{n^{1-1/d}} in d dimensions, our work shows that widely-used clustering objectives have a lower bound of nΩ(k)n^{\Omega(k)}, even in dimension four. We complete the picture by considering the two-dimensional case: we show that there is no algorithm that solves the penalized version in time less than no(k)n^{o(\sqrt{k})}, and provide a matching upper bound of nO(k)n^{O(\sqrt{k})}. The main tool we use to establish these lower bounds is the placement of points on the moment curve, which takes its inspiration from constructions of point sets yielding Delaunay complexes of high complexity

    Exact Algorithms for Solving Stochastic Games

    Full text link
    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games
    • 

    corecore