13 research outputs found

    NAIS: A Calibrated Immune Inspired Algorithm to solve Binary Constraint Satisfaction Problems

    Get PDF
    Abstract We propose in this paper an artificial immune system to solve CSPs. The algorithm has been designed following the framework proposed by de Castro and Timmis. We have calibrated our algorithm using Relevance Estimation and Value Calibration (REVAC), that is a new technique, recently introduced to find the parameter values for evolutionary algorithms. The tests were carried out using random generated binary constraint satisfaction problems on the transition phase where are the hardest problems. The algorithm shown to be able to find quickly good quality solutions

    A General Framework for Multi-Objective Optimization Immune Algorithms

    Full text link

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    DEVELOPMENT OF SECUREPLUS ANTIVIRUS WITH THE ARTIFICIAL IMMUNE SYSTEMMODEL

    Get PDF
    This paper is about Malware proliferation in the wide and the development of an Antivirus called Secure Plus. Malware is a generic name for malfunctioned program codes that could wreak destructive impacts on Information Technology critical infrastructures. These malware usually use various techniques to avoid being detected; usually they are encrypted using hybridized cryptographic algorithms. Malware may be detected using antivirus that can scan the database signatures already accumulated and stored by antivirus vendors in some server. These stored databases signatures can then be compared with zero-day malware through comparison with the benign software. The zero-day malware are of sophisticated program codes that can transmute into different transforming patterns; yet retain their portent functionalities attributes and are now of billion categories by deverse clones. This paper after over viewing the literatures on ground (and they are of large numerical numbers), attempts to make its contribution to the design and development of Antivirus that can detect those zero-day or metamorphic malware. This proposed Antivirus being developed is christened Secure Plus that applies the heuristic Artificial Immune System Algorithm for the design and development. The tested experimental outputs are provided as prove of the Secure Plus effectual functionality worthy of application but need further works through to detect malware proactively

    Evolutionary Algorithms with Mixed Strategy

    Get PDF

    An Evolutionary Algorithm to Generate Ellipsoid Detectors for Negative Selection

    Get PDF
    Negative selection is a process from the biological immune system that can be applied to two-class (self and nonself) classification problems. Negative selection uses only one class (self) for training, which results in detectors for the other class (nonself). This paradigm is especially useful for problems in which only one class is available for training, such as network intrusion detection. Previous work has investigated hyper-rectangles and hyper-spheres as geometric detectors. This work proposes ellipsoids as geometric detectors. First, the author establishes a mathematical model for ellipsoids. He develops an algorithm to generate ellipsoids by training on only one class of data. Ellipsoid mutation operators, an objective function, and a convergence technique are described for the evolutionary algorithm that generates ellipsoid detectors. Testing on several data sets validates this approach by showing that the algorithm generates good ellipsoid detectors. Against artificial data sets, the detectors generated by the algorithm match more than 90% of nonself data with no false alarms. Against a subset of data from the 1999 DARPA MIT intrusion detection data, the ellipsoids generated by the algorithm detected approximately 98% of nonself (intrusions) with an approximate 0% false alarm rate

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion
    corecore