
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2005

An Evolutionary Algorithm to Generate Ellipsoid Detectors for An Evolutionary Algorithm to Generate Ellipsoid Detectors for

Negative Selection Negative Selection

Joseph M. Shapiro

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Shapiro, Joseph M., "An Evolutionary Algorithm to Generate Ellipsoid Detectors for Negative Selection"
(2005). Theses and Dissertations. 3856.
https://scholar.afit.edu/etd/3856

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F3856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3856?utm_source=scholar.afit.edu%2Fetd%2F3856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

An Evolutionary Algorithm to Generate Ellipsoid Detectors for

Negative Selection

THESIS

Joseph M. Shapiro, Civilian

AFIT/GCS/ENG/05-20

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the official
policy of position of the Department of Defense or the United States Government.

AFIT/GCS/ENG/05-20

An Evolutionary Algorithm to Generate Ellipsoid Detectors for
Negative Selection

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Joseph M. Shapiro, B.S.C.S.

Civilian

March 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/05-20

An Evolutionary Algorithm to Generate Ellipsoid Detectors for
Negative Selection

Joseph M. Shapiro, B.S.C.S.

Civilian

Approved:

Dr. Gary B. Lamont, PhD (Chairman) date

Dr. Gilbert L. Peterson, PhD (Member) date

Dr. Robert F. Mills, PhD (Member) date

Dr. Richard A. Raines, PhD (Member) date

jshapiro
Text Box
/signed/

jshapiro
Text Box
/signed/

jshapiro
Text Box
/signed/

jshapiro
Text Box
/signed/

AFIT/GCS/ENG/05-20

Abstract

Negative selection is a process from the biological immune system that can be applied

to two-class (self and nonself) classification problems. Negative selection uses only one class

(self) for training, which results in detectors for the other class (nonself). This paradigm

is especially useful for problems in which only one class is available for training, such as

network intrusion detection. Previous work has investigated hyper-rectangles and hyper-

spheres as geometric detectors.

This work proposes ellipsoids as geometric detectors. First, we establish a mathemat-

ical model for ellipsoids. We develop an algorithm to generate ellipsoids by training on only

one class of data. Ellipsoid mutation operators, an objective function, and a convergence

technique are described for the evolutionary algorithm that generates ellipsoid detectors.

Testing on several data sets validates this approach by showing that our algorithm gener-

ates good ellipsoid detectors. Against artificial data sets, the detectors generated by our

algorithm match > 90% of nonself data with 0% false alarm. Against a subset of data from

the 1999 DARPA MIT intrusion detection data, the ellipsoids generated by our algorithm

detect ∼ 98% of nonself (intrusions) with a ∼ 0% false alarm rate.

iv

Table of Contents
Page

Abstract . iv

List of Figures . viii

List of Tables . x

List of Symbols . xi

List of Abbreviations . xiii

List of Algorithms . xiv

I. Introduction . 1
1.1 Network Security and Artificial Immune Systems 1
1.2 Problem Statement . 2
1.3 Approach . 3
1.4 Document Overview . 3

II. Background . 5
2.1 Symbolic Problem Definition 5
2.2 Network Intrusion Detection 6

2.2.1 Features of an Intrusion Detection System 7
2.2.2 Taxonomy of Intrusion Detection System Structure . 7
2.2.3 Signature Detection v. Anomaly Detection 8
2.2.4 Network Anomaly Detection Problem 9
2.2.5 Network Data Models 10

2.3 Finding the Malicious Data Points in Network Data 13
2.3.1 Machine Learning and Statistical Techniques for Iden-

tifying Nonself . 14
2.4 Artificial Immune Systems as a Machine Learning Approach 18

2.4.1 Artificial Immune Systems Background 18
2.5 Clonal Selection AIS . 19

2.5.1 Mapping from BIS to AIS 19
2.6 AIS Inspired Algorithms . 28

2.6.1 Clonal Selection . 31
2.7 Network Data Classification 32
2.8 Human Interaction in Searching for Good Antibodies 33
2.9 Testing Network Intrusion Detection Systems 34

2.9.1 Network Intrusion Data Sets 34
2.9.2 Network Intrusion Detection System Testing Methods 35

2.10 Evolutionary Algorithms . 36
2.11 Summary . 36

v

Page

III. High Level Design . 38
3.1 Ellipsoids as Detectors . 38
3.2 Ellipsoids . 39

3.2.1 Mathematical Definition of Ellipsoid 39
3.2.2 Volume of an Ellipsoid 41
3.2.3 Is a Point Inside of an Ellipsoid? 43

3.3 An Evolutionary Algorithm to Evolve a Set of Ellipsoids . . 44
3.3.1 Crossover With Ellipsoids 45
3.3.2 Mutating an Ellipsoid 46
3.3.3 Objective Function 55
3.3.4 Convergence . 68
3.3.5 Algorithm Parameters 70

3.4 Algorithm Summary and Complexity 71
3.5 Implementation Details . 71

3.5.1 Feature Representation: Binary v. Real Value 71
3.5.2 Implementation Language 72

IV. Experimental Design . 75
4.1 Validation of Model . 76

4.1.1 Pedagogical Problems 76
4.1.2 Real World Test Data Sets 81

4.2 Test Data Set Taxonomy . 86

V. Results and Analysis . 88
5.1 Pedagogical Problems . 88
5.2 MIT Lincoln Labs Data . 101
5.3 Iris . 105

VI. Conclusion . 117
6.1 Research Problem . 117
6.2 Contributions . 118

6.2.1 Pedagogical Data Sets 119
6.2.2 Algorithm to Evolve Ellipsoids 119
6.2.3 2n-way Tree for Ellipsoid Approximations 119
6.2.4 Ellipsoids as Detectors 119

6.3 Future Work . 119
6.4 Summary . 121

vi

Page

Appendix A. Biological Immune System Background 122
A.1 Overview . 123

A.1.1 Distributed with no Central Control 123
A.1.2 Memory . 123
A.1.3 Multi-Layered . 124
A.1.4 Preventative . 126
A.1.5 Pattern Recognition 126
A.1.6 Positive Selection . 126
A.1.7 Negative Selection 127

Appendix B. Random Number Generator 128

Appendix C. Algorithm Pseudocode . 129

Bibliography . 136

Index . 1

Author Index . 1

vii

List of Figures

Figure Page

1. Kim’s AIS model . 25

2. Harmer’s AIS Model . 26

3. Dasgupta’s Variable-Sized Detectors 30

4. Self Membership Levels . 31

5. Elllipsoid Variables . 40

6. Good Crossover . 47

7. Semiaxis Mutation . 48

8. Center Mutation Along Coordinate Axis 50

9. Semiaxis Mutation . 51

10. Orientation Mutation PDF . 52

11. Degenerate Ellipsoid Intersection 58

12. Center Distance Overlap Problems 59

13. Spherical Overlap Check Problems 60

14. Segment Tree . 63

15. 2n-way Tree Approximation Limitation 65

16. PD1 . 77

17. PD2 . 78

18. PD3 . 78

19. PD4 . 78

20. PD5 . 79

21. PD6 . 79

22. Ellipsoid v. Sphere Detector Bar Graph 89

23. Ellipsoid Evolution, PD1 . 91

24. Ellipsoid Evolution, PD2 . 92

25. Ellipsoid Evolution, PD3 . 93

viii

Figure Page

26. Ellipsoid Evolution, PD4 . 94

27. Ellipsoid Evolution, PD5 . 95

28. Ellipsoid Evolution, PD4 . 96

29. Ellipsoid Performance v. Generation, PD1-PD6 97

30. Sphere Performance v. Generation, PD1-PD6 98

31. Coverage v. Detectors, Ellipsoid and Sphere, PD1-PD6 99

32. Final Spheres after Evolution, PD1-PD6 100

33. Ellipsoid Performance v. Generation, MIT Data Set 102

34. EA Performance v. Classification Performance Discrepancy 103

35. Sphere Performance v. Generation 103

36. Performance v. Detector Count, Ellipsoid and Sphere 104

37. Coverage Comparison, Ellipsoid v. Sphere, MIT Data Set 104

38. Classification v. Generation, Ellipsoid and Sphere, Setosa 107

39. Classification v. Generation, Ellipsoid and Sphere, Versicolor 108

40. Classification v. Generation, Ellipsoid and Sphere, Virginica 109

41. Classification v. Detectors, Ellipsoid and Sphere, Setosa 110

42. Classification v. Detectors, Ellipsoid and Sphere, Versicolor 111

43. Classification v. Detectors, Ellipsoid and Sphere, Virginica 112

44. ROC, Ellipsoid and Sphere, Train Setosa 113

45. ROC, Ellipsoid and Sphere, Train Versicolor 114

46. ROC, Ellipsoid and Sphere, Train Virginica 115

ix

List of Tables

Table Page

1. Summary of Network Data Models 13

2. Mapping BIS to AIS . 21

3. Classification Errors . 33

4. Volume of Hyper-Sphere . 42

5. Pedagogical Data Set Parameters 80

6. Iris Data Set Parameters . 83

7. Normalization of MIT Data Set . 84

8. MIT Data Set Week Two Attack Profile 85

9. MIT Data Set Parameters . 85

10. Test Data Set Characteristics . 87

11. Performance of Ellipsoids and Spheres, PD1-PD6 89

12. Negative Selection Algorithm Comparison on MIT Data Set 105

13. Comparison of Ellipsoid, Sphere, V-Detector on Iris Data Set 116

x

List of Symbols

Symbol Page

F Set of Fields in a Sample . 5

c number of fields in a sample 5

B its for each field in a network sample 5

bi number of bits in field fi . 5

fi ith field in F . 5

P All possible points in sample space 5

p a point in sample space(p ∈ P) 5

N set of nonself points (N ⊆ P) 5

S set of self points . 5

D set of detectors . 5

di detector (d ∈ D) . 6

N all networks . 9

T all time periods . 9

n a network (n ∈ N) . 9

t time period (≈ ∈ T) . 9

∆ subset of all points (∆ ⊆ P) 9

s set of self points . 10

n set of nonself points . 10

x0 center of ellipsoid along x coordinate axis 39

y0 center of ellipsoid along y coordinate axis 39

a half length of semiaxis oriented along x coordinate axis in 2d

ellipsoid . 39

b half length of semiaxis oriented along y coordinate axis in 2d

ellipsoid . 39

ω center of n-d ellipsoid . 39

V orthonormal semiaxis orientations of ellipsoid 39

xi

Symbol Page

Λ matrix that defines semiaxis lengths 40

`i length of ith semiaxis . 40

EA Evolutionary Algorithm . 44

v orthonormal matrix . 50

xii

List of Abbreviations
Abbreviation Page

AIS Artificial Immune System . 1
BIS Biological Immune System . 2
NID Network Intrusion Detection 2
ID Intrusion Detection . 3
IDS Intrusion Detection Systems 6

xiii

List of Algorithms
Algorithm Page

1. insertEllipsoid . 129
2. insertEllipsoid . 130
3. generateEllipses . 131
4. growEllipse . 132
5. mutateCenter . 132
6. mutateLength . 132
7. mutateOrientation . 133
8. insertEllipsoidIntoSegmentTree . 134
9. allCornersInside . 135
10. numPointsCoveredInSegmentTree . 135

xiv

An Evolutionary Algorithm to Generate Ellipsoid Detectors for

Negative Selection

I. Introduction

One of the most harmful things that can happen to an organization is to have a malicious

network intrusion. This can cause the loss of revenues, data, productive work time, and

customer confidence. For government and military entities, a successful intrusion can cause

all of the aforementioned problems and result in the compromise of data or information

that is important to national security or military might. Needless to say, it is of utmost

importance to protect networks from attacks.

1.1 Network Security and Artificial Immune Systems

Network security is the field that deals with protecting networks from malicious

activity. Although it is not a new research area [50], network security has recently gained

prominence because of the ubiquity of networks, an increase in the frequency of attacks, and

an increase in the resulting damage. Many network security solutions have been proposed

and implemented. These include virus detection, firewalls, and anomaly detection.

In recent years, several research efforts have noticed striking similarities between the

problem of protecting a network from malicious attacks and the way that the body defends

itself against harmful invaders such as viruses and bacterial infections. This observation

resulted in a new algorithmic paradigm, the artificial immune system (AIS).

Many research efforts have identified negative selection as an AIS process that has

many desirable properties in the computational domain. Negative selection generates de-

tectors that are released into the body to seek out harmful invaders. The most impressive

characteristic of the negative selection algorithm is that detectors do not misidentify good

self inhabitants as harmful invaders. It is also remarkable that such detectors can be

generated when they do not have harmful invaders to “train” on.

1

Negative selection maps smoothly to the computer domain. The good self inhabi-

tants in the biological immune system (BIS) are normal activity or data in a computer.

Harmful invaders from the BIS are malicious attacks in the computer domain. We iden-

tify normal activity/data in the computer domain as “self”, while malicious entities are

labelled “nonself.”

Detectors generated by negative selection can be used to recognize nonself data in a

two-class problem that provides only self data for training. Network intrusion detection

(NID) is such a problem. There is abundant self data to train on but only minimal nonself

data, since intrusions are often new and unique. NID is not the only application for

negative selection. Negative selection can be used to generate detectors for any class of

any classification problem. Application domains include medical data, factory anomaly

detection, plant classification, and more.

1.2 Problem Statement

We propose to extend the negative selection work of Dasgupta [39], Williams [96],

and others. These researchers have investigated hyper-geometric detectors including hyper-

rectangles and hyper-spheres. The goal is to improve techniques for generation, represen-

tation, and properties of nonself detectors by using hyper-ellipses (hereafter referred as

ellipsoids), which provide a more flexible geometry than spheres and rectangles. Thus, the

objectives of this research are:

• Establish a mathematical model for n-dimensional ellipsoids. This model should

provide the flexibility to describe any n-dimensional ellipsoid. Also, this model should

provide the ability to manipulate the size, orientation, and location of an ellipsoid.

• Develop/Identify an algorithm to generate a set of detectors by training on a self

class from any n-dimensional data set.

• Validate the algorithm by running it against several pedagogical and real world data

sets. Performance is quantified by measuring detection rates (correct identification

of nonself) and false alarm rates (incorrect detection of nonself). These metrics are

compared against results of other research efforts and against different detector types.

2

1.3 Approach

These objectives are obtained while achieving, as much as possible, the following

design metrics for a negative selection algorithm.

• Accurate Classification-the algorithm should be able to classify nonself data based on

detectors that it builds during a training phase that uses only self data. Classification

accuracy has two components: (1) true positive rate: the fraction of nonself test

points correctly classified as nonself and (2) false positive rate: the fraction of self

test points incorrectly classified as nonself.

• Efficiency

– Minimize Detector Generation Time-if it takes too long to generate detectors,

the algorithm is not desirable. This is especially true if detectors must be

generated often. If detector generation occurs less frequently, this issue is less

important.

– Minimize Detector Size-this applies to both the size of one detector and the

total number of detectors. If a set of detectors takes up too much space, its

memory requirements may be more costly than received benefits.

– Minimize Detection Time-the importance of this design goal is application de-

pendent. In some environments, such as NID, it may be necessary to compare

incoming network data against detectors at a real-time rate. In other applica-

tions, however, time may not be such an issue.

1.4 Document Overview

Chapter II presents a formal definition of the problem, followed by a summary of

intrusion detection (ID), AIS, and machine learning. This is followed by a review of research

in these areas. Chapter III sets forth a mathematical ellipsoid model and then describes

a negative selection algorithm that generates a set of n-dimensional ellipsoids (“nonself”

detectors) by training on “self” data. The Experimental Design chapter describes testing

goals, a methodology to accomplish those goals, and the data sets used in testing. This

3

is followed by Chapter V, which reports test results and analyzes the results in light

of research objectives. The conclusion (Chapter VI) restates the problem and research

objectives, summarizes results, and concludes with suggestions for further research.

4

II. Background

This chapter provides background in areas that are important to this research. First, we

define the generic problem with an English description complemented by a mathematical

description using symbolic notation. Section 2.2 provides background on the specific NID

problem. Section 2.4 introduces AISs and discusses mapping of the BIS to an AIS that can

be applied to classification problems. Section 2.6 presents the negative selection algorithm

and analyzes it in depth. Finally, Section 2.10 summarizes evolutionary algorithms, which

can be used used to generate detectors for a negative selection algorithm.

2.1 Symbolic Problem Definition

This problem assumes that input consists of training data from only one class, the

self class. The problem is to generate a set of detectors that have a high affinity for

nonself points (match nonself points) and a low affinity for self (do not match self points).

Performance of a generated set of detectors is measured using a set of test points. The

set of test points does not include any of the same points that are used for training. Also,

the test set may contain points from any classes. Any data from a different class than

training (self) is classified as nonself. Labelling all points as self or nonself according to

these criteria transforms a n-class problem into a two-class (self, nonself) problem.

Symbolically, the problem is formulated as follows: Let F= {f1, f2, ..., fc} be the set

of c fields in a data sample. Let B= {b1, b2, ..., bc} be the number of bits used to describe

each field in the sample, such that bi is the number of bits in field fi. Then field fi can take

on 2bi different values, namely {0, 1, 2, ..., 2bi −1}. Let P= {0, 1, ..., 2b1−1}×{0, 1, ..., 2b2−

1}× ...×{0, 1, ..., 2bc − 1} be the set of all possible points in sample space, such that p∈ P

is an c−tuple where the ith value of the tuple is a value for field fi. Let N⊆ P be the set

of all nonself points and let S= P −N be the set of all self points.

Let D be all possible detectors. Let D= {d1, d2, ..., ddetector count} be a set of detector count

detectors. Define the function

match : {d|d is a detector} −→ 2P , (1)

5

(2P is all the subsets of P). match is the function that takes a detector as an argument and

returns all points in P that the detector matches. For each di∈ D, match(di) ⊆ P . The

objective is to cover as much nonself space as possible while covering as little self space as

possible. These optimization criteria are formally described as follows:

maximize

∣∣∣∣∣
(⋃

d∈D

match(d)

)⋂
N

∣∣∣∣∣ (2)

minimize

∣∣∣∣∣
(⋃

d∈D

match(d)

)⋂
S

∣∣∣∣∣ (3)

2.2 Network Intrusion Detection

ID has been studied for many years [26], although the amount of research being done

in this area has increased in recent years because of the ubiquity and risk of the threat.

Almost every computer is connected to some sort of network and any damage (by means of

an intrusion) can cause at least some inconvenience, as well as lost money and work. For

a detailed discussion of intrusion detection, see the work of Amoroso [14], Escamilla [30],

Peikari [74]. This section provides definitions to understand ID, a taxonomy of (IDS), and

a problem definition for the ID problem.

First, we provide several definitions of intrusion detection:

• intrusion: Mukherjee [69] defined an intrusion by its results: loss of confidentiality,

denial of resources, loss of integrity, or unauthorized use of resources.

• intrusion detection: Amoroso defined intrusion detection as follows [14]: “In-

trusion detection is the process of identifying and responding to malicious activity

targeted at computing and networking resources.”

• intrusion detection system: Kim et al. [55] defined a intrusion detection system

as “an automated system for the detection of computer system intrusions.” Network

intrusion detection systems are built on the assumption the behavior of an intruder

is significantly different than the behavior of a legitimate user [69].

6

2.2.1 Features of an Intrusion Detection System. Kim et al. enumerated seven

features that a good network intrusion detection system must have [55]:

• Robustness: it should have multiple detection points, so that it is not easily sub-

verted by intruders.

• Configurability: it should be able to configure itself to the local requirements of

each heterogeneous host or network component.

• Extendibility: it should be easy to extend network monitoring to newly added

network components.

• Scalability: as the volume of the data to be analyzed grows, the system should be

able to handle the increased work without significant system or network performance

degradation.

• Adaptability: it should dynamically adapt to detect network intrusions that change

dynamically.

• Global Analysis: it should be able to correlate events from different hosts that

may collectively constitute an attack.

• Efficiency: it should be lightweight enough that the resulting system and network

performance degradation from running the intrusion detection system is minimal.

Of course, it is difficult build a system that fully satisfies all of these features. However,

many systems have been constructed. The next section presents a classification of IDSs.

2.2.2 Taxonomy of Intrusion Detection System Structure. Current network IDSs

can be grouped into three categories: monolithic, hierarchical, and cooperative [54].

• Monolithic: The network intrusion analysis all takes place on one central machine.

All host machines communicate raw data to the central machine, which then analyzes

the data. Some of the serious drawbacks of this approach are that it is not scalable

and not robust. It is not scalable because adding hosts to the network causes a

communication burden as additional raw data is passed to the central processing

host. Additional hosts also result in computational burden on the central processing

7

host because it must process data from more hosts. As the number of hosts increases,

the performance degradation of the network and the central processing machine is

significant. This approach is not robust because the loss of the central processing node

(resulting from a successful attack, malfunction, etc.) disables the entire intrusion

detection system.

• Hierarchical: This approach was developed to overcome the scalability drawbacks

of the monolithic approach. In the hierarchical approach, network hosts analyze

their own data and then send the results to a central machine. Because each host

analyzes its own data, it sends less information to the central machine. As a result,

the central machine has significantly less processing to do since the data has already

been locally processed at its originating host. Although this approach addresses the

scalability issue, robustness is still an issue because the loss of the central node still

disables the entire network IDS.

• Cooperative: The cooperative approach addresses the robustness issue by distribut-

ing all central processing tasks to the individual hosts. The hosts communicate

to accomplish coordination and collaborative intrusion detection efforts. The only

drawback to this method is that the communication between hosts to accomplish

cooperative intrusion detection may be significant, which reintroduces the issue of

network scalability.

IDSs of all three types have been implemented, each with the noted advantages and dis-

advantages. Once the structure question has been resolved, an IDS designer must decide

how to detect intrusions.

2.2.3 Signature Detection v. Anomaly Detection. There are generally two types

of intrusion detection: signature detection and anomaly detection. Signature detection is

comparing known attacks against new network data. A match signifies that some virus or

malicious entity has been encountered.

Anomaly detection involves building a model of “normal” behavior and then ana-

lyzing the network. When some behavior occurs that deviates from the model of normal

behavior by more than some threshold, then that behavior is labelled as an anomaly. It

8

may be immediately flagged as having malicious intent, or simply that it is deserving of

further analysis.

The field of signature detection is more established than anomaly detection. This is

because signature detection is a simpler problem. Companies such as Symantec [8], Panda

[7], and McAfee [5] market proven, industrial strength antivirus products. The shortcoming

of signature detection is that it does not protect a computer system from a virus unless the

virus is in a virus signature definition database. This database receives periodic updates

with new virus signatures so that they can detect all common viruses. Because signature

detection is a well studied area with solid commercial products available, we choose rather

to focus on anomaly detection. Anomaly detection is a harder problem. Rather than

trying to find matches with previously encountered attacks (signature detection), anomaly

detection attempts to build a model that essentially predicts what is an attack and what

is not. The following section describes the anomaly detection problem.

2.2.4 Network Anomaly Detection Problem. In the following discussion, the word

“anomalous” is synonymous with “malicious”. The problem is to build a function whose

input is some network data and whose output is exactly those data points in the input

that are anomalous.

Symbolically, the problem is defined as follows: Let N bet the set of all networks. Let

T be the set of all possible time periods. Let toData be a function that maps the behavior

of a network over some time period(s) to a set of data points.

toData : N× 2T −→ 2P , (4)

where 2T is the set of all subsets of T and 2P is the set of all subsets of P , where P retains

its definition from Section 2.1.

Given a network n∈ N and a time period t∈ T, toData maps (n, ≈) to ∆⊆ P . That

is,

toData(n, ≈) = ∆ (5)

9

The normal (self) and malicious (nonself) portions of ∆ are defined as follows. Let

s∆ ⊆ ∆ be the set of self network data points in ∆ and let n∆ ⊆ ∆ be the set of malicious

network data points in ∆. We note that s∆ and n∆ abide by the following constraints:

s∆

⋃
n∆ = ∆ (6)

s∆

⋂
n∆ = ∅ (7)

Let findMalicious be a function that maps a set of network data points (produced

by toData) to a set of network data points:

findMalicious : 2P −→ 2P (8)

The goal is to define findMalicious so that it accepts as input the set of data points

for a network over a time period(s) and produces as output exactly the set of malicious

data points in the input set. Symbolically, we want to find to define findMalicious such

that ∀∆(findMalicious(∆) = n∆).

This section introduces two functions, toData and findMalicious, but does not

define them. The following sections address the definition of doData and findMalicious.

2.2.5 Network Data Models. This section addresses the definition of the function

toData, described in Equation 5. The output of toData is usually some set of network

features, either raw or processed. Khoshgoftaar et al. divided the attributes from network

data into three groups: basic attributes, content Attributes, and traffic Attributes [53].

Basic attributes are the basic features of a network packet (e.g. source IP address, desti-

nation IP address, etc. in an IP packet). Content attributes are metrics that summarize

the behavior of a network based on the contents of packets. e.g. a number of temporally

close attempts to log in with the wrong password may indicate malicious intent. Traffic

attributes measure rates of occurrence of network events. These are expensive to compute

but often significant in recognizing some types of attacks.

10

Amoroso [14] listed some techniques to model behavior and look for intrusions: audit

train processing, on-the-fly processing, profiles of normal behavior, signatures of abnormal

behavior, parameter pattern matching. Of course, there are many ways to model the

behavior of a network. The following paragraphs review network data models that have

been used in other research efforts.

Payload Byte Value Distribution. Wang and Stolfo [93] analyzed the byte

frequency distribution in the payload data of network packets. They constructed a his-

togram to represent the frequency of each of the 256 possible values of a byte. They built

a profile distribution using intrusion-free training data. During detection phase they com-

pared the distribution of the test data to the profile distribution from the training data.

When the Mahalanobis distance [29, p.36] between the training and test distributions ex-

ceeded a threshold, a warning alert was generated. This novel approach introduced a new

type of protection: In order to sneak an intrusion in the payload of a network packet, an

attacker must somehow spoof the byte frequency distribution of the data. This is difficult

unless the attacker has some knowledge about the normal distribution of the byte values.

Getting this knowledge is, of course, difficult without privileged access to the network or

host under attack.

System Calls. When any program runs, it makes a series of system calls.

Forrest et al. [33] implemented an AIS that uses sequences of UNIX system calls to model

self and nonself points. They found that this is a viable approach, as they were able

to reliably identify several UNIX intrusions while avoiding false alarms. Hofmeyr [47]

asserts that short sequences of system calls executed by running processes are a good

discriminator between normal and abnormal operating characteristics in many programs.

Hofmeyr noticed that programs tend to execute the same sequences of system calls and that

intrusions often follow different paths of system call execution. He found that sequences

of length 10 were a good discriminator for the UNIX programs sendmail, lpr, and ftpd.

Upon completion of his PhD, Hofmeyr extended this application to industry. He

started a security company called Sana Security [78] [66] that markets an intrusion de-

tection product called Primary Response. Primary Response is based on the idea that

11

sequences of system calls are a good discriminator between good and malicious programs.

Sana Security claims that their product “learns normal application behavior by observing

code paths in running programs” and then stops anomalous code paths by blocking system

call execution [79].

There are many ways to model traces of system calls. Warrender et al. [94] suggested

the following models: Simple enumeration of observed sequences, comparison of relative

frequencies of different sequences, a rule induction technique, and Hidden Markov Models.

Warrender concluded that, for the problem of intrusion detection, weaker methods than

Hidden Markov Models are likely sufficient. They hypothesized that weaker methods

were sufficient because the system call data are regular enough for even simple modelling

methods to work well.

Network Packet Header. Every network packet has a header with several

fields. Williams [97] and Harmer [44] used the fields in TCP, IP, ICMP, and UDP packets

to model network behavior. If there are n fields in a header, this technique simply maps a

network behavior to a point in n-dimensional space.

Network Statistics. Gonzalez and Dasgupta [41] used network statistics in-

cluding bytes per second, packets per second, and ICMP per second. Mills et al. [67] used

the same statistics. Both of these research efforts found that this model of network data

viable for identification of some network attacks.

User Shell Command Input. Lane and Brodley [59] used user shell com-

mand inputs to model the self nonself space. They mapped the shell command inputs to

a class of machine learning known as instance based learning (IBL). One common IBL

system is to use k-nearest neighbor. Each new instance is then assigned to the class of the

majority of its k nearest neighbors. In their implementation, Lane and Brodley concluded

that their technique works well when the data supports sufficient class separation. They

also concluded that their system generally detects anomalous conditions quickly while

generating false alarms rarely.

12

Table 1: Summary of Network Data Models
Model Research Efforts
Payload Byte Value Distribu-
tion

Wang and Stolfo [93]

System Calls Forrest et al. [33], Hofmeyr [47] [78] [66] [79],
Warrender et al. [94]

Network Packet Header Williams [97], Harmer [44]
Network Statistics Gonzalez and Dasgupta [41], Mills et al. [67]
User Shell Command Input Lane and Brodley [59]
49 bit Representation for TCP
SYN packet

Balthrop et al. [16]

Other Definitions for toData. Balthrop et al. [16] explored the effects of

using a 49 bit representation for a TCP SYN packet. They also explored the results

of using a representation mask that allowed for pattern matching in different bit-orders.

These masks allowed one nonself detector to detect more points because it detected all

points that matched it after permuting their bits according to some mask.

There is an innumerable number of ways to model network data. This is still a

current area of research, as the proper model may provide the key to a good anomaly

detection system. Table 1 summarizes the data models in the preceding discussion.

2.3 Finding the Malicious Data Points in Network Data

Once an appropriate toData function (see Equation 5 has been chosen, the definition

of findMalicious (see Equation 8) is at the heart of the intrusion detection problem. The

objective of findMalicious is to identify all malicious data points in some input set of

data points.

In computer science, the definition of findMalicious is a machine learning problem.

That is, we are given a set of n features that describe one datum in the network data,

where n is the dimensionality of the elements in the output of the toData function. Using

these n features, a system is built to classify data points. Since network attacks (nonself)

are assumed to be rare relative to the frequency of normal (self) network behavior, the

word “anomaly” is sometimes substituted for “attack.” This section begins with review

of classical machine learning techniques for anomaly detection. Following the classical

13

machine learning techniques, we introduce AIS as a machine learning technique for anomaly

detection.

2.3.1 Machine Learning and Statistical Techniques for Identifying Nonself. Ma-

chine learning is a field of computer science in which computers programs build a model

to learn to classify or group data points. Machine learning is applicable to the network

anomaly detection problem because the goal is to classify network data points as being

normal (self) or anomalous (nonself). In a network environment, there is often ample

normal data to train on. However, since malicious attacks are very diverse and rather rare

relative to the frequency of normal data, there is often a limited or non-existant supply of

nonself data to train on. Another reason for the short supply of nonself training data is

that it is difficult to know what is self and nonself when collecting training data in a real

world environment. It is easy, however, to lock down a network and then collect self train-

ing data. Another source of self data is to log network activity and then, if a postereori

analysis shows that it probably does not contain nonself data, label the data as self.

When training data has been obtained, a machine learning technique can be used

to train a model. The usefulness of the model can be tested by measuring classification

accuracy on test data. Some machine learning techniques do not scale well to higher

dimensional data. For this reason, feature subset selection is sometimes used as a prepro-

cessing step to minimize the dimensionality of the data. For this reason, we include a short

discussion of feature subset selection.

Feature Subset Selection. Part of the problem of modelling self and nonself spaces

in the network intrusion detection problem is dimensionality. If the selected model has

a significant number of features, dimensionality precludes efficiency in classification oper-

ations. Pruning features can have a significant impact on the performance of a pattern

classification problem, such as differentiating self from nonself. Feature subset selection

has been an area of research for as long as classification has been an area of interest. The

objective of feature subset selection is to identify the smallest group of features that can

be used to build a model that discriminates between different classes well. Thus, as often

14

occurs, there are two competing objectives: (1) discriminate between classes and (2) use

the smallest number of features as possible.

Depending on the dimensionality of the model, feature subset selection is important

in NID. If the model is the fields in a network packet, then dimensionality is very large

if features are not pruned. A TCP packet header has twelve fields in the packet header.

High dimensionality occurs often in network data models because they reflect complex,

real world problems. Much research has been done on feature subset selection techniques.

Marmelstein [64], Peterson [75], and Duda et al. provide discussions on feature subset

selection.

After a feature subset has been selected, a learning technique must be chosen to

generate a model that can be used for testing on new data. The following discussion

reviews machine learning techniques that have been used with NID data.

Unsupervised Learning through Clustering. Zhong et al. [99] suggested that

unsupervised learning techniques may be best for NID because temporal changes in the

state of a network, as well as in network intrusions, can make classification-based techniques

ineffective. They investigated clustering as an unsupervised learning technique in network

intrusion detection. In their work, four clustering techniques are considered: K-means,

Mixture-Of Spherical Gaussians, Self-Organizing Map, and Neural-GAs. After clustering,

Zhong needed a way of labelling clusters as self or nonself. A simple test was chosen

and implemented for this purpose. Zhong chose a threshold η. The ηth largest clusters

were assumed to be self and all other clusters were assumed to be nonself. This labelling

technique relies on the assumption that there are more self points than nonself points in

all situations. Hence, it is not very robust. In their research, Zhong et al. even found

that, in one situation, the second largest of 200 clusters was a nonself attack. The benefit

of this technique is that it may be more robust to changing network environments (as

Zhong claims but does not support). The detriment, however, is the assumption that large

clusters are self and small clusters are nonself.

15

Detecting Anomalies over Noisy Data. Eskin [31] suggested a technique for

detecting anomalies without training on self data. He made the assumption that a data

set contains a large number of self elements and relatively few nonself elements. This

assumption holds true for the NID domain. This is useful for several reasons: (1) It is

often difficult to obtain clean data, (2) training on unclean data has serious side-effects

because an intrusion in the training data labelled as clean results in a similar intrusion in

the test data being classified as clean and (3) A system that can train on unclean data is

adaptive because it can train online, as it works.

To do this, Eskin used learned probability distributions. If there are χ training points,

then the algorithm has χ iterations. It assigns each training point to the self set or the

nonself set. At the beginning of each iteration, the self and nonself sets are emptied. His

algorithm then sequentially analyzes each training point and assigns it to the self or nonself

set, depending on the probability distribution that resulted from the previous iteration.

At the end of each iteration, a new probability distribution is generated. After the χth

generation, a probability distribution has been created that can be used to classify test

points. Eskin applied this technique to NID and found that, in his experiments, the results

for noisy data (no clean training data) were similar to published results for other techniques

that were allowed to train on clean data. The data Eskin used for his experiments was

traces of system calls from the 1999 DARPA Intrusion Detection data set [61].

Correlation. Ning et al. [72] [71] [70] investigated an approach in which network

events are correlated to identify malicious sequences of events. The reason for this approach

is that “component attacks are usually not isolated, but related as different stages of

the attacks, with the early ones preparing for the later ones.” They used a directed

graph in which nodes represent network events and edges represent causal relationships

between network events. By keeping only correlated alerts, Ning used the generated graphs

to eliminate many of the false alarms that arise in network intrusion detection systems,

providing a valuable service to network administrators who must respond to all intrusion

alerts. Although Ning’s approach is successful at correlating different parts of an attack, it

still relies on the IDS to detect portions of an attack so that they can be correlated. Also,

16

novel attacks are not detected using Ning’s approach. For these reasons, Ning suggested

that correlation be used with other methods.

Nonstationary Models. Mahoney and Chan [68] used the rate of occurrence of

network events to classify events as nonself or self. They found that network events tend

to occur in bursts separated by long gaps on the temporal scale. In their model, they

assumed that the probability of an event occurring was 1
d , where d was the time since the

most recent occurrence of the event. Hence, when an event occurred that had not occurred

in a significant amount of time (more than some selected threshold), this event was classi-

fied as nonself. They found that the identified anomalies from the Lincoln Labs Intrusion

Detection data complemented the identified anomalies from from other published intru-

sion detection systems, so they suggested that their approach may complement another

approach.

Finite State Machines. Anchor et al. suggested using finite state transducers

(FST) to detect network attacks [15]. A finite state transducer is the same as a Mealy-type

finite state machine [6]. Anchor used several flavors (lexicographic and Pareto-based) of

multi-objective evolutionary algorithms to evolve FSTs that could identify attacks using

sequences of network packets as input. Anchor concluded that this idea has promise

because it provided good initial results, but whether or not this method is efficient for real

world problems remains an open question.

Sekar et al. [80] also investigated the effectiveness of a finite state machine to model

normal and anomalous computer behavior. However, they used state machines to model

sequences of system calls, an idea introduced by Forrest et al. [33]. They contributed an

approach that builds a finite state machine in a computationally and memory efficient

manner. They built a state machine for every program, but each state machine took used

only a few kilobytes and ran (training and detection) with minimal overhead which was

constant for each system call.

Some of these ideas have been implemented in available products. In addition to

commercial products, there is a good number of free IDS products that are available. The

17

Information Assurance Technology Analysis Center [22] provides a good summary of IDS

products.

The previous discussion reviews traditional machine learning approaches applied to

the NID problem. However, artificial immune systems is a newer machine learning approach

that is currently be investigated. The next section reviews AIS, especially the negative

selection algorithm, in detail.

2.4 Artificial Immune Systems as a Machine Learning Approach

An AIS is a machine learning technique because it trains on self data and then

attempts to recognize nonself data. The machine learning model that is built during the

training phase is a set of nonself detectors. This section defines artificial immune systems,

provides background on the biological immune system, which is the inspiration for AIS,

and summarizes some of the important AIS algorithms from BIS.

2.4.1 Artificial Immune Systems Background. Much of the background provided

here on artificial immune systems is from de Castro and Timmis [20], Kim and Bentley [55],

and Dasgupta et al. [23]. Also, a short introduction to the human biological immune system

is located in Appendix A.

An artificial immune system is an element of the set of bio-inspired algorithms, which

includes evolutionary algorithms, neural networks, swarms, ant colony optimization, and

others [83]. This sections begins with a definition of AIS. Following the definition, we

provide a short discussion of immune network theory and how the clonal selection network

theory can be mapped to an AIS.

Definition of AIS. de Castro and Timmis [20, p.58] define Artificial Im-

mune Systems (AIS): “Artificial immune systems (AIS) are adaptive systems, in-

spired by theoretical immunology and observed immune functions, principles

and models, which are applied to problem solving.”

Immune Network Theory. Immune network theory is the study of how entities

in the immune system interact (“network”) with each other to produce observed immune

18

system behaviors. In immune network theory, there are generally two different schools

of thought, the clonal selection theory and the network theory [45]. A third theory, the

danger theory, is presently gaining momentum. A description of these three theories is

provided in Appendix A. Most AIS models have adhered to the clonal selection theory,

and this work continues in that direction. There is not substantiated reason, however, for

choosing one over the other. We include a small sampling of network theory work and

danger theory work in AIS. Following these samplings, the clonal selection theory AIS is

developed in detail.

In the area of the network theory, Timmis and Neal [91] and de Castro and Von

Zuben [21] have both implemented an AIS using the network immune model. Timmis

and Neal [91] applied the model to unsupervised machine learning and de Castro and

Von Zuben [21] applied the model to the problem of clustering and filtering unlabelled

numerical data sets.

Danger theory is young in the AIS community. Little research has been done to

investigate how this model could be applied to an AIS, although Aickelin believes that

there could be some beneficial applications [12].

2.5 Clonal Selection AIS

The clonal selection network theory assumes that interactions in the immune system

occur between antibodies and antigens. The following sections show how to map these

interactions into an AIS architecture provide a summary of research that has been done

using this theory.

2.5.1 Mapping from BIS to AIS. Forrest et al. [34] were among the first to

suggest that self/nonself discrimination in a BIS is analogous to protecting a computer

from viruses and other malicious code. Forrest et al. [32] observed that the role of nat-

ural immune systems in the body is “analogous to that of computer security systems in

computing. Although there are many differences between living organisms and computer

systems....the similarities are compelling and could point the way to improved computer

security.” Somayaji, one of Forrest’s students, suggested that there are several features of

19

the BIS that are desirable for a computer immune system [82]. These include distributabil-

ity, diversity, disposability, adaptability, autonomy, dynamic coverage, anomaly detection,

multiple layers, identity via behavior, no trusted components, and imperfect detection.

Since then, others have noticed that nonself discrimination is simply a classification

problem in which training data exists for only one class [23]. Nunes de Castro and Timmis

[20, p.60] suggest that three parts are necessary for a good mapping from the BIS domain

to the AIS domain. These three parts are:

• A representation for the components of the system. Often, the components that are

mapped into an AIS are the lymphocytes (B-cells and/or T-cells), antibodies, and

the antigens.

• A set of mechanisms to evaluate the interaction of individuals with the environment

and each other

• Procedures of adaptation that specify how the behavior of the system varies over

time.

These three mappings are discussed in the following sections:

2.5.1.1 Representation of the Components of the System. The components

of the BIS that are usually most interesting when mapping into an AIS are the lympho-

cytes/antibodies and antigens. Further, it is not the lymphocytes and antigens that are

interesting, but the lymphocyte receptors and the antigen epitopes. Since receptors and

antigens are complements of each other (a lymphocyte matches an antigen if the shape of

its receptor is close to the complement of the shape of antigen’s epitope), the lymphocyte

receptor and complement of the antigen epitope are mapped into the AIS domain. The

lymphocyte receptor is ofen referred to as the antibody in AIS.

Table 2 is a reference for mapping BIS terms into AIS terms and vice versa.

2.5.1.2 Evaluation of Interaction of Individuals with the Environment and

Each Other. In the clonal selection immune network model, interactions are limited to

20

Table 2: A mapping of important BIS terms into the AIS domain.
BIS AIS

antibody nonself detector
antigen data point

self entity class of data used for training.
nonself entity data of classes that are not available for train-

ing. Detectors are constructed to match non-
self data.

those that occur between antibodies and antigens. In an AIS, this maps to interactions

between detectors and data points.

In the BIS, the affinity between an antibody and an antigen is a function of several

processes including electrostatic interactions, hydrogen bonding, van der Waals interaction,

and others [20, p.62]. In AIS, detector/data point affinity is usually measured by an affinity

function,

affinity : D × P −→ R, (9)

that maps a detector and a data point to a real number. A greater output value signifies

higher affinity of the detector for the data point.

There are many possible affinity functions, depending on the representation of the

data. Following is a short review of some of the more popular affinity functions for binary

representations and real-valued representations.

Binary Matching Functions. There are many binary matching func-

tions. These include r-contiguous, r-chunk, Hamming distance, Rogers and Tanimoto [29,

p.541], and others.

r-contiguous. The r-contiguous bits matching rule [34] is that

two elements, with the same length, match if and only if at least r contiguous characters

are identical. More formally, let x, y ∈ {0, 1}` be two separate elements. x and y match iff

∃(1 ≤ i ≤ `) : ∀(i ≤ m ≤ i + m− 1)(xm = ym) and i + m− 1 ≤ `.

r-chunk. Balthrop et al. [16] introduced r-chunks [84] matching,

which is a variant of the r-contiguous bits matching rule. The r chunks matching rule

21

simply specifies a chunk of a string and a starting point. If r contiguous bits match,

beginning with the starting point, then the binary strings are classified as matching. The r-

chunks matching rule resolved several issues with r-contiguous bits matching. The principal

issue was that there were some detectors that could not be generated, so there were “holes“.

Hamming Distance. If two bit strings both have the same length,

the Hamming distance is simply the number of positions in the strings that are different

[44].

Others. Harmer et al. [44] provides a good review of the Rogers

and Tanimoto matching function, as well as several other binary matching rules.

Real Valued Matching Functions. Many of the real valued matching

functions are intuitive, since they are based on Euclidean space. The following discussions

provide a description of Euclidean distance, Manhattan distance, interval constraints, and

Mahalanobis distance. For additional discussions of Real valued distance operators, see

[42], [29, p.188], [44], [20, p.64-5,70-1].

Euclidean Distance. Whenever the data point space is mod-

eled using real numbers, the most obvious matching function is Euclidean distance [29,

p.36] [39] [25] [40]. To test if a point matches some region or point, the Euclidean distance

to that region or point is calculated. If the distance is below some threshold, then it is a

match. Otherwise, it does not match. The Euclidean distance is a simple and straight-

forward calculation, as well being easy to conceptualize. In a multi-dimensional space,

using Euclidean distance as a threshold to decide whether or not point β matches point

α is the equivalent to establishing whether or not β resides inside of some hypersphere h.

The hypersphere is defined such that the center is α and the radius is some threshold, t.

In an n-dimensional space, the Euclidean distance between points x = (x1, x2, ..., xn) and

y = (y1, y2, ..., yn) (subscript i signifies ith dimension) is

Euclidean Distance =
√

(x− y)(x− y)T (10)

22

Manhattan Distance. The Manhattan distance is an approxima-

tion to the Euclidean distance. It is simply the sum of the differences in each dimension.

The advantage is that it is computationally more efficient than calculating the Euclidean

since no squares or square roots are computed. The disadvantage is that it is an approxi-

mation, so there is a loss in accuracy compared to Euclidean distance.

Manhattan Distance =
n∑

i=1

|xi − yi| (11)

Interval Constraints. Another matching rule that has been

investigated is to use detectors that are coded as interval constraints. Hou et al. [48]

considered TCP packets in a network. They chose three features from the TCP packet

header: source IP, destination IP and port number (source port number if the packet was

leaving the local network, destination port number if the packet was entering the local

network). A detector matched a TCP/IP packet if the three field values for a packet fell

within the corresponding intervals in the detector. They found that using intervals for

matching resulted in comparable performance to using binary bit strings with some bit

matching function. They also concluded that it was more understandable to use interval

constraints instead of a binary representation. Interval constraints are the same as checking

for membership inside of a hyper-rectangle.

Mahalanobis distance. The Mahalanobis distance [4] is similar to

the Euclidean distance, with the addition that it takes into account a measure of variance

in each dimension and a measure of correlation between different pairs of dimensions. This

generally means that if component a of the distance has higher stastical variance than com-

ponent b, then the a is weighted less when computing the distance metric. The Euclidean

distance defines all equidistant points from a reference point as a hypersphere. The Ma-

halanobis distance defines all equidistant points from a reference point as a hyper-ellipse.

To mathematically describe a n-dimensional hyper-ellipse that is not aligned according to

the coordinate axes requires a n × n covariance matrix. If we let A be the p × p covari-

ance matrix, then the Mahalanobis distance between two points x = (x1, x2, ..., xp) and

23

y = (y1, y2, ..., yp) is defined as follows:

Mahalanobis distance(x,y) =
√

(x− y)A−1(x− y)T (12)

Most research has implemented the measurement of affinity between a detector and

a datum as a function that measures similarity between two instances of the same rep-

resentation (i.e. two binary strings). This is not, however, analogously correct from a

BIS point of view. In the BIS, an antibody has a high affinity for an antigen if they have

complementary binding sites. Although this works well in the BIS, it has not been success-

fully implemented in a practical AIS because of the difficulty of defining a complementary

affinity function. Hart and Ross [45] simulated an artificial immune network using comple-

mentary affinity functions in a two-dimensional real valued space. They found that results

in their simulations were interesting, although they provided no theoretical explanation

and did not map complementary affinity to a practical application.

Using functions that measure interactions between different entities, a full full AIS

IDS can be designed. Although this research is not to provide a model for a complete AIS

intrusion detection system, we provide a few examples of current research in that area.

There has been an evolution from early, simple models (see [52]) to current models that

are more complex and map more components of the BIS to the AIS. Kim and Bentley [54]

proposed a model which emphasizes the idea of a primary IDS and a secondary IDS,

as well as the principle of being distributed. Figure 1 shows this model. Harmer et

al. proposed a hierarchical AIS model for an IDS that emphasized collaboration between

network hosts and memory of good detectors, although the idea of primary and secondary

IDS are not explicitly included. A diagram showing Harmer’s model is shown in Figure 2.

Lamont [58], Forrest [34], Timmis [20] and others have also proposed architectures for the

implementation of an AIS in an IDS problem.

Behavior of System over Time. The BIS defends the immune system by per-

forming several important processes. This section describes several of these processes and

how they can be mapped in an AIS.

24

Figure 1: This diagram from [54] shows an AIS model for an IDS proposed by Kim and
Bentley. This model emphasizes the primary and secondary IDS.

25

Figure 2: This diagram from Harmer et al. [44] [58] shows an AIS model for an IDS.
This model emphasizes the distributed and hierarchical nature of the model.

Generation of New Lymphocytes. The development of new B-cells takes

place in the bone marrow. Since the range of receptors (gene sequences) that can be

generated is very large, this operation is often mapped to random generation of B-cell

receptors in an AIS. However, there are some interesting nuances of B-cell generation that

can also be mapped from biology. One of these is gene libraries [60] [92]. The bone

does not actually choose genes for receptors randomly. It chooses the genes out of several

gene libraries. This can be mapped to an AIS by having gene libraries that are used

in the creation of new B-cells. These libraries could include genes that have proven in

the past to be good for a particular application or are known to be good through some

problem domain knowledge. Little work has been done in the area of using gene libraries

for generating new B-cells. This is probably due to the difficulty inherent in obtaining

good libraries from which to generate B-cells. From the biological perspective, these good

gene libraries evolved over many generations, although these gene libraries do not evolve

in individuals, because they are encoded by DNA. With this knowledge, it seems that an

evolutionary algorithm could be used to evolve gene libraries, which could then be used

in an AIS application to generate new B-cells. Hightower et al. [46] empirically validated

the hypothesis that a genetic algorithm can evolve a good gene library, whose fitness is

measured by randomly generating antibodies from the gene library and computing their

26

affinity to a set of antigens. Although Hightower et al. showed the potential of evolving

gene libraries in a contrived problem, no research efforts have attempted to apply gene

library evolution in a practical AIS application.

Positive Selection. In the BIS, T-Cells undergo a process called positive

selection in the thymus. Naive T-cells originate in the bone marrow but then migrate to

the thymus, where they are tested. For a T-Cell to be effective, it must recognize at least

one of the self-MHC molecules or APC (antigen presenting cells) because this is how a

T-cell finds infections. If the T-cell does not match at least one self-MHC molecule or

APC, then it is usually destroyed through apoptosis. This process is easily mapped to an

AIS. Each immature (newly generated) T-cell is compared to the self-MHC molecules and

APCs. If it does not, according to a selected affinity function, match at least one self-MHC

molecule or APC, then it is destroyed.

Negative Selection. In the BIS, T-cells also undergo a process called

negative selection in the thymus. Negative selection destroys those T-cells that recognize

self-peptide, i.e. unharmful self molecules. In a computational domain, this process can

be mapped into a process which develops detectors for a class of data by interacting only

with the complement of that class. This happens by generating T-cells (randomly or with

some knowledge) and then checking each T-cell to see if it matches any self points. If a

T-cell matches any self points, then it is thrown out. This can be stated as a two-class

pattern classification pattern problem in which the classifier gets to train on only one class

of points.

Clonal Selection. Clonal selection refers to the behavior of B-cells when

they recognize an unwanted antigen [10]. Upon recognition, B-cells are cloned (mitotic

cell division). The rate that a B-cell is cloned is directly proportional to its affinity to

an antigen. Also, when it is cloned, a B-cell undergoes somatic hypermutation. The rate

of mutation is inversely proportional to the affinity of the B-cell to the antigen that it

recognized. This is often mapped to an evolutionary strategy [17, ch. 9], which is an

evolutionary algorithm that uses mutation but generally not crossover. The evolutionary

27

strategy does have to be modified, however, so that mutation is inversely proportional to

affinity and that more individuals of higher affinity are produced and mutated.

2.6 AIS Inspired Algorithms

Significant research has been conducted that attempts to benefit from the strengths

of AIS. This research has focused on pattern matching and intrusion detection [13].

Negative Selection.

Generating Detectors Using Negative Selection. The negative selection algo-

rithm to generate nonself detectors is based on the way T-Cells go through negative se-

lection in the thymus. New detectors are randomly generated and then compared against

every self point. If a detector matches at least one self point, then it is thrown out and a

replacement is randomly generated. This is not computationally efficient. If there are |S|

self points and |N | nonself points and it is desired to generate γ good (does not match any

self points) detectors, then the time complexity increases exponentially in |S| nd linearly

in γ [27].

Forrest et al. [27] suggested that, while this algorithm does work for arbitrary match-

ing rules, better algorithms may be possible for specific matching rules. They proposed

some modified negative selection algorithms that scale linearly, although they have some

drawbacks because there are “holes,” nonself points that cannot be covered because of the

matching functions that are used in the algorithms [27]. Another weak point in this algo-

rithm is that it uses binary representations. It is difficult to extract meaningful domain

knowledge from a binary representation to analyze the reasons for an anomaly report [40].

Dasgupta et al. [40] used negative selection to build a classifier to distinguish self

and nonself data. Their approach was somewhat unique, however, because they did not

use negative selection to create detectors. Rather, they used negative selection to generate

artificial anomalies. The NID problem usually has only self data to train on. To create

artificial anomalies, Dasgupta randomly generated points in the self-nonself space. If the

point matched any self points, it was discarded. Otherwise, it was put into a pool of

28

artificial anomalies. With samples from both classes, Dasgupta was able to apply well-

studied classifier methods.

One of the first proposed approaches for real valued nonself detectors in a Euclidean

space is to use hyper-rectangles [97] [96]. This approach has several benefits. First, it is

simple, both conceptually and computationally. It is more efficient to compute whether or

not a point falls inside of a hyper-rectangle than it is to compute whether or not a point

falls in a hyper-sphere. For a hyper-rectangle, only some simple compares are required,

whereas in the hyper-sphere approach square and square root operations are required.

Secondly, hyper-rectangles can cover an entire space (they geometrically complement each

other), whereas hyper-spheres cannot.

Using Euclidean distance as a threshold to decide whether or not detector d matches

point p is the equivalent to establishing whether or not p resides inside of some hypersphere

whose center points and radius are specified by d. Dasgupta et al. [40] have used this

technique in an AIS to build nonself detectors using negative selection. While hyper-

spheres can be combined to cover non-spherical spaces, this often causes overlap. Overlap

is not desirable because it means that detectors are doing duplicate work.

Dasgupta et al. [49] improved upon the hyper-sphere representation by using V-

detectors, or “variable detectors”. The detectors were hyper-spheres, but the radius was

variable. This was an improvement because larger hyper-spheres could be used to cover

large spaces that contained no self points. Also, smaller hyper-spheres could be used to fit

smaller areas of nonself space that were tightly bounded by regions of self space.

Gonzalez and Dasgupta extended the idea of classifying points as self or nonself to

levels of “selfness“ or “nonselfness“ [41]. Using an evolutionary algorithm, they evolved

a representation of nonself space that did not assign a class, self or nonself, but rather

assigned each point to a level of “selfness“. This method provided flexibility in choosing a

threshold of points to classify as self and points to classify as nonself.

Dasgupta and Gonzalez [24] extended this idea to fuzzy classifications. Dasgupta

replaced the function that returned yes or no depending on whether a point was in a class

or not, respectively. The new function returned a number in [0, 1], which was a probability

29

Figure 3: Covering nonself space with (a) constant-sized detectors and (b) variable-sized
detectors. The black is uncovered space (as a result of the detectors not being granular
enough), dark grey is self region and light grey is nonself detectors [40].

that a point was a member of self (or nonself). Using this technique, Dasgupta identified

levels of membership in self. This was useful because different actions could be taken based

upon the level of membership. For example, if a point had a high membership in self, it

would most likely be ignored, although a note might be made in a log that its appearance

occurred. On the other hand, a point with a very low membership in self might raise an

alarm to email or contact via cell phone the system administrator.

Gomez et al. [38] improved on the fuzzy classification idea. They used fuzzy rules to

describe the level of membership in self by a continuous probability, instead of by discrete

levels. Experimental results showed improvement for this technique over the previous

technique in which they assigned a level of membership to each point of the self-nonself

space [24].

Other work has investigated ways of compacting the representation of self space.

This has benefit potential because most published negative selection algorithms construct

nonself detectors in the complementary space of self space. This is usually a bottleneck

since self space is usually quite large and nonself detectors must be compared against every

point in self space [56]. Hang et al. applied the generalized (matches more than one point)

30

Figure 4: Different levels of membership in self [24].

nonself detector to self representations [43]. They suggested using self representations that

represent multiple points in self space.

This seems obvious, but it had not been done before, probably because the BIS does

not do this. However, the goal is not to build a BIS, but rather to apply good ideas from

the BIS. Before running the negative selection algorithm to evolve good nonself detectors,

they evolved a number of self representers by using a coevolutionary genetic algorithm

(see the work of Potter and De Jong [76] for a short introduction to coevolution). They

found that using generalized self space representations eliminated much of the cost of the

traditional negative selection algorithm.

Negative selection is the most commonly researched AIS algorithm, with several

research groups currently investigating its uses. Another AIS algorithm, clonal selection,

is described in the next section.

2.6.1 Clonal Selection. De Castro and Von Zuben produced a clonal selection

algorithm called CLONALG [19] that uses three parameters: (1) the number of members of

the population that is to be cloned, (2) the number of clones to produce for one individual

and (3) how much to mutate the new clones. Garrett improved on this work by producing a

31

clonal selection algorithm that was parameter-free [36]. This was an improvement because

no parameter tuning is necessary to find the best parameter settings. Garrett’s clonal

selection algorithm is adaptive, meaning that it tunes the parameters as it goes, adaptively

setting parameters to optimal values. Garrett’s adaptive algorithm produces results similar

to CLONALG if it is allowed to have four times the number of fitness function evaluations

that CLONALG gets in one run. Garrett believes that this is acceptable because four

times the the number of evaluations is much less than the number required to tune the

parameters in CLONALG over multiple runs.

Kim and Bentley [57] introduced a dynamic clonal selection with the following two

important properties: (1) it learns normal behavior through exposure to only a small subset

of self antigens at one time and (2) its detectors are replaced whenever previously observed

normal behavior no longer represents current normal behaviors. The second property is

especially important because it allows the artificial immune system to adapt. In the real

world, an AIS in a computer must have the property of adaptability because the definition

of normal behavior may change from day to day, as a result of many factors.

The AIS algorithms described in the preceding sections can be used to build classi-

fication systems, both the NID data and for other data. The following section presents a

short discussion of research in the area of NID data classification issues.

2.7 Network Data Classification

The goal of a network data classification system for intrusion detection is to minimize

type I and type II errors. Table 3 shows the relationship between true classification,

assigned classifications, and error types. A type I error is a false alarm (i.e. an innocuous

network datum classified as malicious). A type II error is a false negative (i.e. a malicious

network datum classified as innocuous). However, these are conflicting goals. Lowering

the type I error rate increases the type II error rate and vice versa. Although this is a

common objective of all network intrusion detection systems, little work has been done to

investigate and quantify this issue.

32

The most significant work in this area is from Khoshgoftaar et al. [53]. They extended

the Expected Cost of Misclassification metric and introduced the Modified Expected Cost

of Misclassification (MECM). They observed that the best NID system is not simply the

one that minimizes the expected error. There are two reasons for this: (1) The costs

of type I and type II errors are different. A type II error is more costly because that

means that an intrusion has been missed and the harm caused by the intrusion could be

severe. (2) A network administrator has limited resources (e.g. especially time) that can

be spent responding to alarms. The MECM handles the first issue mentioned above by

weighting type I and type II errors differently. The second issue is handled by penalizing

classifications whose type I error rate requires more resources than are available to a system

administrator for responding to the alarms.

Although the implications of network data classification are specific to NID data,

analogous arguments can be applied to other data sets against which an AIS may be

applied. The important point here is that the decision of which classifier must take into

consideration problem domain information. The decision cannot be made simply on the

basis of numerical results for maximization of true positive and minimization of false alarm

rates.

Table 3: Table showing false positive and false negative errors. A false negative (type
II) error occurs when a malicious network datum is classified as innocuous. A false positive
(type II) error occurs when an innocuous network datum is classified as malicious.

True Class
innocuous malicious

Assigned innocuous correct Type II (false negative)
Class malicious Type I (false positive) correct

The NID problem is hard because intrusions can be so different. For this reason, some

research efforts have investigated ways of using a human in combination with a machine

learning technique, such as an AIS.

2.8 Human Interaction in Searching for Good Antibodies

Williams et al. [96] [97]used antibodies that matched more than one point in a binary

self-nonself space. They compared several bit string matching metrics in an effort to

33

identify one that worked well for his research [44]. They searched for good antibodies

using a genetic algorithm. Their most innovative contribution, however, was the use of an

interactive search.

Williams et al. introduced a system by which a human (system/network adminis-

trator or some party interested in the security of a network) could guide the search for

good antibodies toward more likely areas of the search space. This is important because

humans have knowledge that the genetic algorithm does not. Therefore, it is useful to com-

bine the knowledge. Williams designed and implemented a GUI through which a human

could choose three dimensions (features, etc.) of the search space and guide the search in

a direction that seemed promising to the human. Although this work was, of course, not

a final solution to the NID problem, it contributed a unique idea of how to combine the

expertise of computers and humans in order to obtain a solution.

Any type of classification system that has been built for NID problems must be tested

for validation that it works. The following section describes current NID testing practices.

2.9 Testing Network Intrusion Detection Systems

The field of network intrusion detection is currently receiving much attention. Many

products have been produced in academia and it is desired to have some public metric

against which products can be evaluated. This section provides background on available

network intrusion test data sets and some techniques which have been used for network

intrusion detection system testing.

2.9.1 Network Intrusion Data Sets. Although there are many parties actively

researching the network intrusion detection problem, there are very few data sets available

for testing network intrusion detection systems. There are two primary reasons for this:

First, privacy-data cannot be simply pulled from a network for testing purposes, because

network data contains personal information (emails, credit card number, etc.). Second,

when data is pulled from a network, it is unlabeled. This makes it difficult to use for

training and testing of intrusion detection systems because it is unknown what is an attack

and what is not. One solution to these two problems is to simulate network data. However,

34

simulation introduces the problem of how to assure simulated network traffic is statistically

realistic. In addition to statistical errors, simulated network traffic is also likely to introduce

other artifacts [63].

As a result of the reasons discussed in the previous paragraph, it is a difficult under-

taking to produce a good simulation of network traffic data. The standard data sets for

several years were produced by Lincoln Labs at MIT in projects funded by DARPA [61].

Although these data sets have enjoyed widespread usage for IDS training and testing, they

suffer from the artifacts of simulation. Mahoney and Chan provide a good analysis of the

Lincoln Labs data sets in [63].

2.9.2 Network Intrusion Detection System Testing Methods. Usually, a NID

system is allowed to train on some clean data (no known attacks). Then, after training,

the NID system is applied to a set of test code that has both clean and attack data. The

effectiveness of the NID system is measured by the number of correct classifications (clean

v. attack). A NID system is considered effective if it minimizes type I and type II errors

(see Table 3).

Although this is the most common approach, other approaches exist. Some systems

do not require training on clean data, so they are testing simply by presenting dirty data

and evaluating classification success [31]. Dozier et al. [28] suggest a novel approach that

uses an evolutionary algorithm to evolve “hackers.” Their evolutionary algorithm gives

higher fitness to attacks that cause more systems to break (misclassify the attack). In this

way, their evolutionary algorithm identifies a small subset of attacks that is effective at

discriminating between effective and ineffective NID systems.

Construction of an AIS to detect network intrusions (or some class in any data set)

also requires a technique for building the detectors. Depending on the data set, this may

or may not be a difficult problem. Often, the space of possible detectors is too large for

exhaustive search and rugged enough that there is no known deterministic algorithm for

building detectors. An evolutionary algorithm is a stochastic search technique that is often

used in optimization problems.

35

2.10 Evolutionary Algorithms

Evolutionary algorithms are used to solve problems that have a large, random so-

lution space. If the solution space is not very random, there is probably a deterministic

approach to find an optimal solution, even though the solution space may be large. It is

noted that there is not an Evolutionary algorithm that is best for all problems. The “best”

evolutionary algorithm is problem dependent [98] [95].

Forrest et al. [35] investigated the usefulness of genetic algorithms as a tool for

evolving good nonself recognizers in a computer immune system. One of their conclusions

was that mutation in a GA works well for modelling the somatic mutation that occurs in

the BIS when a new antibody is created and mutated through clonal selection. Crossover,

on the other hand, is better for modelling the evolution of good antibodies that occur in

a population over time. The previous sentence deserves a short explanation.

In the BIS, antibodies (B-cells and T-cells) are not randomly created. Rather, there

is a library of good receptor building blocks (these building blocks have been effective in the

past at recognizing antigens) from which receptors for new B-cells and T-cells are formed.

These libraries of receptor building blocks have been evolving over many generations in the

biological immune system. Forrest believes that this can be modelled in an AIS through

the GA variation operator crossover.

Goldberg et al. [37] have introduced a genetic algorithm that explicitly manipulates

building blocks. This algorithm is called the “messy GA” since it is a little messy to

explicitly manipulate individual building blocks. Since the BIS uses building block libraries,

the messy GA may be well suited for evolving good building block libraries in an AIS. This

possibility is not addressed here by future research could investigate possible benefits from

using the messy GA to evolve libraries for generating new antibodies.

2.11 Summary

This chapter defines the negative selection problem. Background is provided on the

BIS roots of negative selection and on the NID problem, one of the most promising appli-

cations of negative selection. The negative selection algorithm is developed as a machine

36

learning technique, including a sampling of different negative selection approaches. Fol-

lowing a short discussion of details specific to testing against NID data, a short discussion

of evolutionary algorithms is provided. Evolutionary algorithms can be used to find solu-

tions to intractable problems, such as generating detectors for network intrusion. The next

chapter introduces a new type of detector for negative selection, the hyper-ellipse detector.

37

III. High Level Design

This chapter describes the design for an algorithm that generates hyper-ellipsoids (hereafter

referred to as “ellipsoids”) to cover nonself space in a negative selection problem. The first

section justifies the selection of ellipsoids as a matching function for detectors. Section 3.2

presents a mathematical definition of ellipsoids. Next, Section 3.3 develops an algorithm

to generate ellipsoid detectors. Section 3.4 provides an analysis of the time and memory

complexity of the algorithms described in Section 3.3. Section 3.5 concludes this chapter

and describes reasoning for lower level implementation details.

3.1 Ellipsoids as Detectors

Design of a negative selection algorithm requires the choice of a detector. A detector

is defined by two things: (1) The function match (see Equation 1) and (2) the detector

that is an argument to match. It is possible to build a match function to map to any set

of points. However, a match function that returns structured sets of points is easier to

manipulate than sets of points that are more random. Further, geometrically structured

sets of points are intuitive because the output of match is always a connected space.

Also, it is easier to use a match function that is itself simple. A match function

that returns high-entropy sets of points is often more complex than a match function that

returns a hyper-sphere, for instance.

There are match functions that do not map to connected sets of space. These may

be useful in a designing detectors for a negative selection problem. However, we choose

to use a match function and detectors that return connected geometric spaces of points

because previous research [49] [97] has shown that geometric structures perform well as

detectors in a negative selection problem. Future research may investigate the feasibility

of real-valued detectors that do not represent connected geometric structures.

We desire to improve on hyper-rectangle and hyper-sphere detectors by adding ge-

ometric flexibility. Flexibility means that the detector more accurately provides a fit to

boundaries in self-nonself space. We surmise that a more flexible detector accomplishes

similar (to a less flexible detector) classification accuracy while using fewer detectors. We

38

choose ellipsoids because they are a generalization of hyper-spheres. Hence, ellipsoids re-

tain the strengths of hyper-spheres while adding flexibility, intuitively conceptualized as

“stretching” and “orienting.” The next section provides a mathematical definition for el-

lipsoids. The mathematical definition is extended to understand the volume of an ellipsoid

and membership of an arbitrary point in an ellipsoid.

3.2 Ellipsoids

This section provides a mathematical definition of ellipsoids, as well as solutions to

two low level operations, volume and membership of an arbitrary inside of an ellipsoid.

3.2.1 Mathematical Definition of Ellipsoid. The mathematical definition of an

ellipsoid is a straightforward generalization of the classical 2-d ellipse. Equation 13 defines

the classical 2-d ellipsoid:
(x− x0)2

a2
+

(y − y0)2

b2
= 1, (13)

where (x0, y0) is the center of the ellipse and a and b are the lengths of the x and y

semiaxes, respectively. Equation 14 shows a matrix formulation of Equation 13.

(x− ω)TVΛVT (x− ω) = 1 (14)

Equation 14 defines the same 2-d ellipse as Equation 13 if x =

 x

y

, Λ =

 1/a2 0

0 1/b2

,

ω =

 x0

y0

, and V =

 1 0

0 1

.

This is shown in Equation ??.

 x

y

−
 x0

y0

T  1 0

0 1

 1/a2 0

0 1/b2

 1 0

0 1

T  x

y

−
 x0

y0

 = 1

(15)

ω is the center of the ellipsoid. The columns of matrix V are the orientations of the

x and y semiaxes, respectively. In this case, V is the identity matrix because Equation

39

13 defines a 2-d ellipse whose semiaxes are oriented along the x and y coordinate axes. Λ

defines the lengths of the ellipsoid semiaxes.

Equation 14 is also the generalized equation for an n-d ellipsoid if x, ω are n × 1

matrices and V, Λ are n × n matrices. Λ is subject to the constraint that it must be

diagonal with positive entries. V is subject to the constraint that its columns must be

orthonormal. Figure 5 shows the ω,Λ and V graphically for a 2d ellipsoid.

Figure 5: A graphical illustration of variables that define an ellipsoid.

There are three conceptual degrees of freedom for an n-d ellipsoid: center, semiaxis

lengths, and orientations of semiaxes. ω is the center of the ellipsoid. The semiaxis lengths

are the square roots of the inverses of the diagonals of Λ. The length `i of the ith semiaxis

is defined by

`i =
1√
Λi,i

. (16)

The ith semiaxis also has an orientation characteristic. The orientation of a semiaxis

is a vector that is parallel to the actual semiaxis of the ellipsoid. The columns of V are

the orientations of the semiaxes. Since Λ defines the lengths of the semiaxes, the columns

of V are normalized so that they have length 1. Since the semiaxes of an ellipsoid are all

40

orthogonal to each other, and the orientations are all length 1, V is also orthonormal. The

ith column of V is the orientation of the ith semiaxis, whose length is `i = 1√
Λi,i

.

It is easy to prove that the columns of V are the orientations of the semiaxes of an

ellipsoid defined by Equation 14. Changing the orientation of the semiaxes means rotating

the ellipsoid. A rotation in n-space is defined by a n × n orthonormal matrix. V is an

orthonormal matrix, and defines this rotation. If x − ω is a point on the surface of some

ellipsoid e, then V(x − ω) is a point on the surface of an ellipsoid that has been rotated

by V. This is shown with the substitution (x− ω) ⇒ V(x− ω), leading to:

(V(x− ω))TVΛVT (V(x− ω)) = 1. (17)

The definition of transposition in linear algebra states that (V(x − ω))TV = (VTV(x −

ω))T . Substituting this equality results in

(VTV(x− ω))TΛVT (V(x− ω)) = 1 (18)

Since V is orthonormal, VTV = I. Hence, Equation 18 simplifies to Equation 14, which is

true because of the the assumption that (x−ω) is on the surface of the ellipsoid. Rotation

preserves the relative positions of points on the ellipsoid. Hence, if point p is on a semiaxis

in the unrotated ellipsoid, then Vp is on the rotated ellipsoid. Therefore, the orientation

of the semiaxes is the columns of V.

3.2.2 Volume of an Ellipsoid. Since one of the design objectives of a negative

selection algorithm is efficiency (see Chapter I), it is desirable that detectors cover as much

nonself space as possible, making it useful to know the volume of an ellipsoid. Fortunately,

the volume of an ellipsoid is obtained by evaluating a simple, exact expression. Tee [90] [88]

shows that the volume of the n-d ellipsoid defined by Equation 14 is

V = Ωn

n∏
i=1

1√
Λi,i

(19)

41

where Λ is retains its definition from Equation 14 and Ωn is the volume of a n-d unit hyper-

sphere. Smith and Vamanamurthy [81] show that the volume Ωn of an n-dimensional unit

hypersphere is

Ωn =
πn/2

Γ(1 + 1
2n)

(20)

The Γ function is a mathematical extension of the factorial function from positive integers

to real numbers. Java source code that computes the Γ function has been produced by

several groups, including the PAL project [87]. Ωn is computed for n = 1...20 once and

then stored in a table. Table 4 shows the volume of the unit hyper-sphere through 20

dimensions.

Table 4: Volumes of unit hyper-sphere for up to 20 dimensions.
Dimensions Volume

1 2.0000000000215654
2 3.1415926536524683
3 4.188790204831557
4 4.934802200643129
5 5.263789013971081
6 5.167712780153064
7 4.724765970382346
8 4.058712126497739
9 3.298508902774271
10 2.5501640399282204
11 1.8841038794102152
12 1.3352627688812284
13 0.9106287547931023
14 0.5992645293244241
15 0.3814432808246492
16 0.23533063035939014
17 0.14098110691732263
18 0.08214588661119586
19 0.046621601030113424
20 0.025806891390023085

The interpretation of Equation 19 is that the volume of a n-d ellipsoid is the volume

of a n-d unit hyper-sphere multiplied by the semiaxis lengths (see Equation 16) of the

ellipsoid. This is intuitive, indicating that “stretching” a unit hyper-sphere by changing

42

the length of one the semiaxes is analagous to stretching the volume my multiplying by

the same scalar that is used to “stretch” the semiaxis.

3.2.3 Is a Point Inside of an Ellipsoid? A negative selection algorithm needs

to be able to determine whether or not a detector matches a point. If the detector is an

ellipsoid, a detector matches a point if the point is inside of the ellipsoid represented by

the detector. Kelly et al. [51] report that the squared Mahalanobis distance can be used

to determine whether or not a n-d point p lies inside of ellipsoid e. Kelly et al. choose

a value ρ and if the squared Mahalanobis distance (left side of Equation 21) is less than

ρ, then the point lies within the ellipsoid. They are effectively scaling the ellipsoid when

they choose the value ρ. We choose ρ = 1. p is inside of e if and only if the inequality in

Equation 21 holds.

(p− ω)TVΛVT (p− ω) < 1 (21)

As this operation is performed often in our algorithm, we present the complexity of com-

puting the Mahalanobis distance.

3.2.3.1 Complexity of Squared Mahalanobis Distance. Squared Maha-

lanobis distance requires evaluation of the expression, (x − ω)TVΛVT (x − ω). However,

a simplification is possible. If the Mahalanobis distance is to be computed for multiple

points against one ellipsoid, we can compute A = VΛVT only once and then use Equation

22 for the Mahalanobis distance.

(p− ω)TA(p− ω) < 1 (22)

Evaluation of the left side of Equation 22 requires two vector subtractions, a matrix

transpose, and two matrix multiplies. x is an n×1 matrix and A is a n×n matrix. Hence,

the complexity of computing the Mahalanobis distance is determined by

• two vector subtractions: 2n operations

• transpose of [n× n] matrix: n2 operations

• matrix multiply of a [1× n] by a [n× n] matrix: n2 operations

43

• matrix multiply of a [1× n] by a [n× 1] matrix: n operations

Hence, the bounded complexity of computing the Mahalanobis distance is given by Equa-

tion 23

O(2n + n + n2 + n) = O(n2) (23)

3.3 An Evolutionary Algorithm to Evolve a Set of Ellipsoids

With a solid ellipsoid model established, the next step is to produce a set of ellipsoids

optimized according to Equations 2 and 3. Producing a set of ellipsoids that satisfies

these constraints is not a trivial problem. There is no known deterministic algorithm

to accomplish this goal, completing in a tractable amount of time. Also, performing an

exhaustive search for an optimal solution is not an option because the problem space is

prohibitively large. If each coordinate axis is discretized into α points, exhaustive search

requires searching a space size O(α2n+1n2), where αn is the number of possible center

points, O(αn) is a bound on the number of combinations of axis lengths, and O(nαn)

is a bound on the number of possible orientations. Further, the previous complexity

analysis makes the unreasonable assumption that there is only one ellipsoid. As α is a

reasonably sized number for the discretization of coordinate axes, exhaustive search is

obviously infeasible.

An exhaustive search is not be feasible unless computational technology progresses

many orders of magnitude beyond current limitations. However, there may be some merit

in the development of deterministic algorithms for ellipsoid generation. Deterministic

algorithms would be an excellent direction for future research.

In this research we use an evolutionary algorithm because the problem of generating

ellipsoid detectors appears to be nonlinear and have stochastic components [17]. Evolu-

tionary algorithms (EAs) have proven themselves in the optimization of hard problems

with rugged, random solution spaces. The algorithm described in this section also uses

some components of an algorithm called simulated annealing.

One of the first decisions that must be made in order to implement an EA is the

representation of an individual and a population. Since a classic EA finds an optimal

44

individual, the intuitive decision is to let an individual be a set of ellipsoids. Then, the

individual (set of ellipsoids) that covers the most nonself space is chosen as the optimal

solution. However, ellipsoid computations are costly, so having an entire population of sets

of ellipsoids requires is a computational bottleneck. For this reason, we let an individual

be one ellipsoid. The solution is then all (or a subset) of the individuals in the population.

We describe an EA that reflects this design decision in variation operators (crossover and

mutation), objective function, and convergence technique/criteria.

Evolutionary algorithms generally employ crossover and mutation variation opera-

tors to search the solution space. Objective functions evaluate the goodness of solutions.

Convergence techniques can lead the algorithm to an “optimal” solution. This section

addresses the mapping of the ellipsoid model into crossover, mutation, objective function,

and a convergence technique in the evolutionary algorithm domain.

3.3.1 Crossover With Ellipsoids. The virtue of crossover in an EA is based on the

fact (or belief) that individuals contain different “building blocks” that can be combined to

produce a better individual than the “parents” that are crossed over. However, if “good”

building blocks do not exist, then crossover is void of virtue.

Crossover works well when an EA evolves a population of individuals with the ob-

jective of choosing the best individual from the population when the algorithm completes

execution. In this problem of ellipsoid detector generation, an individual would be a set

of set of ellipsoids. After the EA has run to completion, the individual (set of ellipsoids)

with the best objective value is chosen.

With this EA implementation, crossover could be performed by “trading” of ellipsoids

between different individuals. However, we do not use this pure EA method because of the

computational burden associated with maintaining a population that consists of multiple

individuals, each of which consists of multiple ellipsoids.

The approach that we take is to maintain only one set of ellipsoids. The final solution

is this set of ellipsoids when the algorithm has run to completion. Since only one complete

individual is maintained by the EA, crossover does not make sense. Crossover in this case

45

would be similar to choosing two portions of the representation of the same individual and

switching them.

Figures 6 and 7 illustrate the reason we choose not to use crossover. Figure 6 shows

that crossover is useful if a population is a set of individuals, each of which is a set of

ellipsoids. In this situation, building blocks are individual ellipsoids. Figure 6 shows that

crossover is simply a trade of ellipsoids. This trade makes sense according to the definition

of crossover and Figure 6 shows how this can lead to a better child, which is the objective

of crossover in an EA.

Figure 7 shows the results of crossover when an individual is one ellipsoid. The

intuitive way to accomplish crossover in this case (there may be others) is to let a building

block be ω, Λ, or V, which is the center point, semiaxis lengths, or semiaxis orientations,

respectively. However, since all of the ellipsoids are actually part of one solution, these

are not really “homologous” fragments of the chromosome. Some of the resulting “bad”

children are shown in Figure 7. These figures and arguments do not prove, of course,

that crossover is not useful for our one-solution-in-population approach. The preceding

arguments do, however, provide an intuitive explanation of why the algorithm developed

in this research does not employ crossover.

3.3.2 Mutating an Ellipsoid. EAs can employ mutation as a variation operator

that searches the solution space. There are two design goals for mutation. First, it should

be possible to mutate any valid ellipsoid to any other valid ellipsoid through a finite series

of mutations. This design goal is especially important because we are not using crossover.

This means that mutation is the only variation operator (other than random generation

of new ellipsoids). Second, the mutation should be random but should also not be too far

from the unmutated ellipse. If a mutation is too far, then mutation works like a random

search, instead of an opportunity to improve on good ellipsoids. “Too far” is, of course,

a subjective term. For lack of a better definition, the following is used: The mutated

ellipsoid overlaps “most” of the unmutated ellipsoid.

Mutating an ellipsoid is not as simple as one might think (“just stretch it, spin it,

bump it!”). One method might be to simply randomly change the ω, V, and Λ from

46

Figure 6: The two individuals on top are the parents. Each parent is a set of two
ellipsoids. The obvious optimal solution to this problem is two ellipsoids. The arrows
show how two “building blocks” (a “building block” is an ellipsoid) can be combined
through crossover to produce a good child, which is the optimal solution.

47

(a) Center

(b) Orientation

(c) Semiaxis Lengths

Figure 7: Crossover problems when an individual in the population is an ellipsoid and
not a set of ellipsoids. ω, Λ, and V retain their definitions from Equation 14. P1 and P2
denote “parent 1” and “parent 2”, respectively. “C” labels the bold ellipsoid it is inside
of, and is the child. The labels ω, Λ, and V on the arrows denote the “building blocks”
coming from each parent.

48

Equation 14. A random change to ω results in a valid ellipsoid, but V and Λ are subject

to constraints. V must have orthonormal columns and Λ must be diagonal with positive

values. Random changes to V and Λ have a high probability of violating their respec-

tive constraints. For this reason, we choose to employ a different technique for ellipsoid

mutation.

Although it does not make sense to accomplish ellipsoid mutation by randomly chang-

ing ω, V and Λ, these three parameters that define an ellipsoid do provide insight into a

good way to mutate an ellipsoid. ω, V and Λ represent three independent characteristics

of an ellipsoid: center, semiaxis lengths, and semiaxis orientations. The following sections

describe methods for performing valid mutations of ω, V and Λ. The mutations described

in the following sections also conform to the two design goals: (1) possible to reach any

ellipsoid beginning from any ellipsoid through a series of mutations (2) mutation is small.

Center Mutation. The center of an ellipsoid defined by Equation 14 is ω.

Let Mc : {ω|ω is a n × 1 vector} ⇒ {ω|ω is a n × 1 vector} be the EA center mutation

operator. Any n × 1 vector returned by Mc is valid. However, fulfillment of the second

design goal requires that ωm, the mutated center, remain near ω. In order to maintain

the ellipsoids in useful positions, we add the constraint that ωm cannot be outside of the

problem domain bounds. Allowing the center to be outside of problem domain bounds

could result in an ellipsoid that can never cover nonself space because it is impossible for

a nonself point to exist where the ellipsoid is.

Two schemes are investigated for center mutation. The simplest mutation technique

randomly chooses one dimension and mutates the corresponding component of the center

point. If the ith dimension is randomly chosen, Mc chooses ωm
i from a Gaussian distribution

with mean ωi. The standard deviation for the distribution is a parameter that can be

changed. This method is intuitive, simple to implement, and fulfills the two mutation

design goals specified above. Any center point can be reached from any starting center

point through a series of mutations. The mutation is only a small change because the

Gaussian distribution keeps most points near the mean. We keep ωm within the problem

49

domain bounds by setting ωm to be on the boundary if the value chosen from the Gaussian

distribution is outside of the problem domain bounds.

Although it seems that this center mutation technique should work well, it suffers

from a drawback. There is a situation in which a center mutation in a direction other

than along a semiaxis is desirable, but mutation along any of the semiaxes is undesirable

because it causes the ellipsoid to cover one or more self points. Such a situation is shown

is Figure 8. This weakness causes an ellipsoid to “get stuck” before it has evolved into an

optimal ellipsoid. Because of this, we choose to not use this center mutation technique.

Figure 8: An ellipsoid surrounded by self points. The ellipsoid shown cannot be moved
along only one semiaxis without causing the ellipsoid to cover self point(s).

However, the described weakness does not render the mutation technique useless. A

simple extension is to repeat the mutation for all dimensions. This allows the center to be

mutated in any direction, solving the weakness shown in Figure 8.

The described center mutation fulfills the design goals because there is a nonzero

probability of returning any point when mutating ω. Also, the Gaussian distribution

guarantees that ωm is usually near ω.

Orientation Mutation. The orientation of an ellipsoid defined by Equation

14 is V, whose orthonormal columns are the orientations of each individual semiaxes. Let

Mo : {v|v is a n × n matrix} ⇒ {v|v is a n × n matrix} be the EA orientation mutation

operator. Any n × n orthonormal matrix returned by Mo is valid. However, fulfillment

50

of the second design goal requires that Vm, the mutated semiaxis orientations, must be

restrained by some bounds.

Changing the orientation of an ellipsoid is simply rotation of the ellipsoid. In two

dimensions, a mutation for the orientation is easy to conceptualize. Figure 9 shows such a

mutation.

Figure 9: (a) shows an unmutated ellipsoid. (b) shows semiaxis mutation in the thin
line. (c) shows an unacceptable (except in rare instances) mutation in the thinner line. In
all figures, the semiaxes of the unmutated ellipse are shown in the heavier line.

The EA accomplishes orientation mutation by rotating the ellipsoid in a 2d plane.

Let v1 and v2 be the vectors of two semiaxes that are chosen at random from the n semiaxes

of the ellipsoid. That means that v1 and v2 are two of the columns from the matrix V (see

Equation 14). In the following discussion, it is important to note that V is orthonormal

so ||v1|| = ||v2|| = 1. A plane η is defined by all points that are a linear combination of v1

and v2. v1 and v2 are orthogonal to each other because they are semiaxes of an ellipsoid.

v1 and v2 are mutated so that they stay in plane η and are still orthogonal to each other

after the mutation. Let vm
1 and vm

2 be v1 and v2, respectively, after having undergone

mutation. vm
1 and vm

2 are orthogonal to the n − 2 unchosen semiaxes because the n − 2

unchosen semiaxes are orthogonal to η and vm
1 and vm

2 are in η after the mutation.

This is also shown mathematically. Let vm
1 = α1v1 +β1v2 and let vm

2 = α2v1 +β2v2.

Let u be any one of the n− 2 unchosen semiaxes. Two vectors are orthogonal if and only

if their product = 0. uTv1 = 0 and vTv2 = 0 because u is orthogonal to v1 and v2. The

following expressions show that u is orthogonal to vm
1 and vm

2 because the dot products

uTvm
1 and uTvm

2 are equal to 0.

uTvm
1 = uT (α1v1 + β1v2) (24)

51

= uT α1v1 + uT β1v2 (25)

= α1uTv1 + β1uTv2 (26)

= α10 + β10 = 0 (27)

so u and vm
1 are orthogonal. Substituting v2 and vm

2 for v1 and vm
1 , respectively, shows

that u is orthogonal to vm
2 .

To accomplish this rotation, a small angle θ is chosen. The vectors that represent

the randomly chosen semiaxes, s1 and s2, are both rotated by θ to produce new semiaxes,

whose vectors are sm
1 and sm

2 . Since one of the design goals of orientation mutation is that

the mutation be small, or local, a Gaussian distribution is chosen with the mean 0 and

standard deviation π
2 radians. Figure 10 shows the PDF for choosing different angles. In

practice, a parameter that increases or decreases the standard deviation (widens or narrows

the curve in Figure 10) is added that allows the Gaussian distribution to be widened or

narrowed.

Figure 10: In (a), the x axis is the degree (in radians) of rotation and the y axis is the
probability of randomly choosing that degree in a mutation. (b) shows the same thing in
a polar representation. Each point on the curve represents the probability of randomly
choosing a rotation of the angle between the x axis and the vector that represents the
point.

vm
1 and vm

2 are computed as follows:

vm
1 = cos(θ)v1 + sin(θ)v2 (28)

52

vm
2 = − sin(θ)v1 + cos(θ)v2 (29)

If the dot product of vm
1 and vm

2 is 0, (i.e.((vm
1)T vm

2) = 0, then vm
1 and vm

2 are

orthogonal.

(vm
1)T vm

2 = [(cos(θ)v11 +sin(θ)v21) · · · (cos(θ)v11 +sin(θ)v21)]


(− sin(θ)v11 + cos(θ)v21)

...

(− sin(θ)v11 + cos(θ)v21)


(30)

=
n∑

i=1

(cos(θ)v1i + sin(θ)v2i) ∗ (− sin(θ)v1i + cos(θ)v2i) (31)

=
n∑

i=1

− cos(θ) sin(θ)v2
1i

+ cos2(θ)v1iv2i − sin2(θ)v1iv2i + cos(θ) sin(θ)v2
2i

(32)

=
n∑

i=1

cos(θ) sin(θ)(v2
2i
− v2

1i
) + (cos2(θ)− sin2(θ))v1iv2i (33)

=
n∑

i=1

cos(θ) sin(θ)(v2
2i
− v2

1i
) +

n∑
i=1

(cos2(θ)− sin2(θ))v1iv2i (34)

= cos(θ) sin(θ)
n∑

i=1

(v2
2i
− v2

1i
) + (cos2(θ)− sin2(θ))

n∑
i=1

v1iv2i (35)

Since s1 and s2 are orthogonal,

vT
1 v2 =

n∑
i=1

v1iv2i = 0 (36)

Also, if v1 and v2 are the same length (i.e. ||v1|| = ||v2||)

n∑
i=1

v2
1i

=
n∑

i=1

v2
2i

(37)

so that

(v2
2i
− v2

1i
) = 0 (38)

53

Substituting Equations 36 and 38 in Equation 34,

cos(θ) sin(θ)
n∑

i=1

0 + (cos2(θ)− sin2(θ))
n∑

i=1

0 = 0 (39)

so that (vm
1)T vm

2 = 0. Hence, vm
1 and vm

2 are orthogonal.

The described orientation mutation meets the two design goals. It is possible to reach

any orientation through a series of mutations in which only two semaixes are mutated at

once (see Theorem 1. Also, the mutation is random and “small.” This is accomplished by

choosing the rotation angle from a Gaussian distribution. The standard deviation of the

Gaussian distribution controls the amount of rotation.

Theorem 1. It is possible to reach any orientation starting from any orientation through

a series of mutations that mutate only two semiaxes at once.

Proof. Define Fi to be an orthonormal n × n matrix. Let Ff be the final or target or-

thonormal n × n matrix. There exists L, a n × n matrix whose columns each represent

the linear combination of columns of Fi necessary to obtain the corresponding column

of Ff . L exists because Fi spans n-space, so the vector in each column in Ff is repre-

sentable by a linear combination of columns of Fi. L is orthonormal because L = F−1
i Ff

so LLT = F−1
i Ff (F−1

i Ff)T = F−1
i FfF T

f (F−1
i)T = F−1

i I(F−1
i)T = I.

The mutation operator works like a right matrix multiplication. If j and k are the

indices of the chosen semiaxes, and letting the randomly chosen angle have a cosine of α

and a sine of β, the mutation operator is equivalent to multiplying by Y = I with the

exception that Yjj = α, Ykj = β, Yjk = −β, Ykk = α. A matrix in the form of Y can

perform any row operation. Since L is orthonormal, there is a series of row operations

such that the result is I. If this series of row reductions is Y1, Y2, ..., Yz, where z is the

number of row operations necessary to get I, then
∏z

i=1(Yi)−1 = L. Since L exists for any

orthonormal matrix Ff , there exist mutations Y −1
1 , Y −1

2 , ..., Y −1
z that can produce Ff .

Semiaxis Length Mutation. The length of the ith semiaxis of the ellipsoid

defined by Equation 14 is 1/
√

Λi,i (see Equation 16). Let

M` : {λ|λ is a n×n positive diagonal matrix} ⇒ {λ|λ is a n×n positive diagonal matrix }

54

be the EA semiaxis length mutation operator. Any n×n positive diagonal matrix returned

by M` is valid. Let Λm be the mutated Λ. Fulfillment of the second design goal requires

that Λm
i,i be “close” to Λi,i for all 1 ≤ i ≤ n.

M` mutates each of the n semiaxis lengths individually. Remember that `i is the

length of the ith semiaxis (see Equation 16. Let `m
i be `i after mutation. The semiaxis

length mutation operator chooses `m
i from a Gaussian distribution with mean `i. The

standard deviation is a parameter value that can be set to reflect the desired variability of

the mutation. The algorithm also performs a check to ensure that `m
i > 0.

This semiaxis length mutation fulfills the design goals because there is a nonzero

probability of returning any valid Λ and the Gaussian distribution guarantees that the

mutated semiaxis lengths are usually close to the unmuated lengths.

The described mutations for ω, Λ, and V fulfill the design requirements of reacha-

bility and proximity. The mutation operator employed by the EA uses all three of these

mutation operators to accomplish mutation. Reachability not only holds for ω, Λ, and

V, but also for the entire ellipsoid. This is true because an ellipsoid is defined by the

ω, Λ, and V together. Since mutation allows each of ω, Λ, and V to reach any valid

value independent of the other two, an ellipsoid can reach any valid combination of values

of ω, Λ, and V. Hence, defining ellipsoid mutation as a combination of center, semiaxis

orientation, and semiaxis length orientation preserves reachability.

The other ellipsoid mutation design objective, proximity, is not so easily proved.

Although it is possible to provide an analysis of the probabilities for overlap amount with

the unmutated ellipsoid as a function of the mean and standard deviations of the Gaussian

probability distributions used in the ω, Λ, and V mutations, it is outside the scope of this

research. We submit only a proof by intuition: Because the three individual mutations

keep the mutated ellipsoid “near”, the conglomerate mutation also maintains the closeness

of the mutated ellipsoid.

3.3.3 Objective Function. An EA requires, in the least, a variation operator

and a function to measure the goodness of individuals. With a good mutation operator

defined, the next step is to develop the objective function, which measure the quality of

55

individuals in a population. The output of the objective function affects whether or not

the EA perpetuates an individual to the next generation. For this reason, the objective

function should reflect as accurately as possible the true objective of the problem at hand.

The true objective of this problem is to cover as much space as possible while covering

as few self points as possible. This objective divides naturally into a reward function and a

penalty function. The reward function rewards ellipsoids for covering space. The penalty

function penalizes ellipsoids for covering self points. The objective function is the difference

of the reward function and the penalty function.

Reward Function. The reward function should encourage maximum cover-

age of space with a minimum number of ellipsoids. Since the solution to this problem is a

set of ellipsoids, the reward value of each individual ellipsoid should reflect its contribution

to the performance of the set of ellipsoids. The cumulative reward value of the population

should be proportional to the amount of nonself space covered. If it is not, then the reward

function does not accurately reflect the fulfillment of the objective.

Let E be a population of ellipsoids. Let

REWARD : {π|π is a set of ellipsoids } × E → [0.00, 1.00] (40)

be the reward function. i.e., the reward function maps a set of ellipsoids (the population)

and an individual from the population to a value in [0.00, 1.00].
∑

e∈E REWARD(E, e)

should be proportional to the area covered by the E. This means that when two or more

ellipsoids in E overlap, only one of the ellipsoids should receive a reward for covering that

area. This presents a difficult problem: Computing the total area covered by a set of

ellipsoids. Also, in order to make decisions about which ellipsoids should perpetuate to

future generations, the total area covered by a set of ellipsoids must be divided among the

ellipsoids. Several options are investigated for the reward function.

The first reward technique is based on an assumption about the behavior of evolving

ellipsoids. The assumption is: If two ellipsoids overlap they one of them should be penalized

because it is covering space that is already being covered. It is not helping to accomplish

56

the goal of the set of ellipsoids, which is to collectively cover as much space as possible.

In this approach to the REWARD function, the REWARD function is divided into two

parts: REWARDr and REWARDp. REWARDr rewards an ellipsoid for being large,

i.e. covering up space. REWARDp penalizes an ellipsoid if it overlaps an ellipsoid that is

larger than itself. So, REWARD = REWARDr −REWARDp. Equation 19 shows how

to compute the volume of an ellipsoid. However, computing overlap between two ellipsoids

is a trickier task. We investigate several approaches for approximating ellipsoid overlap.

For the general case, it is nontrivial to decide whether or not two ellipsoids intersect.

If e1 and e2 are n-d ellipsoids, then figuring out where they intersect requires solving the

following system of matrix equations:

(x− ω1)TV1Λ1V1
T (x− ω1) = 1

(x− ω2)TV2Λ2V2
T (x− ω2) = 1

(41)

41 is a nonlinear system of equations of matrices. If one ignores the fact that it uses matrices

and vectors, it is a nonlinear system. When the complexity of multiple dimensions in the

matrices is included, the complexity is increased. There is not a lot of literature on this

subject. It suffices to say that analytically finding the intersection and the volume of the

intersection between p and q is far from trivial. Tee [89] believes that finding the volume

of the intersection is difficult: “Even in 2 dimensions that is a nontrivial problem, and in 3

dimensions, it is quite difficult.” For this reason, we choose to use an approximate method

to estimate the amount of overlap between two ellipsoids.

2d Ellipsoids. It is possible to obtain an analytical solution for the intersection

of two ellipsoids in two dimensions. Hill [73] shows how to find the intersection points of

two 2d ellipsoids using degenerate conics. Hill shows that the intersection of the surfaces

of two ellipsoids is always a conic. Figure 11 shows the degenerate situation that occurs

when ellipsoids intersect at exactly three points. Although this method is simple and it

works well, it does not scale to higher dimensions. If the points of intersection are known

in two dimensions, piecewise integration can be used to analytically find the volume of

overlap.

57

(a) A (b) B

(c) C

Figure 11: (A) shows 2 ellipsoids that intersect at exactly three points. (B) shows one
degenerate conic, two intersecting lines, that passes through the three points of intersection.
(C) shows a second degenerate conic, two parallel lines, that passes through the three points
of intersection.

58

Euclidean Distance Approximation. A very naive approximation is to

use the Euclidean distance between the centers of the ellipsoids. Figure 12 shows that this

technique is prone to severe error.

(a) A (b) B

Figure 12: (A) shows two ellipsoids whose centers are relatively far apart, yet they have
significant overlap. (B) shows two ellipsoids whose centers are relatively close, but they
have no overlap. These two examples show that distance between centers is not a good
way to measure the proximity of two ellipsoids if their proximity is directly related to the
amount of common area that they cover.

Hypersphere Estimation. One simple approximation of whether or not

two ellipsoids e1 and e2 overlap is to simply find the longest semiaxis and then treat it as

the radius of a circle. This simplifies the problem to determination of whether or not two

hyper-spheres overlap. If the Euclidean distance from the center of e1 to the center of e2 is

less than r1 + r2, where r1, r2 are the longest semiaxes of e1 and e2, respectively, then the

two ellipsoids overlap. The problem with this method is that it is not accurate. Figure 12

shows two situations in which the weakness of this method is manifest.

Simple Overlap Check. In an ellipsoid, the distance from any point

on the ellipsoid to the center of the ellipsoid is less than the length of the longest semiaxis

and greater than or equal to the length of the shortest semiaxis (see Figure 13). Let

`max
e and `min

e be the lengths of the maximum and minimum semiaxes, respectively, of

hyper-ellipsoid e. Let diste1,e2 be the distance from the center of e1 to the center of e2. If

diste1,e2 ≤ `min
e1

+ `min
e2

, then e1 and e2 intersect [89]. If diste1,e2 > `max
e1

+ `max
e2

, then e1

and e2 intersect. If neither of these inequalities holds, then another method is necessary.

59

Figure 13: (a) shows an ellipsoid with an inscribed circle whose radius is equal to the
length of the shortest semiaxis in the ellipsoid. (b) shows an ellipsoid with an circumscribed
circle whose radius is equal to the length of the longest semiaxis in the ellipse.

Monte Carlo Method. We describe a statistical approximation using a

Monte Carlo technique. In the following discussion, without loss of generality, we assume

that the volume of e1 is greater than or equal to the volume of e2. In the Monte-Carlo

technique, α n-d points are randomly generated inside of the hyper-rectangle rectangle

which bounds e1. This rectangle has the same center as e1 and is oriented along the

semiaxes of e1. The rectangle has dimensions 2`1, 2`2, . . . `n, `1, `2, . . . , `n are the lengths

of the semiaxes of e1 (see Equation 16). Let h be the number of of the α points that fall

inside of e1 (see Section 3.2.3). Let beta be the number of points that fall inside of both

e1 and e2. An estimate of the volume of overlap between e1 and e2 is

volume(rectangle) ∗ h

α
∗ β

h
=

(
n∏

i=1

`i

)
β

α
(42)

The benefit of this technique is that it is approximate, so its computational com-

plexity is significantly less than an analytical or precise numerical solution. Although this

technique is approximate, it is statistically accurate. That is, the mean of the error over

all overlap checks is 0. That is, there is an average of no error. However, the standard de-

viation of the error over all overlap checks is nonzero. The standard deviation of the error

over all overlap checks is inversely related to α, the number of points that are randomly

generated for sample checks. This error is acceptable as long as α is large enough so that

the error is kept small.

60

Another note about this technique: Smith and Vamanamurthy [81] show that as n

increases beyond 5 Ωn, the volume of a unit ball in n-dimensions, rapidly approaches 0.

This means that the number of randomly generated points that falls inside of the ellipsoid

rapidly approaches 0 as n increases. This fact makes it difficult to generate random points

inside of an ellipsoid using the bounding hyper-rectangle technique for dimension n > 5.

One way to remedy this situation is to use a different bounding shape. A hyper-sphere

whose radius is equal to the longest semiaxis in the ellipse could be used to bound the

ellipsoid. If the ellipsoid is close to being spherically shaped, then the hyper-sphere could

provide a tighter bound than the hyper-rectangle. However, if the ellipsoid has some

semiaxes that are much longer than other semiaxes, then the volume of the bounding hyper-

sphere could be significantly greater than the volume of the bounding hyper-rectangle.

Hence, appropriate modifications are necessary when applying this technique for n > 5.

There are a number of possibilities for approximating the amount of overlap between

two ellipsoids. Penalizing ellipsoids for overlapping other ellipsoids works well if the optimal

solution does not include overlapping ellipsoids. However, we assume that a data set for

which the optimal solution does not include overlapping ellipsoids is the exception, rather

than the common case. To get an intuitive feel for why overlapping ellipsoids in an optimal

solution is believed to be the common case rather than the exception, see the pedagogical

data sets in Chapter IV. Figures 16, 17 and 18 show data sets in which the optimal solution

is one or more non-overlapping ellipsoids. However, these data sets are specially designed

to be such. Figures 19, 20 and 21 show data sets in which the optimal solution requires

overlapping data sets. Penalizing ellipsoids for overlapping is not robust across all data

sets, since most (all except special cases) data sets require overlapping in order to achieve

an optimal solution.

Rewarding Only One Ellipsoid for Each Portion of Space

We investigate an inverse approach for the REWARD function that does not include a

penalty component. This approach rewards individuals that are far from others in the

search space. Intuitively, this approach has more merit because it is more closely aligned

with the goal of the problem. Again, the objective of the problem is to cover as much nonself

space as possible with as few ellipsoids as possible. Penalizing ellipsoids for overlapping is

61

based on the assumption that ellipsoids that overlap other ellipsoids are covering the same

area twice, and thus probably not covering “new” area in the problem’s n-space. However,

as the previous section and Figures 19, 20 and 21 show, this assumption often leads to

suboptimal performance. Rewarding only one ellipsoid for each portion of space covered

only is closely aligned with the goal of the problem. If the reward function is based on the

amount of area that is uniquely covered (or covered first-it is desired to award one ellipsoid

for each area that is covered by at least one ellipsoid), then an increase in objective values

indicates that the problem goal of covering more space is being better achieved. The

same is not true when the REWARD function includes a penalty for overlap with other

ellipsoids.

In this approach, the objective values of the ellipsoids are evaluated by finding out

which portions of the problem space are covered by one or more ellipsoids, and then reward-

ing only one ellipsoid for each portion of the problem’s n-space that is covered. Solving

this problem analytically requires calculating the sum of the volumes of each ellipsoid and

then subtracting the overlaps that occur.

• Computing the sum of the volumes of the ellipsoids is simple: In fact, it is O(n),

where n is the dimensionality.

• “subtracting the overlaps that occur”. This is very hard. It requires computing

the area of overlap (see previous section) for every pair of ellipsoids and then doing

complex calculations to achieve the desired result. This method is not investigated

here because of its complexity.

We need an approximate method to decide which portions of n-space are covered by one

or more ellipsoids and which ellipsoid should be given credit for each covered portion. To

achieve this, we employ an n-way tree, which is the generalization of a segment tree.

2n-Way Tree. Preparata and Shamos [77, p.336-7] describe a data struc-

ture called the segment tree, which can be used for a wide variety of purposes. The term

“segment tree” refers to an implementation in 1-d. An n-d implementation is referred to

as a 2n-way tree. i.e., in two dimensions, this data structure is referred to as a “four way

tree.”

62

One of the applications that Preparata and Shamos suggest is to answer the following

question: Given a set of rectangles in some plane, how many of the rectangles contain a

given point? When this question must be answered multiple times for the same (or very

similar) set of rectangles, then using a n-way tree can save time over the naive approach

of checking each rectangle against the point. Figure 14(a) shows an example of a one

dimensional segment tree. Figure 14(b) shows an example of one node division in a 2d

n-way tree, a 4-way tree, which is divided up into squares.

The basic idea is that the tree divides up n-space into hyper-rectangles. The leaves

represent the smallest division. In Preparata and Shamos’ application a subspace of the

n-space is inserted into the tree by updating each node that represents a range that is

contained in the subspace. In this way, each node contains a running count of how many

inserted subspaces the node is totally inside of.

(a) (b)

Figure 14: (A) shows the segment (4,15) inserted into a 1d segment tree. The nodes
shown are those that the segment (4,15) covers. (B) Shows how one node is divided in a
2d segment tree.

An algorithm that uses a 2n-way tree data structure to figure out how much space

each ellipsoid uniquely covers is described below. A secondary goal for the solution of this

problem is to use as few ellipsoids as possible. As a result of this, when more than one

ellipsoid covers the same area in n-space, the largest of those ellipsoids is the only ellipsoid

rewarded for covering that space. Rewarding the largest ellipsoids encourages solutions

with larger ellipsoids. With larger ellipsoids, less ellipsoids are required to cover the space.

63

In order to compute an approximation for how much area an ellipsoid should be rewarded

for, the ellipsoid is “inserted” into the 2n-way tree.

Inserting an Ellipsoid into a n-Way Tree

We investigate two approaches for inserting an ellipsoid into a 2n-way tree: In the first,

each ellipsoid is represented by a set of randomly generated points that are inside of the

ellipsoid. These points are used to insert the ellipsoid into the tree. In the second method,

an ellipsoid is inserted into the 2n-way tree using several approximations to decide how

much of each node is covered. Algorithm 1 describes the insertion of an ellipsoid using the

first approach:

If the 2n-way tree has τ levels, then the n-space is divided by the leaves into 2nτ hyper-

rectangles. Each hyper-rectangle results in only one reward, for the first ellipsoid that

covers that hyper-rectangle. Hence, if each ellipsoid is inserted into a 2n-way tree that is

originally empty (no ellipsoids) using the algorithm insertEllipsoid, then insertEllipsoid

returns the fraction of the problem domain n-space that each ellipsoid covers uniquely, or

for which it receives the reward for covering uniquely.

One of the weaknesses in this approach is that coverage accuracy is dependent on

the granularity of the 2n-way tree and the number of random points chosen to represent

the ellipsoid. Sampling theory states that as the granularity of the 2n-way tree increases,

the number of random points must also increase in order to maintain coverage accuracy. If

an ellipsoid has too few representing points in a granular 2n-way tree, then the perceived

area covered by the ellipsoid will be much smaller than the actual area covered by the

ellipsoid. Also, this method does not perform equally for all ellipsoids because smaller

ellipsoids need fewer representing points. Further, representing an ellipsoid by random

points requires creating the points, which requires actually generating more points than

the number desired, because some of the points will not fall inside of the ellipsoid. If the

points are generated to be within a hyper-rectangle that bounds the ellipsoid, the bounding

hyper-rectangle must also be computed. This is also not a trivial task. We do not use this

method because of the overhead of generating points and bounding hyper-rectangles.

64

(a) (b)

(c)

Figure 15: (a) shows an ellipsoid and three points that are not inside of the ellipsoid.
The ellipsoid can cover more space, but only if it is mutated so that it is higher and further
right. That mutation must be a center mutation. Any reorientation mutation causes the
ellipsoid to cover one of the three self points, so that is not allowed. The semiaxis lengths
cannot be mutated because any lengthening causes one of the self points to be covered,
while any shortening causes the coverage of the ellipsoid to be decreased, so it is disallowed.
Hence, the mutation must be a shift of the center of the ellipsoid to the upper right. (b)
shows that, using a grid approximation for the coverage of the ellipse, 125 squares are
covered (a square is considered “covered” if at least one of its corners is in the ellipse).
However, (c) shows a small shift to the upper right that for which only 123 squares in
the grid are covered. Analytically, however, the coverage of the ellipse is exactly the same
because its size has not changed. If mutations that lower the reward function are always
discarded in favor of the unmutated ellipsoid, it may be hard to find an acceptable center
mutation toward the upper right.

65

The second method of inserting ellipsoids into the 2n-way tree is described by al-

gorithm 2. In Algorithm 2, each node in the 2n-way tree maintains a value c ∈ [0.0, 1.0]

that represents the fraction of the node that has not been covered by previously inserted

ellipsoids. Several approximations are used to decide how much of a node a hyper-rectangle

covers. These approximations are based on the number of the corners of a 2n-way tree

node that are inside of an ellipsoid. Also, whether or not the center of the 2n-way tree

node is inside of an ellipsoid is used in the approximations. If c = 1.00 or an ellipsoid does

not overlap a node at all, the ellipsoid receives no reward and returns to the node’s parent.

If an ellipsoid covers all of a node, it receives a reward and c is updated to 1.00. Otherwise,

the ellipsoid traverses all children of a node and then returns to the node’s parent. The

2n-way tree insertion algorithm assigns a reward to each ellipsoid inserted. Although the

2n-way tree algorithm is approximate, it is statistically successful in fulfilling the design

goals of the reward function.

This method also has disadvantages. There are situations when an ellipsoid needs to

have a center mutation. The center mutation is necessary because the ellipsoid changes it

axis lengths or be rotated without lowering its objective value. The lower objective value

may result from covering a self point or from covering less area. In some of these situations,

the ellipsoid may have found an “optimal” covering of leaf nodes, that is, it is in a position

where any small movement (such as a mutation), makes it lose objective value because

it no longer touches the same number of leaf nodes in the 2n-way tree. An example of

this is shown in Figure 15. This risk is mitigated by using a fine grained (enough levels

to produce so that the leaves cover relatively small areas of n-space) 2n-way tree and by

allowing mutations that are large enough to “jump” over the above described “dead space”.

We also mitigate this risk by using an approximate comparison operator.

Since a 2n-way tree approximates the area that an ellipsoid covers, it is inappropriate

to use an exact comparison operator when selecting ellipsoids for the next generation. An

exact comparison operator is inappropriate because it is biased toward some ellipsoids and

against some others. We apply an approximate comparison operator that uses a Gaussian

distribution so that there is a nonzero probability of choosing an ellipsoid with a lower

objective value as a better individual.

66

We choose the second insertEllipsoid algorithm (see Algorithm 2 in Appendix C)

because it avoids the computation of generating random points and bounding rectangles.

Also, every ellipsoid is treated similarly with the second approach, but with the first

approach every ellipsoid may require a different number of random points. Hence, the

reward function is simply the output of insertEllipsoid from Algorithm 2.

REWARD(E, e) = insertEllipsoid(e) (43)

Penalty Function. The penalty function penalizes ellipsoids for covering self

points. It is worse to cover more self points than less self points, so we desire to penalize

more when an ellipsoid covers more self points. For this reason, it is necessary to count

the number of self points that an ellipsoid covers. The naive solution to this problem is

to simply check the ellipsoid against every self point using the Mahalanobis distance (see

Equation 21). However, this quickly becomes a computational bottleneck as the number

of self points increases. Thus, a more efficient technique is needed. We describe such a

technique that makes use of the previously described 2n-way tree.

Let S be the set of self points and let e be an ellipsoid. We desire to know how

many points in S are inside of e. The 2n-way tree tessellates n-space into 2ng equally sized

hyper-rectangles, where g is the number of levels in the 2n-way tree.

Let h(α) be the hyper-rectangle represented by node α. Every s ∈ S is inserted into

the 2n-way tree so that it resides in a leaf node α, whose hyper-rectangle h(α) contains p.

Each node α in the 2n-way tree maintains a counter, countα that represents the number

of self points inside h(α). Whenever s ∈ S traverses node α while being inserted into the

2n-way tree, countα is incremented.

To find out how many self points are inside of ellipsoid e, our algorithm traverses the

2n-way tree. At each node α, one of three things happens:

• If the algorithm can establish that e contains all of h(α), countα is returned to α’s

parent. The algorithm can know that e contains all of h(α) if all of α’s corner points

are inside of e (see Mahalanobis distance in Equation 21).

67

• If the algorithm can establish that e contains none of h(α), 0 is returned to α’s parent.

The algorithm can know that e and h(α) do not overlap at all if the Euclidean distance

between the centers of e and α is greater than the sum of the longest semiaxis length

of e and the distance from the center to a corner in α.

• If the algorithm cannot establish either of the two above conditions, then all of α’s

children are traversed. If α is a leaf node, then the number of points in α that are

inside of e is returned (see Mahalanobis distance in Equation 21).

s g represents a tradeoff. A higher value for g results in more hyper-rectangle nodes in

the 2n-way tree. If g is higher, then fewer of the self points must be checked because the

approximate checks for containment and non-containment are more accurate. However,

as g increases, more computation must be spent to compute the approximation checks. A

smaller g means that more of the points must be checked, but less computation is spent

computing the containment approximations at each node. We set the value for g based

on the dimensionality of a problem. As the dimensionality increases, g must be decreased

because memory consumption by the 2n-way tree becomes too high.

If an ellipsoid e covers β self points, its penalty function is

PENALTY (e) = 1.00− (REWARD(E, e)/(2β + 1)). (44)

With the reward and penalty functions defined, we define the objective function.

OBJECTIV E : {E|E is a set of ellipsoids} × E → [0, 1]

OBJECTIV E(E, e) = REWARD(E, e)− PENALTY (e). (45)

3.3.4 Convergence. As the number of generations approaches infinity, the solu-

tion provided by the solution should approach some stable state. If not, it is impossible

to know when the EA is finished, unlikely to find a better solution. This EA converges

when the amount of space covered ceases to increase with additional generations. Several

metrics for convergence are examined:

68

• Let χ be the sum of the fitness values of all individuals in the population. Convergence

occurs as χ increases over generations. The algorithm has fully converged if χt =

χt+1, where t is some epoch (generation number) and t + 1 is one epoch later. The

number of generations between t and t+1 should be large enough that χ has a good

chance of increasing if it is not yet optimal (or close to optimal).

• If there are ε individuals in the population, let fφ
t be the fitness of individual φ

at epoch t. Also, assume that if φi, 1 ≤ i ≤ p are the individuals in the pop-

ulation, then they are sorted so that f
φj

t ≤ f
φj+1

t for 1 ≤ j ≤ ε − 1. Let χ =∑ε
i=1 maxall generations in epoch t(f

φi
t) − maxall generations in epoch t−1(f

φi
t−1) In

this technique the sign that convergence is the decrease of χ. Convergence has fully

occurred when χ = 0. The general idea is that convergence occurs when the nth

best individual, 1 ≤ n ≤ ε, in a population is not getting any better as generations

pass. This technique is chosen over the first technique described because the value

that χ is approaching for convergence is known, since it is 0. In the first technique,

however, the value that χ is approaching is not known, since it is a function of the

optimal solution, and the optimal solution (or even fitness of the optimal solution)

is not known.

In an EA, it is important to explore the solution space early and then exploit good

solutions as convergence approaches. We implement this behavior by changing the value

of the standard deviation used for the Gaussian distributions in ellipsoid mutation. De-

creasing the standard deviation for mutation operators is a technique from simulated an-

nealing [62]. Simulated annealing is inspired by the physical process of cooling a material.

In this process, a material is slowly cooled so that at each temperature the material is

provided with sufficient time to settle into a intermediate low energy state.

We implement a simulated annealing technique by initializing the mutation standard

deviation to a high value so that ellipsoid mutation explores the solution space. As the

algorithm progresses and completes more generations, the mutation standard deviation is

decreased. This allows the algorithm to exploit the good solutions that it has already found.

The ellipsoids “settle” into a final converged solution. Eventually, the standard deviation

69

approaches 0. When the standard deviation is sufficiently close to 0, the ellipsoids cease

to become better through mutation. This is convergence.

3.3.5 Algorithm Parameters. This section defines input parameters to our algo-

rithm. These parameters are tuned based on the dimensionality of the data set, desired

accuracy of results, and desired time to obtain results. Also, they can be “tuned” to

increase performance depending on individual characteristics of data sets.

• Population Size: The number of detectors that are perpetuated from generation

to generation. A higher number means that detectors cover more space, although

too many detectors could result in detectors covering small holes in self space.

• Number of Children: The number of children that are randomly generated at

each generation. A higher number results in more exploration. The tradeoff is that

a higher number of children means more computation.

• Maximum Generations: The algorithm quits after this number of generations.

• Generations Between Convergence Check: This value is the number of itera-

tions between a convergence check (see Section 3.3.4). If the convergence check finds

that no detectors in the population have improved since the last convergence check,

then the mutation standard deviation is decreased by a factor of 0.10. If this value

is too high, the algorithm takes an unnecessarily long time to converge. If this value

is too low, the algorithm may converge too quickly to a local optimum.

• Initial Mutation Standard Deviation: The initial standard deviation for muta-

tion.

• 2n-way Tree Depth: The depth of the 2n-way tree described in Section 3.3.3. A

higher number results in greater accuracy for ellipsoid approximations. However, a

higher number also results in significantly increased memory for the data structure

and increased computation to traverse the tree..

• Choose Worse Detector Standard Deviation: This is a standard deviation

used for a Gaussian distribution in the approximate comparison operator. A higher

number means that the comparison operator is more likely to choose a worse detector.

70

• Settle Phase Begin Generation: This value is a number of generations. After

the specified generation has passed, a worse (objective value) detector is can only

be chosen over its unmutated original if its volume is greater. This encourages

convergence. If this value is too high, the algorithm could take an unnecessarily

large amount of generations to converge. However, if this value is too small, this

algorithm could converge prematurely to a local optimum.

• Dimensions: The number of dimensions in the data set.

• Geometry Type: This specifies whether ellipsoids or spheres are to be used. Spec-

ifying sphere means that rotation mutation is disabled and all semiaxis lengths are

mutated identically.

The described designs for mutation, objective function and convergence, along with

the model for ellipsoids, which are the individuals in the EA, define an algorithm and data

structures that should be able to produce a set of ellipsoids that cover nonself space and

cover as few self points as possible.

3.4 Algorithm Summary and Complexity

This section provides pseudocode for the whole algorithm. The time computational

complexity of generating ellipsoids using this algorithm is O(2n+nα ∗n2 ∗ genMax), where

n is the number of dimensions, α is the depth of the 2n-way tree, and genMax is the

maximum number of generations for the EA. The space complexity is O(popSize + 2n ∗

2nα) = O(2n+nα), where n is the number of dimensions and α is the depth of the 2n-way

tree. The reason for the space complexity is that each node in the 2n-way tree maintains

a list of its 2n corner points.

3.5 Implementation Details

This section describes the justification for lower level implementation decisions.

3.5.1 Feature Representation: Binary v. Real Value. This section also deals with

the definition of the findMalicious function in Equation 8 (finds points of class self. Once

71

a model has been chosen (toData function in Equation 5 converts raw data to n-d data for

input to classification system), a decision must be made about how to represent the feature

values in a computer. Most features in a selected network model are represented by some

type of numeric value, or a group of numeric values. Of course, the question arises, ”Which

is better?”. Obviously, computers handle binary computations, so this would seem to be

a “natural” represention given the desire to use computers to solve the current problem.

However, some argue that using binary values makes it difficult to interpret results. For

instance, if two data points “match” using some binary matching function, what does that

mean? It could be that this “match” is an artifact of the binary matching function, and it

may be difficult to interpret the binary values anyway. If real values are used, however, it

is more intuitive to interpret the meaning when two data points match according to some

real valued matching function.

We use real values because it is intuitive and easy to interpret. This is especially

true because we are doing geometric operations in Euclidean space.

3.5.2 Implementation Language. Because of library and performance issues,

we initially narrow our programming language choices to Java and C/C++. There are

several factors to analyze when choosing a programming language for implementation of

our algorithm:

• Performance Requirements-our algorithm does require significant computation, so

performance is important. However, since we do not desire to measure execution time

and since we are not attempting to build a release-quality product performance is

not the only factor in our decision. Generally, native code has the best performance,

assuming a reasonable compiler. Compiled C/C++ is usually assumed to achieve

lowest execution runtime. Java code is not native, but it is also not interpreted at

the source code level like Perl or Scheme. Java compilers generate byte code, which

is slower than native code but faster than high level interpreted languages like Perl.

Hence, although Java programs usually run slower than C/C++ programs, it is only

a constant slowdown, and not orders of magnitude.

72

• Portability-this is Java’s strength. Java byte code be run on any platform that has

the JRE, the Java Runtime Environment. There is a JRE for just about all platforms.

C/C++ however, has to be recompiled for each platform. Recompilation can be a

problem if libraries are not the same on different platforms or if the portions of the

C/C++ code are platform specific.

• Existing Libraries-since our algorithm implements an evolutionary algorithm and

does Matrix manipulation, it is important to find good libraries for these tasks.

Many libraries exist in C/C++ for EAs and matrix operations. Java libraries for

EAs and matrix operations (see [3], [1]) exist, but are fewer. However, we did find

good Java libraries: JosephGA (EA library written by Joseph Shapiro at AFIT)

and JAMA (Java MAtrix Package) [2]. Another benefit of Java is a very complete

standard library, which results from the fact that Java is maintained by Sun, whereas

C/C++ does not have a single owner.

• Although C/C++ and Java are both high level languages, Java offers more abstracted

constructs, is more structured, and more strongly typed. For this reason, Java is

easier to learn than C/C++.

• Software Engineering Model-it is important to use an object oriented software engi-

neering model because if makes a program modular brings the benefits of inheritance

and polymorphic behavior. Both Java and C++ offer an object oriented paradigm,

although Java enforces it while most C++ compilers allow reversions to C, which is

not object oriented. Another benefit of Java is the Javadoc documentation builder,

which works very well and is used almost universally for documenting Java programs.

We choose Java for the following reasons:

• We are very familiar with JosephGA, an EA package for Java

• Java’s portability is important. Statistically sound testing requires that many runs

be made against each data set. Portability allows for development in a convenient

Windows environment and large scale testing on Linux clusters.

• The Java standard libraries are good, from a centralized source (Sun) and well doc-

umented.

73

• The performance benefits gained by using C/C++ are not necessary since we are

not timing runs for performance analysis and we do not desire this product to be

production quality. If a production quality product using ideas from this research is

desired at a later date, the algorithm can be ported to C/C++ with a reasonable

effort.

The next chapter describes testing procedures that can be used to evaluate how well

this algorithm and data structures work to evolve ellipsoids to cover nonself space.

74

IV. Experimental Design

The objective of this section is to design tests that can test how well the algorithm in this

research works. The tests are designed to answer the following questions:

• Validation of model and algorithm: Does an evolutionary algorithm that mutates el-

lipsoids evolve a good set of ellipsoids to fill nonself space? We answer this question

qualitatively using pedagogical 2d data sets. These pedagogical data sets are artifi-

cially produced. This is convenient for validation because data sets can be produced

for which an optimal solution is known. Also, final solutions and even the evolution

of solutions can be graphically visualized in ways that can validate the effectiveness of

the algorithm and provide insight into the algorithm’s behavior. Quantitative anal-

ysis is accomplished for the pedagogical data sets through analysis of the percentage

of test points correctly classified. For the real world data sets, quantitative analysis

is accomplished by measuring true positive and false positive rates. Also, our results

are compared with the results of others on the same data sets.

• Does the evolutionary algorithm converge? Graphs of solution performance by gen-

eration show the convergence properties of our algorithm.

• How does the ellipsoid method compare with other geometric shapes? We hypothe-

size that the performance of ellipsoids is better than spheres. Do results validate this

hypothesis? This question is answered qualitatively through visualizations of 2d ped-

agogical data sets. To answer this question quantitatively, we measure performance

of ellipsoids and spheres against identical data sets and compare this performance.

• Are results data set dependent? Tests are performed for several data sets, thus

enabling comparison between different data sets.

The above questions are first answered on pedagogical problems to validate the model.

Then, real world data sets are used.

Since this algorithm is stochastic, statistical analysis is required for analysis. If we

assume that results follow a Gaussian distribution, a higher number of runs achieves a

higher confidence interval. However, since the algorithm is not trivial (time and space

75

complexity) to run, there must be a tradeoff between the confidence interval and the

number of runs. We choose to use 30 runs, which is a good tradeoff. 30 runs provides a

relatively tight confidence interval but is still computationally feasible.

Also, this chapter describes a suggested taxonomy for data sets that can be used for

negative selection.

4.1 Validation of Model

4.1.1 Pedagogical Problems. Smaller problems are important because they are a

good proof of concept. Also, it is easier to validate that an algorithm is producing expected

results on pedagogical problems because much information about the problem is known

(because it is probably hand-produced). Another benefit of pedagogical problems is that

they can be smaller and lower dimension so that intuitive visualization techniques can be

used.

The first problems investigated are artificially produced data sets in which the geom-

etry is elliptical or inverted elliptical. In four of these data sets, nonself space is elliptically

shaped, so the optimal solutions (ellipsoids that fit the nonself space) are known a priori.

Since the optimal solutions are known, it is easy to decide see whether or not the algorithm

finds the best solution. Figures 16 - 18 and 21 represent this type of problem. Figures 19

and 20 are inverse problems. They test how well the algorithm can find a set of ellipsoids

to fill in a space that is not elliptically shaped.

Each of these data sets consists of 1000 self points (for training) and 10000 nonself

points (for testing). No self points are used for testing because the ellipsoids produced by

our algorithm totally avoid self points, so they are unlikely to cover any during the test

phase. The numbers 1000 and 10000 are chosen somewhat arbitrarily. There is a tradeoff

between higher and lower numbers of self and nonself points. A larger number of self

points means that ellipsoids are more likely to find the optimal ellipsoid solution (against

data sets for which the optimal solution is an ellipsoid), since the self area is more precisely

defined during training. A larger number of nonself points results in more accurate testing,

since the nonself area is more precisely defined for testing.

76

For convenience’ sake these pedagogical data sets are assigned abbreviated names

PD1-PD6, where PDn is the nth pedagogical data set. Short descriptions of these data

sets are provided:

• PD1: 2d data set with one ellipsoidally shaped hole (See Figure 16). It is expected

that one ellipse covers this hole very well.

• PD2: 2d data set with two ellipsoidally shaped holes of the same size, but oriented

differently(See Figure 17).

• PD3: 2d data set with two ellipsoidally shaped holes of different size, oriented

differently (See Figure 18).

• PD4: 2d data set with one ellipsoid that should not be covered (See Figure 19).

This problem is interesting because ellipses in the solution must overlap.

• PD5: 2d data set with two ellipsoids that should not be covered (See Figure 20).

Again, this problem is interesting because ellipses in the solution must overlap.

• PD6: 2d data set with two ellipsoids that form a cross shape. (See Figure 21).

Unlike the data sets in Figures 19 and 20, the optimal solution for this problem is

known. The optimal solution is two crisscrossing ellipses. This data set tests not

only if the algorithm can find a good solution, but also whether or not the algorithm

can find the optimal solution.

(a) a (b) b

Figure 16: (a) is a data set with one elliptical hole. (b) is its associated test data set.

77

(a) a (b) b

Figure 17: (a) is a data set with with two elliptical holes. The ellipsoids are the same
size, but are oriented differently. (b) is its associated test data set.

(a) a (b) b

Figure 18: (a) is a data set with with two elliptical holes. The ellipsoids are oriented
differently and are different sizes. (b) is its associated test data set.

(a) a (b) b

Figure 19: (a) has points inside of an ellipsoid, instead of outside of the ellipsoid. (b) is
its associated test data set.

78

(a) a (b) b

Figure 20: (a) has points inside of two ellipsoids. (b) is its associated test data set.

(a) a (b) b

Figure 21: In (a), the optimal solution is obviously two ellipsoids in a cross formation.
(b) is its associated test data set.

79

The algorithm is run 30 times for each data set with each geometry type (ellipsoid

or sphere) to provide results that can be analyzed with first (mean) and second (standard

deviation) order statistics. This means that there are 6 [data sets] ×2 [geometry types]

×30 [statistics] = 360 total runs against the pedagogical data sets. Parameters for each

run are shown in Table 5.

Table 5: Parameters for runs against Pedagogical data sets. “E”is for Ellipsoid, “S” is
for Sphere, “D1” means data set 1, etc.

D1 D2 D3 D4 D5 D6
Parameter E S E S E S E S E S E S
Population
Size

1 15 2 20 2 20 12 20 20 20 12 20

Number of
Children

1 1 1 1 1 1 2 2 2 2 2 2

Maximum
Generations (x
1000)

20 10 20 10 20 10 20 10 20 10 20 10

Detector
Count

1 15 2 20 2 20 12 20 20 20 12 20

Generations
Between
Convergence
Check

500 100 500 100 500 100 500 100 500 100 500 100

Mutation
Standard
Deviation

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Choose Worse
Detector Stan-
dard Deviation

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Segment Tree
Depth

4 4 4 4 4 4 4 4 4 4 4 4

Generations
Between Clas-
sification
Check

50 50 50 50 50 50 50 50 50 50 50 50

Settle Phase
Begin Gen-
eration (x
1000)

15 7.5 15 7.5 15 7.5 15 7.5 15 7.5 15 7.5

80

After the algorithm has been run against the data sets in Figures 16 - 21, a set of

nonself points are needed for testing. Test data is obtained by generating random points

in the inverse of the self area in each data set. A large number of points is desired so that

test results accurately reflect the performance of obtained solutions. 10,000 is chosen as

the number of nonself points to test against. Part (b) of Figures 16 - 21 shows that 10,000

points provides good coverage of the nonself region.

4.1.2 Real World Test Data Sets. For real world validation, we use established

classification data sets for comparison purposes and the DARPA IDS evaluation data to

validate our algorithm in the intrusion detection domain. Unfortunately, the negative

selection research community has not established a suite of data sets which are believed

to be good for testing negative selection algorithms. In fact, there is not even a set of

data sets which are commonly used by multiple research efforts for comparison purposes.

The only data set that is common among negative selection research is the 1999 DARPA

Lincoln Labs IDS data. [61]. A handful of other data sets have been used, but generally

not more than once, even in the progression of the same research effort. These data sets

include:

• random binary strings [34]

• SPARC instructions generated by compiling C programs. Anomalies created by

making changes in source code and recompiling. [34]

• COM files infected with artificially inserted viruses. [34]

• tool breakage detection [49]

• time-series anomaly detection [38]

• biomedical data [49]

We choose real world data sets with varying characteristics to validate that our algorithm

works against data sets with a varying range of characteristics. We base our choice test

data sets on the characteristics of number of classes, dimensionality, and size of data set.

When there are more than two classes, one class is used for self and the complementary

81

classes are used for nonself. Hence, nonself can be a multi-modal class as a result of

conglomerating two or more problem classes.

Iris data set: We obtain the Iris data set from the University of California

at Irvine Machine Learning Repository [18]. The iris database originates from a classic

taxonomy paper describing three different types of iris plants: Iris-Setosa, Iris-Versicolor,

and Iris-Virginica. Each data base instance represents a plant belonging to one of these

three classes. The database contains 50 instances of each class, for a total of 150 instances.

Each instance has four real-valued attributes corresponding to the plant’s sepal length,

sepal width, petal length, and petal width. The lengths are measured in centimeters. Of

the three classes, Iris-Setosa is linearly separable from the other two, but the other two

are not linearly separable from each other.

The iris data set is tested using a 90/10 test. With a 90/10 test one class is chosen as

self for training. 90% of the chosen class is used for training. The other 10% of the chosen

class, along with 10% of each of the other two classes is then used for testing. Ten different

sets are used, each time using a different 10% of each class for testing. For statistical

purposes, each unique test is performed 10 times. Tests are performed using each of the

three classes as the self class. This means that there are 3 [classes] ×10 [10% subsets] ×10

[statistics] = 300 total runs against the Iris data set. Table 6 shows algorithm parameters

for the Iris data set.

Lincoln Labs Data Intrusion Detection Data: This data is from the

1999 DARPA IDS Evaluation Data Set [61]. For training, we use the week one data, which

contains only normal traffic. For testing, we use week two data, which consists of normal

traffic mixed with attacks. The data has three features: number of bytes per second,

number of packets per second, and number of Internet Control Management Protocol

(ICMP) packets per second. The data we use focuses on outside network attacks using

data filtered with the program tcpdump [9]. The same data set is used by Dasgupta et

al. [24] [38] and Mills et al. [67]. The attacks in this data set are shown in Table 8. Back

and Neptune are denial-or-service (DOS) attacks, while Portsweep and SATAN are stealthy

attempts to discover weaknesses in the network security perimeter.

82

Table 6: Parameters for runs against Iris data sets. “E”is for Ellipsoid, “S” is for Sphere
Train Setosa Train Versicolor Train Virginica

Parameter E S E S E S
Population
Size

2 25 25 50 30 50

Number of
Children

1 1 2 2 2 2

Maximum
Generations (x
1000)

1 1 1.5 2 1.5 2

Detector
Count

2 25 25 50 30 50

Generations
Between
Convergence
Check

500 500 500 500 500 500

Mutation
Standard
Deviation

0.15 0.15 0.15 0.15 0.15 0.15

Choose Worse
Detector Stan-
dard Deviation

0.15 0.15 0.15 0.15 0.15 0.15

Segment Tree
Depth

3 3 3 3 3 3

Generations
Between Clas-
sification
Check

50 50 50 50 50 50

Settle Phase
Begin Gen-
eration (x
1000)

1 1 1.5 2 1.5 2

83

Table 7: Normalizing MIT IDS Data

dimension min max min used for normalizing max used for normalizing
1 0.00 15835.03 -16000 16000
2 0.00 338.08 -400 400
3 0.00 12.233 -14.92 14.92

The MIT Lincoln Labs data is preprocessed for normalization. Normalizing is impor-

tant in our algorithm because of orientation mutation. If the ranges for different dimensions

vary significantly, there are likely to be ellipsoids that are very long in one dimension but

very short in another. This makes finding a valid rotation almost impossible because, un-

less the rotation is very small (VERY SMALL), the rotation causes the ellipsoid to cover a

self point, which leads to rejection of the mutation and the unmutated ellipsoid is retained

in the population. Hence an ellipsoid that needs a rotation to become more optimal may

never get that rotation.

One way of dealing with this issue is to choose a rotation angle based on the relative

dimension ranges. However, this method is fraught with complications because a semiaxis

may not be aligned along a coordinate axis and it adds unnecessary complexity to the

algorithm. We choose to deal with this issue by requiring data sets to be normalized so

that the bounds for reach dimension are [-100.00, 100.00]. The mapping from original

bounds for each feature to normalized bounds for each feature is somewhat arbitrary. For

our experiments, we perform this mapping by hand. The guidelines we use are that all

data points should be inside the mapped range and there should be at least 50% of each

range that does not contain any data points. This 50% should be approximately equally

divided above and below the most extreme points in each dimension. The “padding” gives

the ellipsoids room to work with the constraint that the center point of each ellipsoid must

be inside of [-100.00, 100.00], the problem domain bounds. Table 7 shows how the MIT

ID data is normalized.

84

Table 8: Week two attack profile. [67]
Day Attack Name Attack Type Start Time Duration

1 Back DOS 9:39:16 00:59
2 Portsweep DOS 8:44:17 26:56
3 SATAN DOS 12:02:13 2:29
4 Portsweep DOS 10:50:11 17:29
5 Neptune DOS 11:20:15 04:00

Table 9: Parameters for runs against MIT IDS data. “E”is for Ellipsoid, “S” is for
Sphere

Train Setosa Train Versicolor Train Virginica
Parameter E S E S E S
Population
Size

2 25 25 50 30 50

Number of
Children

1 1 2 2 2 2

Maximum
Generations (x
1000)

1 1 1.5 2 1.5 2

Detector
Count

2 25 25 50 30 50

Generations
Between
Convergence
Check

500 500 500 500 500 500

Mutation
Standard
Deviation

0.15 0.15 0.15 0.15 0.15 0.15

Choose Worse
Detector Stan-
dard Deviation

0.15 0.15 0.15 0.15 0.15 0.15

Segment Tree
Depth

3 3 3 3 3 3

Generations
Between Clas-
sification
Check

50 50 50 50 50 50

Settle Phase
Begin Gen-
eration (x
1000)

1 1 1.5 2 1.5 2

85

4.2 Test Data Set Taxonomy

We seek to produce data sets that can be used to test the robustness of a negative

selection algorithm and that can be used by various research efforts to compare negative

selection algorithms. First, we identify important characteristics of a data set that is used

to test a negative selection algorithm:

• Dimensionality.

• Data point density-this is important because it is much easier to train when there is

a high density of data points. In intuitive terms, it is harder to easier to know with

surety that a portion of space should be assigned a class when there are more points

in that space (or in its complementary space.

• Geometric Shapes/Distributions. Not all detectors are good at detecting all geomet-

ric shapes. i.e., An ellipsoid detector may have trouble with hyper-rectangles and

vice versa.

• Number of shapes. How many instances of each shape are in the data set?

• Are geometric shapes inverted? This is asking if the self class is a geometric shape

or if the nonself class is a geometric shape. If the nonself class is a geometric shape,

then the task of the detectors is to detect the complement of a geometric shape, a

rather different problem.

This suggested taxonomy is not an attempt to define a system for classifying all

negative selection test data sets. It is a first suggestion at a way this could be done.

However, we do classify our test data sets (PD1-PD6) according to this taxonomy. Let

data point density be the number of self train points per unit area in the problem domain

bounds. For the inverted category, we let “no” mean that nonself space is shaped like the

geometric shape and “yes” mean that nonself space is shaped like the complement of the

geometric shape. The classification for data sets PD1-PD6 is shown in Table 10.

86

Table 10: Characteristics of test data sets.
Data
Set

Dimensions Data Point
Density

Shape Number of
Geometric
Formations

Inversion

1 2 0.100 ellipse 1 yes
2 2 0.100 ellipse 2 yes
3 2 0.100 ellipse 2 yes
4 2 0.100 ellipse 1 no
5 2 0.100 ellipse 2 no
6 2 0.100 ellipse 2 yes

The next chapter reports the results of the experiments described in this chapter. Analysis
is performed to evaluate our algorithm’s level of success.

87

V. Results and Analysis

The chapter presents and analyzes results from the experiments designed in Chapter IV.

Sections 5.1, 5.2, and 5.3 analyze results from the pedagogical, MIT, and Iris data sets

respectively.

5.1 Pedagogical Problems

This section addresses one of the questions set forth in Chapter IV, “Do results

validate the usefulness of our model and algorithm?” True positive and false alarm rates

show that our model has works well against some data sets.

The algorithm performs well on PD1-PD6, the pedagogical problems in Chapter

IV. Figures 23 - 28 show that the algorithm generates ellipsoids that successfully fill the

elliptically shaped holes. Figure 29 shows that the evolutionary algorithm converges to

a set of ellipsoids such that most of the test points are covered, which is the goal. The

algorithm is expected to perform well on the first three datasets because the algorithm

is trying to fill disconnected elliptically shaped spaces. Figure 29 shows that, in the first

three datasets, the entire elliptical holes are generated by the generated ellipsoids. In the

fourth data set, the algorithm is trying to fill a space that is not elliptically shaped. The

algorithm does find a set of ellipsoids that entirely covers the target space because there are

enough ellipsoids that a good cover can be obtained. The fifth data set also contains a non-

elliptical space that should be covered by generated ellipsoids. The generated ellipsoids

are good, covering about 95% of the space. The space is not entirely covered because

there are not enough ellipsoids. In the sixth data set, the obvious optimal solution is two

ellipsoids. The algorithm finds two ellipsoids that cover 95% of the space. This case shows

that the algorithm can find an optimal ellipsoid cover when the known optimal ellipsoid

cover includes intersecting ellipsoids.

Results also show that the algorithm converges. It is important that the algorithm

converge. If an evolutionary algorithm does not converge, then the solution it provides is

a function of the generation at which the solution is chosen. Hence, the evolutionary algo-

rithm is not really providing a solution, but rather a different solution at each generation.

88

Table 11: Ellipsoid, Sphere Performance Against PD1-PD6. “Count” is the number of
detectors, “Average” is coverage over 30 runs, “Std Dev” is over 30 runs.

Data Set Ellipsoids Spheres
Count Average Std Dev Count Average Std Dev

PD1 1 99.82 0.73 8 91.21 3.86
PD2 2 98.42 3.29 17 94.98 1.64
PD3 2 99.82 0.32 16 93.40 2.77
PD4 12 99.53 0.15 20 99.01 0.42
PD5 12 97.53 0.28 20 95.57 0.53
PD6 2 99.48 0.14 20 94.39 1.57

Figure 22: Comparison of Ellipsoid detector count v. Sphere detector count. The
numbers above the columns in the bar graph are the percentages of nonself points that
were covered by the detector described in the respective bar.

89

If there is a different solution at each generation, it is impossible so say that the algorithm

provides good solutions. Hence, it is important to show that an algorithm converges if we

desire to make statements about the quality of the solutions the algorithm produces.

For a convergence metric we use the performance of the generated ellipsoids. We

say that an algorithm “converges” if the performance of the generated ellipsoids stabilizes

after a sufficient number of generations. Figure 29 shows that the performance of generated

ellipsoids approaches a steady state as more generations are completed. The thicker line

shows the fraction of the test points the ellipsoids cover after each generation. The upper

thin line shows the value of the average fraction covered plus the standard deviation.

The lower thin line shows the value of the average fraction covered minus the standard

deviation. In all cases, the algorithm converges to a stable set of ellipsoids.

The fact that the graphs in Figure 29 are not smooth is a result of the segment

tree data structure and the approximate comparison operator. These two algorithm com-

ponents make it possible for the generated ellipsoids to become worse after a generation.

However, as the graphs show, the algorithm statistically chooses the best ellipsoids, so the

long term performance is good.

We hypothesize that spheres can cover space as well as ellipsoids, but that more

spheres than ellipsoids must be used to achieve similar coverage of nonself space. Table 11

shows that this is the case. It takes more spheres than ellipsoids to cover the same amount

of nonself space. Figure 31 shows how the amount of nonself space covered compares to

the number of spheres.

The graphs in Figure 29 all show a small bump at generation 15000. This bump

is a result of the parameter “Settle Phase Begin Generation.” The bump happens be-

cause worsening mutations are not allowed after “Settle Phase Begin Generation”, so the

ellipsoids quickly fill up whatever hole they happen to be in at “Settle Phase Begin Gener-

ation”. PD6 actually shows a small drop at “Settle Phase Begin Gen”. The reason for this

is that there are 12 ellipsoids in the population, but only two are used for classification.

Those two are not the best at “Settle Phase Begin Gen”, but they quickly grow to become

the best.

90

(a) 8 Generations (b) 20 Generations (c) 250 Generations

(d) 490 Generations (e) 525 Generations (f) 560 Generations

(g) 600 Generations (h) 650 Generations (i) 725 Generations

(j) 910 Generations (k) 1250 Generations (l) 10000 Generations

Figure 23: The Evolution of one ellipsoid using self data PD1.

91

(a) 100 Generations (b) 300 Generations (c) 400 Generations

(d) 700 Generations (e) 1200 Generations (f) 2000 Generations

(g) 2500 Generations (h) 3500 Generations (i) 4500 Generations

(j) 5500 Generations (k) 7000 Generations (l) 10000 Generations

Figure 24: The Evolution of two ellipsoids using self data set PD2.

92

(a) 100 Generations (b) 300 Generations (c) 400 Generations

(d) 700 Generations (e) 1000 Generations (f) 1600 Generations

(g) 2800 Generations (h) 3000 Generations (i) 3200 Generations

(j) 3500 Generations (k) 5000 Generations (l) 10000 Generations

Figure 25: The Evolution of two ellipsoids using self data PD3.

93

(a) 100 Generations (b) 200 Generations (c) 300 Generations

(d) 400 Generations (e) 1000 Generations (f) 1200 Generations

(g) 2000 Generations (h) 2500 Generations (i) 3500 Generations

(j) 4500 Generations (k) 6000 Generations (l) 10000 Generations

(m) 10000 Generations

Figure 26: The Evolution of ten ellipsoids using self data set PD4. (m) is an enlarged
version of (l). It is enlarged to show the two smaller ellipses inside of the ellipse of data
points.

94

(a) 100 Generations (b) 200 Generations (c) 300 Generations

(d) 400 Generations (e) 500 Generations (f) 1000 Generations

(g) 2000 Generations (h) 4000 Generations (i) 7000 Generations

(j) 10000 Generations (k) 15000 Generations (l) 20000 Generations

Figure 27: The Evolution of twelve ellipsoids using self data set PD5.

95

(a) 100 Generations (b) 200 Generations (c) 500 Generations

(d) 800 Generations (e) 1100 Generations (f) 1500 Generations

(g) 1800 Generations (h) 2100 Generations (i) 2400 Generations

(j) 2700 Generations (k) 5000 Generations (l) 10000 Generations

Figure 28: The Evolution of ten ellipsoids using self data set PD6.

96

(a) PD1, 1 Ellipsoid (b) PD2, 2 Ellipsoids

(c) PD3, 2 Ellipsoids (d) PD4, 12 Ellipsoids

(e) PD5, 20 Ellipsoids (f) PD6, 2 Ellipsoids

Figure 29: Coverage of Test Points v. Generation, Ellipsoids, Data sets PD1-PD6. The
ordinate is the fraction of the nonself test points that the generated ellipsoids cover at the
generation specified by the abscissa. The thick line is the average performance over 30
runs. The thin solid lines above and below the thick lines are the average performance
plus and minus, respectively, the average of the standard deviation over 30 runs.

97

(a) PD1, 6 Spheres (b) PD2, 16 Spheres

(c) PD3, 14 Spheres (d) PD4, 20 Spheres

(e) PD5, 20 Spheres (f) PD6, 18 Spheres

Figure 30: Coverage of Test Points v. Generation, Spheres, Data sets PD1-PD6. The
ordinate is the fraction of the nonself test points that the generated spheres cover at the
generation specified by the abscissa. The thick line is the average performance over 30
runs. The thin solid lines above and below the thick lines are the average performance
plus and minus, respectively, the average of the standard deviation over 30 runs.

98

(a) PD1 (b) PD2

(c) PD3 (d) PD4

(e) PD5 (f) PD6

Figure 31: Nonself Coverage v. Detector Count, Ellipsoids and Spheres, Data Sets
PD1-PD6.

99

(a) PD1, 15 spheres (b) PD2, 20 spheres

(c) PD3, 20 spheres (d) PD4, 20 spheres

(e) PD5, 20 spheres (f) PD6, 20 spheres

Figure 32: Final sphere solution for data sets PD1-PD6.

100

5.2 MIT Lincoln Labs Data

The Lincoln Labs data shows that this algorithm works on a real world intrusion

detection data set. Figures 33 and 35 show that both the ellipsoids and spheres perform

successfully against this data set. The false alarm rate for both ellipsoids and spheres is 0.

Although ellipsoids are more flexible than spheres, it appears that this data set does not

require that flexibility. The number of spheres necessary to achieve good results is about

the same as the number of ellipsoids necessary for comparable results. Figure 36 shows

this graphically. In fact, Figure 36 shows that there are some numbers of detectors for

which spheres perform better than ellipsoids. We hypothesize that this is an artifact of

the algorithm and constraints. The constraint that the center point of an ellipsoid must

remain inside of the problem domain bounds could cause this to happen. We believe that

ellipsoids should perform equal to or better than spheres. This is because ellipsoids are

more flexible. However, performance in the EA and performance in a classification testing

are slightly different. In the EA, performance (or objective value) is measured by how

much nonself space a detector covers. Performance in classification testing is dependent on

where the test points are located. That is, an ellipsoid that outperforms a sphere according

to the EA criteria (objective value) could be outperformed by the sphere according to the

classification testing metric. Figure 34 shows an example of this scenario.

When our algorithm with ellipsoids is run against the self data shown in Figure 34

it generates the ellipsoid in the Figure. However, when our algorithm is run with spheres

against the same self data it generates the sphere in the Figure. The best sphere is not in

the same location (no overlap) as the best ellipsoid, where “best” in this sentence refers

to EA objective value. However, since the nonself test points fall inside of the sphere, it

may appear that one sphere performs better than one ellipsoid. This is true only in the

classification sense because the ellipsoid actually covers more problem domain space than

the sphere.

Figure 37 validates our hypothesis for why spheres perform better than ellipsoids for

some detector counts. The figure, along with Figure 36 shows that the ellipsoids always

cover more space than the spheres, even though the spheres may classify better. Again,

this is simply an artifact of the specific data set.

101

Figure 33: Coverage of nonself intrusion points by Ellipsoids v. Generation, MIT data
set. The thick line is the average performance over 30 runs. The thin solid lines above
and below the thick lines are the average performance plus and minus, respectively, the
average of the standard deviation over 30 runs.

102

Figure 34: The ellipsoid has a better objective value than the sphere in the EA. However,
the sphere performs “better” in classification because the nonself test happen to fall within
the area it covers.

Figure 35: Coverage of nonself intrusion points by Spheres v. Generation, MIT data
set. The thick line is the average performance over 30 runs. The thin solid lines above
and below the thick lines are the average performance plus and minus, respectively, the
average of the standard deviation over 30 runs.

103

Figure 36: Comparison of the fraction of nonself intrusion points covered by ellipsoids
and spheres versus the respective count of each.

Figure 37: Comparison of the approximate fraction of space covered by ellipsoids and
spheres versus the respective count of each.

104

Table 12: Comparison of several negative selection algorithms on the MIT IDS data set.
Our algorithm (ellipsoids, spheres) is compared with EFR (Evolving Fuzzy Rules) [38] and
Negative Characterization [41].

Algorithm Detection Rate False Alarm Rate # Detectors # Runs
our Ellipsoids 91.52 0.00 10 30
our Spheres 91.64 0.00 10 30

EFR 98.30 2.0 8.87 10
Negative Characterization 87.5 < 1.0 10 10

We also address the issue of false alarm classifications, i.e. self points being classified

as nonself. This subject receives minimal attention because there is no (< 0.01%) false

alarm rate. We surmise that this is a result of the different classes being easily separable.

We do not show a receiver operating curve (ROC) for the MIT IDS data because

the false alarm rate is so low. This makes the ROC very uninteresting, as it is simply a

vertical line (assuming the abscissa is the false alarm rate).

Results from our algorithm also compare well with other negative selection ap-

proaches. Dasgupta and Gonzalez [41] report that their negative selection algorithm finds

87.5% of the intrusion points with a false alarm rate of no more than 1%. Using 50 ellip-

soids, our algorithm finds 97.45 % of the intrusion points with a false alarm rate of 0.01%.

Using 50 spheres, our algorithm finds 97.52% of the intrusion points with a false alarm rate

of 0.01%. Dasgupta’s results are an average from 10 runs while our results are an average

from 30 runs. Hence, our results are statistically different.

5.3 Iris

Figures 38, 39, and 40 show the correct and incorrect classification rates by generation

for ellipsoids. As we note in Section 4.1.2, setosa is linearly separable from versicolor and

virginica. The results confirm that it is significantly easier to use setosa rather than

versicolor or virginica as the self data.

Figures 38, 39, and 40 show, while ellipsoids and spheres converge to the same perfor-

mance (true positive and false positive), the ellipsoids require more generations to achieve

this performance. We hypothesize that this is because this data set may not require the

105

flexibility of ellipsoids. That is, an optimal solution may be achievable with ellipsoids

whose semiaxes have similar lengths. This means that the ellipsoid model may waste mu-

tations on orientation mutation and on mutating semiaxis lengths separately, even though

these mutations do not lead to an improvement in the solution. Since the sphere model

is constrained to disallow orientation mutation and individual semiaxis length mutation,

spheres are able to more quickly complete the radius and center point mutations that are

necessary to obtain a good solution.

Figures 41, 42 and 43 show nonself detection rates and false alarm rates for spheres

and ellipsoids when setosa, versicolor and virginica are used, respectively, as the self class.

When setosa is used for training, the problem is so easy that the flexibility of the ellipsoids

do not result in any advantage. Ellipsoids and spheres both achieve almost perfect perfor-

mance only one detector. The greatest advantage for ellipsoids occurs when versicolor is

used for training. The ellipsoids classify about 5% more nonself points correctly, although

the ellipsoid algorithm also has a slightly higher false alarm rate. Figure 43 shows that,

when virginica is used for training, the spheres and ellipsoids achieve similar performance

in nonself detection rate while spheres perform better in false alarm rate. We hypothesize

that the flexibility of the ellipsoids may result in overtraining on this data set.

Figures 44, 45 and 46 show the receiver operating curves (ROC) for the different

training classes. These ROC curves are simply a plot of the false alarm rate v. correct

nonself classification rate. The number of points in each curve is simply the number of

ellipsoids that produce that result. If the algorithm runs with n ellipsoids, then there is a

point for the best ellipsoid, two best ellipsoids, three best ellipsoids,..., n best ellipsoids.

These curves validate that the ellipsoid algorithm can successfully differentiate be-

tween classes in the iris data set. These ROCs show that our results for ellipsoids and

spheres are relatively similar. The only training class for which there is a difference in the

ROCs is versicolor. When training on versicolor, the ellipsoid algorithm performs better

than the sphere algorithm by the ROC metric.

Only one research effort [49] which uses a negative selection algorithm with the iris

data set is found for comparison. In this research, Dasgupta and Ji use negative selection

106

Figure 38: The upper two lines represent the percent of nonself (versicolor and virginica)
test points classified correctly using ellipsoids and spheres. The lower two lines represent
the percent of self (setosa) test points classified incorrectly using ellipsoids and spheres.

107

Figure 39: The upper two lines represent the percent of nonself (setosa and virginica)
test points classified correctly using ellipsoids and spheres. The lower two lines represent
the percent of self (versicolor) test points classified incorrectly using ellipsoids and spheres.

108

Figure 40: The upper two lines represent the percent of nonself (setosa and versicolor)
test points classified correctly using ellipsoids and spheres. The lower two lines represent
the percent of self (virginica) test points classified incorrectly using ellipsoids and spheres.

109

Figure 41: The upper two lines represent the percent of nonself (versicolor and virginica)
test points classified correctly using ellipsoids and spheres. The lower two lines represent
the percent of self (setosa) test points classified incorrectly using ellipsoids and spheres.
The abscissa is the number of detectors that achieve the results shown.

110

Figure 42: The upper two lines represent the percent of nonself (setosa and virginica)
test points classified correctly using ellipsoids and spheres. The lower two lines represent
the percent of self (versicolor) test points classified incorrectly using ellipsoids and spheres.
The abscissa is the number of detectors that achieve the results shown.

111

Figure 43: The upper two lines represent the percent of nonself (setosa and versicolor)
test points classified correctly using ellipsoids and spheres. The lower two lines represent
the percent of self (virginica) test points classified incorrectly using ellipsoids and spheres.
The abscissa is the number of detectors that achieve the results shown.

112

Figure 44: The ROC curve for ellipsoids and spheres when training on setosa (self).
Nonself is versicolor and virginica. The abscissa is the false alarm rate (percent of self points
incorrectly classified. The ordinate is the percent of nonself points correctly classified.

113

Figure 45: The ROC curve for ellipsoids and spheres when training on versicolor (self).
Nonself is setosa and virginica. The abscissa is the false alarm rate (percent of self points
incorrectly classified. The ordinate is the percent of nonself points correctly classified.

114

Figure 46: The ROC curve for ellipsoids and spheres when training on virginica (self).
Nonself is setosa and versicolor. The abscissa is the false alarm rate (percent of self points
incorrectly classified. The ordinate is the percent of nonself points correctly classified.

115

with variable sized detectors (hyper-spheres) as the detectors. A summary of their results

compared with our results is shown in Table 13. Comparison with V-detector results

reflects the ellipsoid algorithm’s ability to find a set of detectors that efficiently covers

nonself space.

Table 13: Comparison of spherical and elliptical detectors. V-detector is Dasgupta and
Ji’s [49] algorithm.

Training Data Alorithm
Detection Rate False Alarm Rate

Detectors Runs
Mean SD Mean SD

Setosa Spheres 99.80 1.41 0.20 2.00 1 100
Ellipses 99.20 3.39 0.60 3.43 1 100

V-detector 99.97 0.14 1.32 0.95 20 100
Versicolor Spheres 90.90 10.36 32.00 21.84 31 100

Ellipses 90.80 10.20 17.00 16.67 10 100
V-detector 88.30 2.77 8.42 2.12 110.08 100

Virginica Spheres 98.00 4.02 33.80 21.21 36 100
Ellipses 98.00 4.26 30.00 18.09 20 100

V-detector 93.58 2.33 13.18 3.24 108.12 100

116

VI. Conclusion

This chapter presents a summary of the research discussed in this document. Significant

contributions of this research are outlined and recommendations for future research are

provided.

6.1 Research Problem

Network security is becoming more and more important because of the ubiquity

of networks and the value of the information stored on networks. For these reasons,

protection against network intrusions is very important. Currently, most networks use

signature detection software. However, signature detection only protects against previously

encountered intrusions for which a signature update has been issued.

This type of protection is insufficient because many intrusions are new or variations

of older intrusions. Either way, a signature detection system does not recognize such as

intrusions and damage may be incurred. Anomaly detection is an alternative to signature

detection that has the potential to protect against new intrusions.

In an anomaly detection problem, a detection model is built from innocuous network

data. Then, this model is used to monitor new data. If a datum is statistically different

from the model, it is labelled as an anomaly and action is taken. This problem may be

stated as a classification in which only one class (self) is available for training. The model

that results from the training phase is then used to detect anomalies during the testing

stage.

Earlier research noticed a similarity between this problem and the way that the

body protects itself from harmful invaders. This observation led to artificial immune

system (AIS), a computational paradigm that uses biological immune system (BIS) inspired

systems to find solutions to various computational problems. This research focuses on the

negative selection algorithm, which generates nonself detections during the training phase.

Previous work has validated the potential of the negative selection algorithm. This

work looks at geometric detectors. Previous geometric detectors include hyper-rectangles

and hyper-spheres. This research extends to ellipsoids (hyper-ellipses).

117

The following objectives are outlined for this research:

• Establish a mathematical model to define and manipulate ellipsoids.

• Develop a negative selection algorithm to generate a set of ellipsoid detectors by

training on self data.

• validate our model qualitatively by testing on 2d data sets and quantitatively by

testing on higher dimension real world data sets. Also, validate that our algorithm

works on network intrusion data.

This research successfully accomplishes the above objectives:

• Ellipsoid Model: Section 3.2 establishes a model that can be used to describe any

n-dimensional ellipsoid. We also define operations to define find the volume of an

ellipsoid and to establish whether or not a point is in an ellipsoid.

• Develop a negative selection algorithm: Generating detectors is determined to be a

complex problem with no known deterministic algorithm that runs in tractable time.

For this reason, an EA is designed to generation ellipsoid detectors. The EA uses sev-

eral important data structures, including a 2n-way tree for ellipsoid approximations.

Approximations are important since computing ellipsoid overlap analytically is very

complex. The algorithm is described in detail (see Chapter III) and pseudocode is

provided in Appendix C.

• Validation: Results in Chapter V show that our algorithm finds good ellipsoids that

cover nonself space. This is shown graphically on pedagogical data sets PD1-PD6.

Also, numerical result analysis from all data sets shows that our algorithm can find

good ellipsoid detectors. Further, results from network intrusion data show that our

negative selection has potential to work in the network intrusion detection domain

6.2 Contributions

This research makes several important contributions:

118

6.2.1 Pedagogical Data Sets. We describe a system that can be used for classifying

negative selection algorithm test data sets. This is important because current research

efforts do not test on standard data sets. This makes comparison between different negative

selection algorithms difficult. With our test data set taxonomy, researchers can choose

different data sets to test specific characteristics of their algorithm. We design six data

sets with varying characteristics (PD1-PD6) and use these for testing.

6.2.2 Algorithm to Evolve Ellipsoids. No other algorithm to evolve ellipsoids

exists in literature. Our algorithm defines and analyzes mutation operators, an objective

function, and convergence metrics.

6.2.3 2n-way Tree for Ellipsoid Approximations. Computing the amount of

overlap between a set of ellipsoid is a difficult that requires an approximation if it is to be

accomplished in reasonable time. We implement a novel approach, using a data structure

that was introduced in computational geometry. Our approximation achieves good results

and allows flexibility in the tradeoff between results and algorithm complexity.

6.2.4 Ellipsoids as Detectors. Using ellipsoids as detectors is important because

they are very flexible and allow for more efficiency in a negative selection based detection

system. Our results show that ellipsoids are as good spheres and often better, depending

on the data set used for testing.

6.3 Future Work

This section presents a list of suggestions for future research.

• Improvements to the ellipsoid algorithm: For instance, the algorithm that finds the

closest self point to a randomly chosen center point for a new hyper-ellipsoid currently

searches through all of the self points. There is a way to figure out which “segments”

in the segment tree are closest so that they can be checked first. Doing this will

greatly speed up the generation of children.

119

• Investigate the possible use of crossover in the evolutionary algorithm to evolve a set

of ellipsoids.

• Theory behind parameter choices. e.g., How long to wait before lowering the muta-

tion standard deviation? This depends on the number of ellipsoids in the population

and the number of dimensions and probably some other factors. This is because

we lower the mutation standard deviation whenever a certain number of generations

passes without any individual in the population experiencing improvement. When

there are more individuals in the population, it is less likely that a generation will

pass without at least one individual experiencing improvement. Therefore, as the size

of the population increases, we should decrease the number of generations between

checks to see if we should lower the mutation standard deviation. Also, what about

the dimensionality of the problem? As the dimensionality increases, is it easier or

harder to find a good mutation? It seems that as dimensionality increases it may

be easier to find a good mutation because there are more possible valid mutations.

However, this is just a guess based on observation and intuition.

• Depending on the density of the self data, there may be “holes” in self space such

that a detector that covers that hole receives a larger objective value than a lower

objective value detector that is contributes to the cover of nonself space. Future work

could investigate techniques for alleviating this issue.

• Testing on other data sets-other geometric shapes (rectangles, stars?, etc.) and

variation in data densities could be used. In short, vary the parameters listed in

Table 10 in Section 4.2.

• What hyper dimensional shapes, other than rectangles, spheres and ellipsoids can be

used to model nonself space in a negative selection problem?

• Can different hyper dimensional shapes be used together (e.g. rectangles and ellip-

soids)?

• Analysis and improvement on the approximations in our algorithm. The most signif-

icant approximation is the use of the segment tree to approximate area and overlap

of ellipsoids. Is there another approach that could be used? What improvements

120

could be made to the segment tree? What about a random shift in the segment tree

every generation so that the error is averaged over different ellipsoids. What about

a non-uniform segment tree? It is really only necessary to maintain a deep segment

tree for areas in the n-space in which there are many details that need to be modelled

(e.g. ellipsoid edges). Would it be possible to maintain the segment tree at minimum

depth except for areas in n-space where more granularity is needed?

• Use gene libraries as in the BIS with the crossover operator [35]. The building blocks

in the gene libraries could be manipulated using a genetic algorithm that allows for

explicit manipulation of building blocks, like Goldberg’s messy GA [37]

• Development and testing of deterministic algorithms for ellipsoid detector generation.

Deterministic algorithms should be compared against stochastic algorithms.

• Development of a technique to dynamically choose the optimal number of ellipsoid

detectors.

6.4 Summary

Ellipsoids are a useful geometric structure for nonself detectors because of their flexi-

bility. However, good approximation and generation algorithms are needed to make use of

their potential. We show that such algorithms and data structures exist, as well as paving

the way so that future research may make ellipsoid use feasible in a real-world application.

121

Appendix A. Biological Immune System Background

There are generally two schools of thought in immune-system network theory: (1)clonal

selection model and (2)network immune model. The clonal selection model is the more

commonly accepted and used in artificial immune systems. The clonal selection model

models interactions between antigens and antibodies [92]. The basic premise of the clonal

selection model is that the immune system is relatively inactive until it is stimulated for

some foreign invader, i.e. an antigen. The clonal selection model is a somewhat younger

and more controversial model. The fundamental principal of the network immune model

is that, even when no antigens are present, the immune system is constantly active. The

lymphocytes can recognize each other. Interactions between lymphocytes excite and in-

hibit, depending on whether or not a lymphocyte recognizes or is recognized. The network

immune model is often represented by a set of differential equations, each equation describ-

ing the change in concentration of each type of lymphocyte (identical receptor) relative to

time. A general model of an immune network is given in Equation 46 [20].

Rate of

population

variation

=
Network

stimulation
−

Network

suppression
+

Influx

of new

elements

−

Death of

unstimulated

elements

(46)

Danger theory is a third school of thought that is currently gaining support [12] [11].

Dr. Polly Matzinger [65] is currently the principal proponent of danger theory in the

BIS. Danger theory is different than traditional immunological theory because it does not

adhere to the idea of self/nonself discrimination. That is, danger theory promotes the idea

that the BIS does not react to every foreign entity. If this is the case, then questions like

“why does the body not react to new foods that we eat? ” must be answered. Danger

theory proposes that the immune system reacts to “danger signals” and then works to

neutralize offending entities in the locality of the danger signal. Although this model does

answer some difficult questions raised by the traditional self/nonself model, it is unclear

122

what exactly the danger signals are and where/by whom they are produced. This theory

is young and controversial in the immunology community.

A.1 Overview

The human biological immune system has several characteristics that make it a good

model for computation: [20, p.55-6] enumerates 19 characteristics of the BIS that make it

attractive for computational reasons. In the interest of simplicity, these characteristics are

abstracted into several general qualities for discussion. These qualities are distributed na-

ture, memory, multi-layered architecture, preventative, fuzzy pattern recognition. Through

mutations and other variations (are there others?), the BIS can produce antibodies to

match any antigen. Even with this potential, the number of antigens that can be matched

by the existing lymphocytes in a BIS at a given time is very small. Part of the wonder of the

BIS is that it can successfully accomplish the task of defending against an almost infinite

number of antigen possibilities while maintaining such a small number of lymphocytes.

A.1.1 Distributed with no Central Control. The human biological immune system

(BIS) has no central control. Instead, it is distributed throughout the body, but somehow

it works together in a unified manner and it is very effective at what it does: protecting

the body from harmful intruders.

A.1.2 Memory. When a B-cell binds to an antigen it is not yet ”stimulated” in

the full sense of the word. The B-cell is ”stimulated” when it has bound to an antigen and

it receives a co-stimulatory signal from an accessory cell, such as a T-helper cell. Upon,

stimulation, the B-cell begins to divide into two types of cells: Terminal (non-dividing

cells) cells called plasma cells and B-memory cells. Plasma cells do not divide but they

secrete antibodies at a much faster rate than the dividing B-cells, which are also secreting

antibodies. B-memory cells circulate through the body and do not secrete antibodies.

They are called memory cells because they do not need to recognize an antigen before

they are stimulated by a second antigenic stimulus (co-stimulatory). When stimulated by

a second antigenic stimulus, B-memory cells rapidly differentiate into plasma cells capable

of producing high affinity antibodies.

123

One other aspect of memory in the BIS is its associativity: Even though B-cells have

receptors that only match one specific antigen epitope pattern, they can present a more

efficient response to any structurally related antigen. This means that the body maintains

some protection against new antigens that are related (maybe slightly mutated versions) of

previously encountered antigens. This phenomenon of providing a more efficient secondary

response to an antigen structurally rlated to a previously sen antigen is called immunolog-

ical cross-reaction, or cross-reactive response. This is also related to the pattern matching

capabilities of the BIS because of the principal of generality. That is, the BIS’s response

to antigens is generalized so that it can react quickly when it encounters an antigen that

is related to a previously encountered antigen.

A.1.3 Multi-Layered. The BIS can usually be split up into three layers: the

physical layer, the innate layer, and the adaptive layer.

A.1.3.1 Physical Layer. The physical layer is made up of the skin and the

respiratory system. The skin performs obvious functions is keeping intruders outside of the

body. The respiratory system assists by trapping irritants in nasal hairs, carrying mucus

out of the body, and coughing and sneezing.

A.1.3.2 Innate Layer. The innate layer is the next layer under the physical

layer. It is non-adaptive, meaning that it does not change relative to current or previous

intruders of infections. This is different from the adaptive layer, which is discussed in the

next section. The innate immune system plays an important role in controlling infections

during the period between an infection’s introduction to the body and the time (usually

a couple of days later) when the infection is attacked by components of the adaptive

layer. Phagocytic cells (e.g. macrophages and neutrophils) have surface receptors that

recognize and bind to common molecular patterns found only in foreign microorganisms.

After a phagocytic cell has bound to an intruder, lymphokines are secreted. Lymphokines

are a type of cytokines, proteins emitted by cells that affect the behavior of other cells.

Secreted lymphokines induce an inflammatory response, which draws immune cells, such

124

as phagocytosis, to the infection. The intruder is then attacked, often by phagocytosis,

which digests foreign organisms.

A.1.3.3 Adaptive Layer. The lymphocyte is the most important cell in the

adaptive layer of the BIS. Lymphocytes are produced in the bone marrow and thymus and

they carry specific antigen receptors. The development of lymphocytes uses a mechanism

that rearranges its gene receptors so that there is a large number of possible receptors that

each lymphocyte can have. B-cells are produced in the bone marrow. The generation of

B-cells uses gene libraries to pull genes from for new B-cells. When a lymphocyte binds

with an antigen, it is activated and produces a large number of offspring, each of which

produce antibodies with the same antigen receptors. This is why lymphocytes are part

of an adaptive layer: The number of lymphocytes that match a specific antigen grows as

matching lymphocytes bind with the antigen. Lymphocytes that bind with antigens are

usually kept around as memory cells, the idea being that if an antigen was seen once, there

is a higher likelihood that it will be seen again. By keeping matching lymphocytes around,

the body’s response will be much faster the next time the antigen is encountered.

The clonal selection principal describes how the BIS adaptively responds to an anti-

genic stimulus. When a lymphocyte is activated by binding to an antigen, it needs to

produce additional lymphocytes with the same receptor specific cells to fight against the

infection. This production of additional lymphocytes to fight infection, called clonal expan-

sion, takes place in the lymph nodes. Through clonal expansion, only those lymphocytes

that recognize an antigen will proliferate and reproduce. In this way, a kind of selection

takes place because the fittest cells, i.e. those that recognize antigens, are selected against

the cells that do not recognize antigens.

Clonal selection operates on both B-cells and T-cells, however there is a significant

difference. B-cells undergo somatic mutation during reproduction. Mutation helps B-cells

to increase their diversity so that they can better fight against selective antigens. T-cells

do not suffer mutation during reproduction, so the receptors on child cells are identical to

the receptors on parent cells.

125

A.1.4 Preventative. The BIS can recognize antigens that it has never even seen

before. Although clonal selection is adaptive in that it helps the body to have greater

numbers of the lymphocytes that it needs to battle current infections, it does not adapt to

possible future attacks. This prevention is accomplished through a process called affinity

maturation. During clonal expansion, the receptors on B-cells are mutated in three ways:

point mutations, short deletions, sequence exchanges. The mutated B-cells are checked

for affinity, a measure of how general a B-cell is. That is, how many antigens will elicit a

secondary response from this B-cell’s receptor. If a mutated B-cell has high affinity, then it

enters the pool of memory cells (B-memory cells). If a mutated B-cell has low affinity or is

self-reactive, it must be destroyed because it is not useful and could attack self cells. It is

believed that these poor-affinity B-cells die through apoptosis (cell death) in the germinal

centers (the places where the B-cells are undergoing affinity maturation).

A.1.5 Pattern Recognition. The body has two kinds of lymphocytes, B-cells and

T-cells. B-cells and T-cells carry surface receptor molecules that can recognize antigens.

These receptors recognize a portion of an antigen called an epitope. Antigens have several

different epitopes, so they can be bound by several different lymphocyte receptors. B-cells

have receptors that recognize antigens when they are free in solution. T-cells, however,

recognize antigens when they have been processed and bound to a molecule called major

histocompatibility complex (MHC). There are two classes of MHCs, MHC-I and MHC-II.

When B-cells recognize an antigen, they secrete antibodies with receptors that recognize

the same antigen pattern. The binding of an antibody to an antigen is a signal to other

cells to ingest, process, and/or remove the bound substance. Killer T-cells recognize anti-

gens bound to MHC-I molecules and helper T-cells recognize antigens bound to MHC-II

molecules.

The B-cell receptors go through a rearrangement process and mutation so that there

is a large number of different receptors that can be created from a finite genome.

A.1.6 Positive Selection. Although negative selection is usually associated with

a BIS, there is actually some positive selection that goes on (from a certain perspective)

with the T-cells. Since T-cells do not bind directly to antigens, but rather to MHCs

126

(major histocompatibility complex) on the outside of cells that have attached themselves

to antigens, T-cells must recognize the self MHCs. Therefore, T-cells go through positive

selection. If T-cells do not match self MHCs, they are not allowed out of the thymus

because they cannot perform their duty if they do not recognize self MHCs.

A.1.7 Negative Selection. Negative selection is the process by which autoimmune

lymphocytes are purged from the repertoire. Negative selection happens with T-Cells and

B-cells, the two types of lymphocytes. For T-Cells, negative selection happens in the

thymus and on its periphery. The thymus contains many MHC-bearing antigen presenting

cells (APCs). Negative selection takes place when immature T-Cells interact with these

APCs. If a T-Cell recognizes a self-peptide MHC as presented by an APC, then the T-Cell

is purged because it is potentially autoreactive and may attack self cells.

Negative selection for immature B-Cells takes place within the bone marrow. If an

immature B-Cell recognizes a self cell in the bone marrow, then that B-Cell is removed

from the inventory before the B-Cell enters the rest of the body and does harm by attacking

self cells.

127

Appendix B. Random Number Generator

When executing any algorithm with a stochastic element, it is important to take into ac-

count the properties of the random number generator. A poor random number generator

may induce unwanted (and unnoticed!) side effects. We desire a random number gen-

erator that is well tested founded in sound theory. We choose the Java random number

generator that comes with the Sun SDK [86]. We used the Random class in the package

java.util. The API specifications for this float random number generator says that the

“polar method of G. E. P. Box, M. E. Muller, and G. Marsaglia, as described by Donald

E. Knuth in The Art of Computer Programming, Volume 2: Seminumerical Algorithms,

section 3.4.1, subsection C, algorithm P“ is used for generating floats from a Gaussian

distribution. A “linear congruential pseudorandom number generator, as defined by D. H.

Lehmer and described by Donald E. Knuth in The Art of Computer Programming, Volume

2: Seminumerical Algorithms, section 3.2.1“ is to generate random ints that are then used

to generate random floats from a uniform distribution [85].

128

Appendix C. Algorithm Pseudocode

input : e: an ellipsoid to be inserted
input : n: the node that e is to be inserted into
input : p: A set of random points that are inside e
output: The fraction of n that e covers that is not covered by a previously inserted ellipsoid
if There is already an ellipsoid that covers all of n then1.1

return 0.00;1.2
1.3

if e covers all of n because all corners of n are in e then1.4
add e to a list of ellipsoids that cover all of n;1.5
return;1.6

1.7
if n is a leaf then1.8

if p is not empty then1.9
return 1.00;1.10

else1.11
return 0.00;1.12

end1.13
1.14

sum = 0.00;1.15
forall children c of n do1.16

get a set pc ⊆ p such that all elements of pc are in c;1.17
sum+ = insertEllipsoid(e, n, pc);1.18

end1.19
return sum

|cn|
, where cn is the children of n;1.20

Algorithm 1: insertEllipsoid

129

input : e: an ellipse to be inserted
input : n: the node that e is to be inserted into
output: The fraction of n that e covers that is not covered by a previously inserted ellipse
µn ← The fraction of n that is not covered by previously inserted ellipses.;2.1
n← The number of corners that n has.;2.2

`e ← The length of the longest semiaxis of e;2.3
`n ← The length of the distance from the center of n to a corner of n;2.4
childCountn ← The number of children that n has;2.5
if n is already totally covered by previously inserted ellipses. then2.6

return 0.00;2.7
2.8

if n is a leaf then2.9
if all corners of n are inside of e then2.10

retV al = µn;2.11
µn = 0.00;2.12
return retV al;2.13

2.14
else if α corners of n are in e, where α < cn then2.15

retV al = µn ∗ α/cn;2.16
µn = µn − retV al;2.17
return retV al;2.18

else if the center of n is inside of e then2.19
retV al = 0.50 ∗ µn;2.20
µn = µn − retV al;2.21
return retV al;2.22

else if the center of e is inside of n then2.23
retV al = (1.00/cn) ∗ µn;2.24
µn = µn − retV al;2.25
return retV al;2.26

else2.27
return 0.00;2.28

2.29
else2.30

if the euclidean distance between the centers of n and e is greater than (`e + `n) then2.31
return 0.002.32

2.33
else if all corners of n are inside of e then2.34

retV al = µn;2.35
µn = 0.00;2.36
return retV al;2.37

else2.38
totalCoverage = 0.00;2.39
forall child in n.children do2.40

totalCoverage+ = insertEllipsoid(e, child);2.41
end2.42
retV al = totalCoverage/childCountn;2.43
µn = µn − retV al;2.44
return retV al;2.45

2.46
end2.47

Algorithm 2: insertEllipsoid

130

input : n: number of ellipses in the population
input : genMax: the maximum number of generations
input : dep: depth of the 2n-way tree
input : mutStdDev: The mutation standard deviation
input : childCount: The number of children generated at each generation
input : nonMutGen: Every nonMutGen generations, members of the population are not mutated
input : mutChangeGens: Every mutCheckGens, a check is made to decide if mutStdDev should be

decreased
output: P , a set of n ellipses
for curGen = 0; curGen < genMax; curGen + + do2.1

children = generateEllipses(childCount);2.2
growEllipses(children);2.3
β = copy(PcurGen) //deep copy of PcurGen;2.4
diff ← the index of the first difference between PcurGen and PcurGen−1;2.5
for i← diff ; i < n; i + + do2.6

PcurGen[i].objectiveV al = 0;2.7
end2.8
if curGen mod nonMutGen! = 0 then2.9

mutate(P [i : diff − 1], mutStdDev);2.10
2.11

PcurGen = PcurGen ∪ children;2.12
sortByV olume(PcurGen) //larger ellipses are first after sorting;2.13
clearSegmentTree();2.14
for i = 0; i < PcurGen.size(); i + + do2.15

p = PcurGen[i];2.16
p.objectiveV alue = insertEllipsoidIntoSegmentTree(p);2.17
p.penaltyV alue =2.18
p.objectiveV alue− (p.objectiveV alue/((2.00 ∗ numPointsCoveredInSegmentTree(p) + 1.00));

end2.19
if curGen mod nonMutGen! = 0 then2.20

for i = 0; i < n; i + + do2.21
α = the index of the copy of β[i] in PcurGen;2.22
p = PcurGen[α];2.23
if (β[i].objectiveV alue− β[i].penaltyV alue) > (p.objectiveV alue− p.penaltyV alue) then2.24

PcurGen = β[i];2.25
2.26

end2.27
2.28

sortByObjectiveV alueMinusPenaltyV alue(PcurGen);2.29
PcurGen+1 = PcurGen[0 : n− 1];2.30
if curGen mod mutChangeGens! = 0 then2.31

noChange = false;2.32
for i = 0; i < n; i + + do2.33

p = PcurGen[i];2.34
α = PcurGen−mutChangeGens[i];2.35
if p.objectiveV alue− p.penaltyV alue > α.objectiveV alue− α.penaltyV alue then2.36

noChange = true;2.37
2.38

end2.39
if noChange == false then2.40

mutStdDev∗ = 0.50;2.41
2.42
2.43

end2.44

Algorithm 3: The complexity of generateEllipses is O(2d+dα ∗ d2 ∗ genMax).
The O(2d+dα∗d2 term is from the functions insertEllipsoidIntoSegmentTree and
numPointsCoveredInSegmentTree, while genMax is the number of generations.

131

input : S: set of all self training points
input : e: An ellipse to be grown. This ellipse must be a sphere.
output: e: radius of e is maximized with the constraints that it covers no points in s and its center is

not changed.
forall s ∈ S do3.1

smallestDist← min(euclideantDistance(e.center, s), smallestDist);3.2
end3.3

Algorithm 4: The complexity of growEllipse is O(|S|∗d), where d is the number
of dimensions.

input : e: ellipse
input : mutStdDev: This affects how large the mutation can be.
output: e: ellipse with mutated center.
foreach dimension d do4.1

mutRange← d.rangeSize/4.00;4.2
mutV al← randomGaussian() ∗mutRange ∗mutStdDev;4.3
e.center[d]← e.center[d] + mutV al;4.4

end4.5
/*Check that center is not outside of range. If it is, mutate it towards the range. */

Algorithm 5: The complexity of mutateCenter is O(d).

input : e: ellipse
input : mutStdDev: This affects how large the mutation can be.
output: e: ellipse with the length of one randomly chosen semiaxis mutated.
d← randomlyChooseDimension()5.1
changeV al← randomGaussian() ∗ e.semiaxes[d].length ∗mutStdDev;
e.semiaxes[d].length← e.semiaxes[d].length + changeV al;5.2
/*Check to see that the mutation did not make the length negative. */

Algorithm 6: The complexity of mutateLength is O(1).

132

input : e: ellipse
input : mutStdDev: This affects how large the mutation can be.
output: e: ellipse with the length of one randomly chosen semiaxis mutated.
/*s[0] and s[1] must be different. */
;6.1
s[0]← randomlyChooseSemiaxis(e);6.2
s[1]← randomlyChooseSemiaxis(e);6.3
rAngle = randomAngle()4;6.4
/*The following two lines are vector operations, requiring d operations */
s[0]← (cosine(rAngle) ∗ s[0]) + (sine(rAngle) ∗ s[1]);6.5
s[1]← (−1.00 ∗ sine(rAngle) ∗ s[1]) + (cosine(rAngle) ∗ s[0]);6.6
/*check to see that s[0] and s[1] are still within the dimension ranges */
foreach chosen semixis s do6.7

foreach Dimension d do6.8
/*Make sure that the s is still within the boundaries for d. */

end6.9
end6.10

Algorithm 7: The complexity of mutateOrientation is O(d), where d is the
number of dimensions.

133

input : e: ellipse
input : stn: 2n-way tree node
output: fracCovered: a value in [0.00, 1.00] that is the fraction of s that e gets credit for covering.
d← number of dimensions;7.1
if stn is a leaf then7.2

if allCornersInside(e, stn) then7.3
fracCovered← stn.fractionUncovered;7.4
stn.fractionUncovered← 0;7.5
return fracCovered;7.6

7.7
insideCount = numCornersInsideEllipse(e, stn);7.8
if insideCount! = 0 then7.9

cornerCount← 2d;7.10
fracCovered← stn.fractionUncovered ∗ (insideCount/cornerCount);7.11
stn.fractionUncovered← stn.fractionUncovered− fracCovered;7.12

7.13
if e.mahalanobisDistance(stn.center) < 1.00 then7.14

fractionUncovered← 0.50 ∗ stn.fractionUncovered;7.15
stn.fractionUncovered← stn.fractionUncovered− fractionCovered;7.16
return fractionUncovered;7.17

7.18
if stn.containsPoint(e.center) then7.19

cornerCount← 2d;7.20
fractionCovered← (1.00/cornerCount) ∗ stn.fractionUncovered;7.21
stn.fractionUncovered← stn.fractionUncovered− fractionCovered;7.22
return fractionUncovered;7.23

7.24
return 0.00;7.25

else7.26
if euclideanDistanceBetweenCenters(e, stn) >7.27
e.lengthOfLongestSemiaxis + stn.centerToCornerDistance then

return 0.00;7.28
7.29

if e.allCornersInside(stn) then7.30
fractionCovered← stn.fractionUncovered;7.31
stn.fractionUncovered0.00;7.32
return fractionCovered;7.33

7.34
totalCoverage = 0.00;7.35
forall c ∈ stn.children do7.36

totalCoverage+ = insertEllipsoidIntoSegmentTree(e, c);7.37
end7.38
fractionCovered = totalCoverage/stn.numChildren;7.39
stn.fractionUncovered = stn.fractionUncovered− fractionCovered;7.40
return fractionCovered;7.41

end7.42

Algorithm 8: The worst case for the complexity of
insertEllipsoidIntoSegmentTree is O(2d ∗ d2 ∗ (2d)α) = O(2d+dα ∗ d2, where α
is the depth of the segment tree. The term (2d)α is the bound on the number of
nodes in the segment tree of depth α in d dimensions. This is worst case scenario
because an ellipse usually only ends up being tested against a small fraction of
the total nodes, however this fraction is not known. Further analysis may be able
to put a bound on the fraction of nodes that an ellipse is tested against against,
but that is outside of scope of this research. The 2d term is the number of corners
in a node and the d2 term is the complexity of the Mahalanobis distance, used to
test whether a corner is inside of an ellipse.

134

input : e: ellipse
input : stn: 2n-way tree node
output: allInside: A boolean, true if all corners of stn are inside of e, false otherwise.
allInside = true;8.1
forall c ∈ stn.corners do8.2

if mahalanobisDistance(e, stn) > 1.00 then8.3
allInside = false;8.4

8.5
end8.6
return allInside;8.7

Algorithm 9: Complexity of allCornersInside is O(d2 ∗ 2d), where d is the
number of dimensions. The d2 term is from Mahalanobis distance and the 2d

term is the number of corners in the segment tree node.

input : e: ellipse
input : stn: 2n-way tree node
output: insideCount: The number of the points in stn that are inside of e.
d← number of dimensions;9.1
if stn.pointCount == 0 then9.2

return 0;9.3
9.4

if euclideanDistanceBetweenCenters(e, stn) >9.5
e.lengthOfLongestSemiaxis + stn.centerToCornerDistance then

return 0.00;9.6
9.7

cornerCount = 2d;9.8
if cornerCount < stn.pointCount then9.9

if allCornersInside(e, stn) then9.10
return stn.pointCount;9.11

9.12
9.13

if stn is leaf then9.14
insideCount← 0;9.15
foreach c ∈ stn.children do9.16

insideCount← insideCount + numPointsCoveredInSegmentTree(e, c);9.17
end9.18
return insideCount;9.19

else9.20
insideCount← 0;9.21
foreach p ∈ stn.pointCount do9.22

if mahalanobisDistance(e, p) < 1.00 then9.23
insideCount← insideCount + 1;9.24

9.25
end9.26
return insideCount;9.27

end9.28

Algorithm 10: The worst case for the complexity of
numPointsCoveredInSegmentTree is O(2d ∗ d2 ∗ (2d)α) = O(2d+dα ∗ d2,
where α is the depth of the segment tree. The term (2d)α is the bound on the
number of nodes in the segment tree of depth α in d dimensions. This is worst
case scenario because an ellipse usually only ends up being tested against a small
fraction of the total nodes, however this fraction is not known. Further analysis
may be able to put a bound on the fraction of nodes that an ellipse is tested
against against, but that is outside of scope of this research. The 2d term is the
number of corners in a node and the d2 term is the complexity of the Mahalanobis
distance, used to test whether a corner is inside of an ellipse.

135

Bibliography

1. “Java Lapack”. internet. Java Linear Algebra Library,
http://www.cs.utk.edu/f2j/download.html.

2. “JAva MAtrix Package”. internet. Java Matrix Package,
http://math.nist.gov/javanumerics/jama/.

3. “Java Numerics”. internet. Java Linear Algebra Library,
http://math.nist.gov/javanumerics.

4. “Mahalanobis Distance”. internet. Tutorial, http://www.wu-
wien.ac.at/usr/h99c/h9951826/distance.pdf.

5. “McAfee Home”. internet. Http://www.mcafee.com/us.

6. “Mealy Machine”. internet. Tutorial, http://en.wikipedia.org/wiki/Mealy machine.

7. “Panda Software: Virus and Intrusion Prevention for You PC”. internet.
Http://www.pandasoftware.com.

8. “Symantec Home”. internet. Http://www.symantec.com.

9. “tcpdump”. Program for filtering network traffic data. http://www.tcpdump.org/.

10. Ada, Gordon L. and Sir Gustav Nossal. “The Clonal-Selection Theory”. Scientific
American, 257:62–69, August 1987.

11. Aickelin, U., S. Cayzer, J. Kim, and J. McLeod. “Danger Theory: The Link between
AIS and IDS?” Proceedings of the 2nd International Conference on ARtificial Immune
Systems, 147–155. Springer-Verlag, 2003.

12. Aickelin, Uwe and Steve Cayzer. “The Danger Theory and Its Application to Artifi-
cial Immune Systems”. Proceedings of the 1st International Conference on Artificial
Immune Systems, 141–148. Morgan Kaufmann Publishers, Canterbury, UK, 2002.

13. Aickelin, Uwe, Julie Greensmith, and Jamie Twycross. “Immune System Approaches to
Intrusion Detection - A Review”. Proceedings of International Conference on Artificial
Immune Systems, 316–329. 2004.

14. Amoroso, Edward. Intrusion Detection. Intrusion.Net Books, Sparta, New Jersey,
1999.

15. Anchor, Kevin P., Jesse B. Zydallis, Gregg H. Gunsch, and Gary B. Lamont. “Differ-
ent Multi-Objective Evolutionary Programming Approaches for Detecting Computer
Network Attacks”. Proceedings of Proceedings of Evolutionary and Multi-Objective
Optimization 2003, 707–721.

16. Balthrop, Justin, Fernando Esponda, Stephanie Forrest, and Matthew Glickman.
“Coverage and Generalization in an Artificial Immune System”. Proceedings of the
Genetic and Evolutionary Computation Converence, 3–10. Morgan Kaufmann, New
York, July 2002.

136

17. Bäck, T., D. B. Fogel, and T. Michalewicz (editors). Evolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing, 2000.

18. Blake, C.L. and C.J. Merz. “UCI Repository of machine learning databases”,
1998. URL http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Http://www.ics.uci.edu/∼mlearn/MLRepository.html.

19. de Castro, L. N. and F. J. Von Zuben. “The Clonal Selection Algorithm with Engineer-
ing Applications”. Proceedings of Genetic and Evolutionary Computation Conference,
36–37. 2000.

20. de Castro, Leandro Nunes and Jonathan Timmis. Artificial Immune Systems: A New
Computational Intelligence Approach. Springer, London, England, first edition, 2002.

21. de Castro, Leandro Nunes and Fernando J. Von Zuben. “An Evolutionary Immune
Network for Data Clustering”. Proceedings of the IEEE Brazilian Symposium on Ar-
tificial Neural Networks, 84–89. 2000.

22. Center, Information Assurance Technology Analysis. Intrusion Detection: Information
Assurance Tools Report. Technical report, Information Assurance Technology Analysis
Center, 2001.

23. Dasgupta, Dipankar (editor). Artificial Immune Systems and Their Applications.
Springer-Verlag, Berlin, 1999.

24. Dasgupta, Dipankar and Fabio Gonzalez. “An Immunity-Based Technique to Charac-
terize Intrusions in Computer Networks”. IEEE Transactions on Evolutionary Com-
putation, 6(3), June 2002.

25. Dasgupta, Dipankar, Senhua Yu, and Nivedita Sumi Majumdar. “MILA-Multilevel
Immune Learning Algorithm”. Proceedings of the Genetic and Evolutionary Algorithm
Conference. Springer, July 2003.

26. Denning, D.E. “An Intrusion-Detection Model”. IEEE Transactions on Software
Engineering, SE-13:222–232, 1987.

27. D’haeseleer, Patrik, Stephanie Forrest, and Paul Helman. “An Immunological Ap-
proach to Change Detection: Algorithms, Analysis and Implications”. Proceedings of
the IEEE Symposium on Computer Security and Privacy, 110–119. 1996.

28. Dozier, Gerry, Douglas Brown, John Hurley, and Krystal Cain. “Vulnerability Analysis
of Immunity-Based Intrusion Detection Systems Using Evolutionary Hackers”. Pro-
ceedings of Genetic and Evolutionary Computation Conference, 263–274. Seattle, WA,
June 2004.

29. Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. John
Wiley & Sons, Inc., New York, second edition, 2001.

30. Escamilla, Terry. Intrusion Detection. John Wiley & Sons, 1998.

31. Eskin, Eleazar. “Anomaly Detection over Noisy Data using Learned Probability Distri-
butions”. Proceedings of the Seventeenth International Conference on Machine Learn-
ing. JUNE 2000.

137

32. Forrest, Stephanie, Steven A. Hofmeyr, and Anil Somayaji.

33. Forrest, Stephanie, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. “A
Sense of Self for Unix Processes”. Proceedings of the IEEE Symposium on Computer
Security and Privacy, 120–128. 1996.

34. Forrest, Stephanie, Alan S. Perelson, Lawrence Allen, and Rajesh Cherukuri. “Self-
nonself Discrimination in a Computer”. Proceedings of the IEEE Symposium on Re-
search in Security and Privacy. 1994.

35. Forrest, Stephanie, Robert E. Smith, Brenda Javornik, and Alan S. Perelson. “Using
Genetic Algorithms to Explore Pattern Recognition in the Immune System”. Evoution-
ary Computation, 1:191–211, 1993.

36. Garrett, Simon M. “Parameter-Free, Adaptive Clonal Selection”. Proceedings of
Congress on Evolutionary Computation (CEC 2004). Portland, OR, USA, JUNE 2004.

37. Goldberg, David E., Kalyanmoy Deb, Hillol Kargupta, and Georges Harik. Rapid,
Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms.
Technical report, University of Illinois at Urbana-Champagne.

38. Gomez, Jonatan, Fabio A. Gonzalez, and Dipankar Dasgupta. “An Immuno-Fuzzy
Approach to Anomaly Detection”. Proceedings of The IEEE International Conference
on Fuzzy Systems. May 2003.

39. Gonzalez, F., D. Dasgupta, and J. Gomez. “The Effect of Binary Matching Rules in
Negative Selection”. Proceedings of the Genetic and Evolutionary Algorithm Confer-
ence. Springer, July 2003.

40. Gonzalez, Fabio A. and Dipankar Dasgupta. “Anomaly Detection Using Real-Valued
Negative Selection”. Proceedings of Genetic Programming and Evolvable Machines,
383–403. Kluwer Academic Publisher.

41. Gonzalez, Fabio A. and Dipankar Dasgupta. “An Immunogenetic Technique to Detect
Anomalies in Network Traffic”. Proceedings of Genetic and Evolutionary Computation
Conference, 1081–1088. Morgan Kaufmann Publishers, July 2002.

42. Hamaker, Janna Shaffer. “Non-Euclidean Distance Measures in AIRS, an Artificial Im-
mune Classification System”. Proceedings of Congress on Evolutionary Computation.
Portland, OR, USA, JUNE 2004.

43. Hang, Xiaoshu and Honghua Dai. “Constructing Detectors in Schema Complementary
Space for Anomaly Detection”. Genetic and Evolutionary Computation Conference.
Springer-Verlag, Berlin.

44. Harmer, Paul K., Paul D. Williams, Gregg H. Gunsch, and Gary B. Lamont. “An
Artificial Immune System Architecture for Computer Security Applications”. IEEE
Transactions on Evolutionary Computation, 6(3):252–280, 2002.

45. Hart, Emma and Peter Ross. “Studies on the Implications of Shape-Space Models for
Idiotypic Networks”. Proceedings of International Conference on Artificial Immune
Systems, 413–426. 2004.

138

46. Hightower, Ron R., Stephanie Forrest, and Alan S. Perelson. “The Evolution of Emer-
gent Organization in Immune System Gene Libraries”. Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms, 344–350. Morgan Kaufmann, 1995.

47. Hofmeyr, Steven A., Stehpanie Forrest, and Anil Somayaji. “Intrusion Detection using
Sequences of System Calls”. Journal of Computer Security, 6:151–180, 1998.

48. Hou, Haiyu, Jun Zhu, and Gerry Dozier. “Artificial Immunity Using Constraint-Based
Detectors”, 2002.

49. Ji, Zhou and Dipankar Dasgupta. “Real-Valued Negative Selection Algorithm with
Variable-Sized Detectors”. Proceedings of Genetic and Evolutionary Computation Con-
ference. Springer-Verlag, Berlin.

50. J.P., Anderson. Computer Security Threat Monitoring and Surveillance. Technical
report, James P. Anderson Company, Fort Washington, PA.

51. Kelly, Patrick M., Don R. Hush, and James M. White. “An Adaptive Algorithm for
Modifying Hyperellipsoidal Decision Surfaces”. Journal of Artificial Neural Networks,
1:49–480, 1994.

52. Kephart, Jeffrey O. “A Biologically Inspired Immune System for Computers”. Proceed-
ings of the Fourth International Workshop on the Synthesis and Simulation of Living
Systems, 130–139. 1994.

53. Khoshgoftaar, Taghi M. and Mohamed E. Abushadi. “Resource-Sensitive Intrusion
Detection Models for Network Traffic”. Proceedings of the Eighth International Sym-
posium on High Assurance Systems Engineering. Tampa, FL, March 2004.

54. Kim, J. and P. Bentley. “An Artificial Immune Model for Network Intrusion Detec-
tion”. Proceedings of the Seventh European Congress on Intelligent Techniques and
Soft Computing. Aachen, Germany, September 1999.

55. Kim, J. and P. Bentley. “The Human Immune System for Network Intrusion Detec-
tion”. Proceedings of the Seventh European Congress on Intelligent Techniques and
Soft Computing. Aachen, Germany, September 1999.

56. Kim, Jungwon and Peter J. Bentley. “An Evaluation of Negative Selection in an
Artificial Immune System for Network Intrusion Detection”.

57. Kim, Jungwon and Peter J. Bentley. “Towards an Artificial Immune System for Net-
work Intrusion Detection: An Investigation of Dynamic Clonal Selection”. Proceedings
of Congress on Evolutionary Computation. Honolulu,.

58. Lamont, Gary B., Robert E. Marmelstein, and David A. Van Veldhuizen. A Distributed
Architecture for a Self-Adaptive Computer Virus Immune System, chapter Eleven, 167–
183. McGraw-Hill, UK, 1999.

59. Lane, Terran and Carla E. Brodley. “Temporal Sequence Learning and Data Reduction
for Anomaly Detection”. Proceedings of the Fifth ACM Conference on Computer and
Communications Security, 150–158. 1998.

139

60. Leder, Philip. “The Genetics of Antibody Diversity”. Scientific American, 246:103–
115, May 1982.

61. Lincoln Laboratory at Massachusetts Institute of Technology,
http://www.ll.mit.edu/IST/ideval/data/1999/training/week1/index.html. Lincoln
Laboratory: DARPA Intrusion Detection Evaluation.

62. Mahfoud, Samir. Evolutionary Computation 1, chapter 26: Boltzmann Selection, 195–
200. Institute of Physics Publishing, 2000.

63. Mahoney, Matthew V. and Philip K. Chan. “An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection”, SEPTEMBER 2003.

64. Marmelstein, Robert E. Evolving Compact Decision Set Rules. Ph.D. thesis, Air Force
Institute of Technology, WPAFB, Dayton, OH, 1999.

65. Matzinger, Polly. “The Real Function of the Immune System OR Tolerance and the
Four D’s (Danger, Death, Destruction and Distress)”. internet.

66. McHale, John. “Sana Security Information Defense is Based on Human Immune Sys-
tem”. Military and Aerospace Electronics, September 2004.

67. Mills, Robert F., Gilbert L. Peterson, and Wesley Allred. “Geometric Clustering for
Intrusion Detection”. To be submitted to the 2005 Conference on Recent Advances in
Intrusion Detection (RAID 2005).

68. M.Mahoney and P. K. Chan. “Learning Nonstationary Models of Normal Network
Traffic for Detecting Novel Attacks”. Proceedings of Eleventh ACM SIGKDD Interna-
tional Conference On Knowledge Discovery and Data Mining, 376–385. JULY 2002.

69. Mukherjee, Biswanath, L. Todd Heberlein, and Karl N. Levitt. “Network Intrusion
Detection”. IEEE Network, 8(3):26–41, 1994.

70. Ning, P. and Y. Cui. An Intrusion Alert Correlator Based on Prerequisites of In-
trusions. Technical Report TR-2002-01, University of Illinois at Urbana-Champagne,
2001.

71. Ning, P., D.S. Reeves, and Y. Cui. Correlating Alerts Using Prerequisites of Intru-
sions. Technical Report TR-2001-13, North Carolina State University, Department of
Computer Science, 1999.

72. Ning, Peng, Yun Cui, and Douglas S. Reeves. “Analyzing intensive intrusion
alerts via correlation”. Proceedings of the Fifth International Symposium on Re-
cent Advances in Intrusion Detection. Zurich, Switzerland, October 2002. URL
citeseer.ist.psu.edu/ning02analyzing.html.

73. Paeth, Alan W. (editor). Graphics Gems V. Academic Press, 1995. Kenneth J. Hill is
the author of the chapter.

74. Peikari, Cyrus and Anton Chuvakin. Security Warrior. O’Reilly, 1 edition, 2004.

75. Peterson, Michael R., Travis E. Doom, and Michael L. Raymer. “GA-Facilitated
Knowledge Discovery and Pattern Recognition Optimization Applied to the Biochem-

140

istry of Protein Solvation”. Proceedings Genetic and Evolutionary Computation Con-
ference, 426–437. Springer Verlag, 2004.

76. Potter, Mitchell A. and Kenneth A. De Jong. “The Coevolution of Antibodies for
Concept Learning”. Proceedings of the Fifth International Conference on Parallel
Problem Solving from Nature, 530–539. Springer-Verlag, 1998. ISBN 3-540-65078-4.

77. Preparata, Franco P. and Michael Ian Shamos. Computational Geometry: An Intro-
duction. Texts and Monographs in Computer Science. Springer-Verlag, 1985.

78. Sana Security, http://www.sanasecurity.com/. Sana Security.

79. Sana Security, http://www.sanasecurity.com/products/technology/index.php. Sana
Security: Technology.

80. Sekar, R., M. Bendre, D. Dhurjati, and P. Bollineni. “A Fast Automaton-based Method
for Detecting Anomalous Program Behaviors”. Proceedings of the IEEE Symposium
on Security and Privacy. 2001.

81. Smith, David J. and Mavina K. Vamanamurthy. “How Small is a Unit Ball”. Mathe-
matics Magazine, 62(2):103–107, April 1989.

82. Somayaji, A., S. Hofmeyer, and S. Forrest. “Principles of a Computer Immune Sys-
tem”. Proceedings New Security Paradigms, 75–82. SEPTEMBER 1997.

83. Stepney, Susan, Robert E. Smith, Jonathan Timmis, and Andy M. Tyrrell. “Towards
a Conceptual Framework for Artificial Immune Systems”. Proceedings of International
Conference on Artificial Immune Systems, 53–64. 2004.

84. Stibor, Thomas, Kpatscha M. Bayarou, and Claudia Eckert. “An Investigation of
R-Chunk Detector Generation on Higher Alphabets”. Proceedings of Genetic and
Evolutionary Computation Conference, 299–307. 2004.

85. Sun, http://java.sun.com/reference/api/index.html. Sun Java API Specifications,
September 2004.

86. Sun, http://www.java.sun.com. Sun Java Technology Home Page, September 2004.

87. Team, PAL Core Development. “PAL Project: Gamma Function”, October 2004.

88. Tee, Garry J. “Ellipsoid Volume”. personal communication, 2004. Received via email
10/29/2004.

89. Tee, Garry J. “Intersection of Ellipsoids”. personal communication, 2004. Received
via email 11/4/2004.

90. Tee, Garry J. Surface Area and Capacity of Ellipsoids in n Dimensions. Technical
report, Department of Mathematics, University of Auckland, Auckland, New Zealand,
March 2004.

91. Timmis, Jon and Mark Neal. “Investigating the Evolution and Stability of a Resource
Limited Artificial Immune System”. Proceedings of the Genetic and Evolutionary Com-
putation Conference, 40–41. 2000.

141

92. Tonegawa, Susumu. “The Molecules of the Immune System”. Scientific American,
253:122–131, October 1985.

93. Wang, Ke and Salvatore J. Stolfo. “Anomalous Payload-based Network Intrusion
Detection”. Proceedings of the Seventh International Symposium on Recent Advances
in Intrusion Detection. SEPTEMBER 2004.

94. Warrender, Christina, Stephanie Forrest, and Barak Pearlmutter. “Detecting Intru-
sions Using System Calls: Alternative Data Models”. Proceedings of the IEEE Sym-
posium on Security and Privacy, 133–145. 1999.

95. Whitley, D., K. Mathias, S. Rana, and J. Dzubera. “Evaluating Evolutionary Algo-
rithms”. Artificial Intelligence, 85:245–2761, 1996.

96. Williams, Paul, Kevin Anchor, John Bebo, Gregg Gunsch, and Gary Lamont.
“Warthog: Towards a Computer Immune System for Detecting “Low and Slow“ In-
formation System Attacks”. Proceedings of Recent Advances In Intrusion Detection.
2002.

97. Williams, Paul D. Warthog: Toward an Artificial Immune system for Detecting ”Low
and Slow” Information System Attacks. Master’s thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB, OH, MARCH 2001.

98. Wolpert, David H. “No Free Lunch Theorems for Optimization”. IEEE Transactions
on Evolutionary Computation, 1(1), April 1997.

99. Zhong, Shi, Taghi Khoshgoftaar, and Naeem Seliya. “Evaluating Clustering Tech-
niques for Network Intrusion Detection”. Proceedings of the 10th ISSAT International
Converence on Reliability and Quality Design. Las Vegas, NV, August 2004.

142

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2005 Master’s Thesis Sept 2003 — Mar 2005

An Evolutionary Algorithm
to Generate Ellipsoid Detectors

for Negative Selection

Shapiro, Joseph M., GS-09, NSA

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/05-20

N/A

Approval for public release; distribution is unlimited.

Negative selection is a process from the biological immune system that can be applied to two-class
(self and nonself) classification problems. Negative selection uses only one class (self) for training, which results in
detectors for the other class (nonself). This paradigm is especially useful for problems in which only one class is available
for training, such as network intrusion detection. Previous work has investigated hyper-rectangles and hyper-spheres as
geometric detectors. This work proposes ellipsoids as geometric detectors. First, we establish a mathematical model for
ellipsoids. We develop an algorithm to generate ellipsoids by training on only one class of data. Ellipsoid mutation
operators, an objective function, and a convergence technique are described for the evolutionary algorithm that generates
ellipsoid detectors. Testing on several data sets validates this approach by showing that our algorithm generates good
ellipsoid detectors. Against artificial data sets, the detectors generated by our algorithm match > 90% of nonself data
with 0% false alarm. Against a subset of data from the 1999 DARPA MIT intrusion detection data, the ellipsoids
generated by our algorithm detect ∼ 98% of nonself (intrusions) with a ∼ 0% false alarm rate.

Algorithms, Ellipsoids, Intrusion Detection, Geometry

U U U UU 158

Gary B. Lamont, PhD, AFIT/ENG

(937) 785-3636, ext 4718

	An Evolutionary Algorithm to Generate Ellipsoid Detectors for Negative Selection
	Recommended Citation

	tmp.1600113867.pdf.WqVWm

