216 research outputs found

    Parameter study and characterization of wireless nanonetworks through simulation (Invited Paper)

    No full text
    International audience—Nanowireless electromagnetic communication networks in the Terahertz band have raised interest in the networking community these very last years. However, if detailed studies have been published on analytical modelling of these networks, no simulation have been run to study in detail the characteristics of the transmission medium. We have designed Vouivre, a standalone nanowireless simulator, which is interfaced with two micro-robots simulator DPRSim and VisibleSim. This paper describes briefly Vouivre and presents first metrics of the communication channel using a communication paradigm called TS-OOK (Time Spread On-Off Keying)

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    Get PDF
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer ReviewedPostprint (author’s final draft

    Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme

    Get PDF
    The envisioned dense nano-network inside the human body at terahertz (THz) frequency suffers a communication performance degradation among nano-devices. The reason for this performance limitation is not only the path loss and molecular absorption noise, but also the presence of multi-user interference and the interference caused by utilising any communication scheme, such as time spread ON—OFF keying (TS-OOK). In this paper, an interference model utilising TS-OOK as a communication scheme of the THz communication channel inside the human body has been developed and the probability distribution of signal-to-interference-plus-noise ratio (SINR) for THz communication within different human tissues, such as blood, skin, and fat, has been analyzed and presented. In addition, this paper evaluates the performance degradation by investigating the mean values of SINR under different node densities in the area and the probabilities of transmitting pulses. It results in the conclusion that the interference restrains the achievable communication distance to approximate 1 mm, and more specific range depends on the particular transmission circumstance. Results presented in this paper also show that by controlling the pulse transmission probability and node density, the system performance can be ameliorated. In particular, SINR of in vivo THz communication between the deterministic targeted transmitter and the receiver with random interfering nodes in the medium improves about 10 dB, when the node density decreases one order. The SINR increases approximate 5 and 2 dB, when the pulse transmitting probability drops from 0.5 to 0.1 and 0.9 to 0.5

    A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks

    Get PDF
    With the huge advancement of nanotechnology over the past years, the devices are shrinking into micro-scale, even nano-scale. Additionally, the Internet of nano-things (IoNTs) are generally regarded as the ultimate formation of the current sensor networks and the development of nanonetworks would be of great help to its fulfilment, which would be ubiquitous with numerous applications in all domains of life. However, the communication between the devices in such nanonetworks is still an open problem. Body-centric nanonetworks are believed to play an essential role in the practical application of IoNTs. BCNNs are also considered as domain specific like wireless sensor networks and always deployed on purpose to support a particular application. In these networks, electromagnetic and molecular communications are widely considered as two main promising paradigms and both follow their own development process. In this survey, the recent developments of these two paradigms are first illustrated in the aspects of applications, network structures, modulation techniques, coding techniques and security to then investigate the potential of hybrid communication paradigms. Meanwhile, the enabling technologies have been presented to apprehend the state-of-art with the discussion on the possibility of the hybrid technologies. Additionally, the inter-connectivity of electromagnetic and molecular body-centric nanonetworks is discussed. Afterwards, the related security issues of the proposed networks are discussed. Finally, the challenges and open research directions are presented

    Exploring the physical channel of diffusion-based molecular communication by simulation

    Get PDF
    Diffusion-based molecular communication is a promising bio-inspired paradigm to implement nanonetworks, i.e., the interconnection of nanomachines. The peculiarities of the physical channel in diffusion-based molecular communication require the development of novel models, architectures and protocols for this new scenario, which need to be validated by simulation. With this purpose, we present N3Sim, a simulation framework for diffusion-based molecular communication. N3Sim allows to simulate scenarios where transmitters encode the information by releasing molecules into the medium, thus varying their local concentration. N3Sim models the movement of these molecules according to Brownian dynamics, and it also takes into account their inertia and the interactions among them. Receivers decode the information by sensing the particle concentration in their neighborhood. The benefits of N3Sim are multiple: the validation of channel models for molecular communication and the evaluation of novel modulation schemes are just a few examples.Peer ReviewedPostprint (author’s final draft

    Improving Receiver Performance of Diffusive Molecular Communication with Enzymes

    Full text link
    This paper studies the mitigation of intersymbol interference in a diffusive molecular communication system using enzymes that freely diffuse in the propagation environment. The enzymes form reaction intermediates with information molecules and then degrade them so that they cannot interfere with future transmissions. A lower bound expression on the expected number of molecules measured at the receiver is derived. A simple binary receiver detection scheme is proposed where the number of observed molecules is sampled at the time when the maximum number of molecules is expected. Insight is also provided into the selection of an appropriate bit interval. The expected bit error probability is derived as a function of the current and all previously transmitted bits. Simulation results show the accuracy of the bit error probability expression and the improvement in communication performance by having active enzymes present.Comment: 13 pages, 8 figures, 1 table. To appear in IEEE Transactions on Nanobioscience (submitted January 22, 2013; minor revision October 16, 2013; accepted December 4, 2013
    • …
    corecore