7 research outputs found

    A Hybrid Technique for Medical Image Segmentation

    Get PDF
    Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR) image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images

    An Efficient Fuzzy Possibilistic C-Means with Penalized and Compensated Constraints

    Get PDF
    Improvement in sensing and storage devices and impressive growth in applications such as Internet search, digital imaging, and video surveillance have generated many high-volume, high-dimensional data. The raise in both the quantity and the kind of data requires improvement in techniques to understand, process and summarize the data. Categorizing data into reasonable groupings is one of the most essential techniques for understanding and learning. This is performed with the help of technique called clustering. This clustering technique is widely helpful in fields such as pattern recognition, image processing, and data analysis. The commonly used clustering technique is K-Means clustering. But this clustering results in misclassification when large data are involved in clustering. To overcome this disadvantage, Fuzzy- Possibilistic C-Means (FPCM) algorithm can be used for clustering. FPCM combines the advantages of Possibilistic C-Means (PCM) algorithm and fuzzy logic. For further improving the performance of clustering, penalized and compensated constraints are used in this paper. Penalized and compensated terms are embedded with the modified fuzzy possibilistic clustering method2019;s objective function to construct the clustering with enhanced performance. The experimental result illustrates the enhanced performance of the proposed clustering technique when compared to the fuzzy possibilistic c-means clustering algorithm

    Kernel-based modified fuzzy possibilistic c-means clustering

    Get PDF
    Classification and clustering algorithms are, without doubt, a useful tool to explore data structures, and have been widely employed in many domains such as pattern recognition, image processing, data mining, and data analysis. The focus of this paper is the partitioning problem with a special interest in kernel method. The aim of this paper is to extend this method to the modified fuzzy possibilistic c-means (MFPCM) algorithm. It is realized by substitution of a kernel-induced distance metric for the Euclidean distance, and the corresponding algorithm is called kernel MFPCM algorithm. Numerical simulations are given to illustrate the performances of the proposed method

    A Fuzzy Rules-Based Segmentation Method for Medical Images Analysis

    Get PDF
    Medical imaging mainly manages and processes missing, ambiguous, omplementary, redundant and distorted data and information has a strong structural character. This paper reports a new (semi)automated and supervised method for the segmentation of brain structures using a rule-based fuzzy system. In the field of biomedical image analysis fuzzy logic acts as a unified framework for representing and processing both numerical and symbolic information, as well as structural information constituted mainly by spatial relationships. The developed application is for the segmentation of brain structures in CT (computer tomography) images. Promising results show the superiority of this knowledge-based approach over best traditional techniques in terms of segmentation errors. The quantitative assessment of this method is made by comparing manually and automatic segmented brain structures by using some indexes evaluating the accuracy of contour detection and spatial location. Though the proposed methodology has been implemented and successfully used for modeldriven in medical imaging, it is general enough and may be applied to any imagistic object that can be expressed by expert knowledge and morphological images

    Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    Get PDF
    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy

    Deep Learning and Multiplex Networks for Accurate Modeling of Brain Age

    Get PDF
    Recent works have extensively investigated the possibility to predict brain aging from T1-weighted MRI brain scans. The main purposes of these studies are the investigation of subject-specific aging mechanisms and the development of accurate models for age prediction. Deviations between predicted and chronological age are known to occur in several neurodegenerative diseases; as a consequence, reaching higher levels of age prediction accuracy is of paramount importance to develop diagnostic tools. In this work, we propose a novel complex network model for brain based on segmenting T1-weighted MRI scans in rectangular boxes, called patches, and measuring pairwise similarities using Pearson's correlation to define a subject-specific network. We fed a deep neural network with nodal metrics, evaluating both the intensity and the uniformity of connections, to predict subjects' ages. Our model reaches high accuracies which compare favorably with state-of-the-art approaches. We observe that the complex relationships involved in this brain description cannot be accurately modeled with standard machine learning approaches, such as Ridge and Lasso regression, Random Forest, and Support Vector Machines, instead a deep neural network has to be used
    corecore