175 research outputs found

    A numerical implementation of the unified Fokas transform for evolution problems on a finite interval

    Get PDF
    We present the numerical solution of two-point boundary value problems for a third order linear PDE, representing a linear evolution in one space dimension. To our knowledge, the numerical evaluation of the solution so far could only be obtained by a time-stepping scheme, that must also take into account the issue, generically non-trivial, of the imposition of the boundary conditions. Instead of computing the evolution numerically, we evaluate the novel solution representation formula obtained by the unified transform, also known as Fokas transform. This representation involves complex line integrals, but in order to evaluate these integrals numerically, it is necessary to deform the integration contours using appropriate deformation mappings. We formulate a strategy to implement effectively this deformation, which allows us to obtain accurate numerical results

    Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I

    Full text link
    We propose an algorithmic procedure i) to study the ``distance'' between an integrable PDE and any discretization of it, in the small lattice spacing epsilon regime, and, at the same time, ii) to test the (asymptotic) integrability properties of such discretization. This method should provide, in particular, useful and concrete informations on how good is any numerical scheme used to integrate a given integrable PDE. The procedure, illustrated on a fairly general 10-parameter family of discretizations of the nonlinear Schroedinger equation, consists of the following three steps: i) the construction of the continuous multiscale expansion of a generic solution of the discrete system at all orders in epsilon, following the Degasperis - Manakov - Santini procedure; ii) the application, to such expansion, of the Degasperis - Procesi (DP) integrability test, to test the asymptotic integrability properties of the discrete system and its ``distance'' from its continuous limit; iii) the use of the main output of the DP test to construct infinitely many approximate symmetries and constants of motion of the discrete system, through novel and simple formulas.Comment: 34 pages, no figur

    On asymptotically equivalent shallow water wave equations

    Full text link
    The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire {\it family} of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduced by Kodama in combination with the application of the Helmholtz-operator. These Kodama-Helmholtz transformations are used to present connections between shallow water waves, the integrable 5th-order Korteweg-de Vries equation, and a generalization of the Camassa-Holm (CH) equation that contains an additional integrable case. The dispersion relation of the full water wave problem and any equation in this family agree to 5th order. The travelling wave solutions of the CH equation are shown to agree to 5th order with the exact solution

    Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painlev\'{e} Equation. I

    Full text link
    The degenerate third Painlev\'{e} equation, u′′=(u′)2u−u′τ+1τ(−8ϵu2+2ab)+b2uu^{\prime \prime} = \frac{(u^{\prime})^{2}}{u} - \frac{u^{\prime}}{\tau} + \frac{1}{\tau}(-8 \epsilon u^{2} + 2ab) + \frac{b^{2}}{u}, where ϵ,b∈R\epsilon,b \in \mathbb{R}, and a∈Ca \in \mathbb{C}, and the associated tau-function are studied via the Isomonodromy Deformation Method. Connection formulae for asymptotics of the general as τ→±0\tau \to \pm 0 and ±i0\pm i0 solution and general regular as τ→±∞\tau \to \pm \infty and ±i∞\pm i \infty solution are obtained.Comment: 40 pages, LaTeX2

    Integrable negative flows of the Heisenberg ferromagnet equation hierarchy

    Get PDF
    We study the negative flows of the hierarchy of the integrable Heisenberg ferromagnet model and their soliton solutions. The first negative flow is related to the so-called short pulse equation. We provide a framework which generates Lax pairs for the other members of the hierarchy. The application of the dressing method is illustrated with the derivation of the one-soliton solution
    • …
    corecore