4,806 research outputs found

    Iterative receiver design for the estimation of Gaussian samples in impulsive noise

    Get PDF
    Impulsive noise is the main limiting factor for transmission over channels affected by elec-tromagnetic interference. We study the estimation of (correlated) Gaussian signals in an impulsive noise scenario. In this work, we analyze some of the existing, as well as some novel estimation algorithms. Their performance is compared, for the first time, for different channel conditions, including the Markov–Middleton scenario, where the impulsive noise switches between different noise states. Following a modern approach in digital communications, the receiver design is based on a factor graph model and implements a message passing algorithm. The correlation among signal samples, as well as among noise states brings about a loopy factor graph, where an iterative message passing scheme should be employed. As is well known, approximate variational inference techniques are necessary in these cases. We propose and analyze different algorithms and provide a complete performance comparison among them, showing that the expectation propagation, transparent propa-gation, and parallel iterative schedule approaches reach a performance close to optimal, at different channel conditions

    Evaluation and Verification of Bottom Acoustic Reverberation Statistics Predicted by the Point Scattering Model

    Get PDF
    The point scatteringmodel offers a parameterization of the reverberation probability density function (pdf) in terms of the coefficient of excess (kurtosis) and a coherent component represented by a harmonic process with random phase. In this paper the potential utility of this parametrization is investigated in the context of seafloor characterization. The problem of separating out the effect of each parameter is discussed. Computer simulations are used to verify model predictions on the reverberation quadrature, envelope, and phase pdf. As part of the verification study, the scatterer density was determined from the kurtosis of the reverberation quadrature pdf. A statistical analysis of this procedure points to reduced estimate accuracy with decreasing kurtosis. Additional computer simulations show that the chosen pdf family, developed under the assumption of a Poissonscatterer distribution, is flexible enough to fit reverberation data generated by non‐Poisson scatterer distributions exhibiting a degree of clustering or regularity. A computer experiment demonstrates how this parametrization can be used in conjunction with a simple sonar geometry to generate acoustic signatures for seafloor classification. In addition, real reverberation data collected by a Sea Beam sonar system in two different seafloor areas are interpreted according to the chosen parametrization
    • 

    corecore