2,181 research outputs found

    Techniques for automated parameter estimation in computational models of probabilistic systems

    Get PDF
    The main contribution of this dissertation is the design of two new algorithms for automatically synthesizing values of numerical parameters of computational models of complex stochastic systems such that the resultant model meets user-specified behavioral specifications. These algorithms are designed to operate on probabilistic systems – systems that, in general, behave differently under identical conditions. The algorithms work using an approach that combines formal verification and mathematical optimization to explore a model\u27s parameter space. The problem of determining whether a model instantiated with a given set of parameter values satisfies the desired specification is first defined using formal verification terminology, and then reformulated in terms of statistical hypothesis testing. Parameter space exploration involves determining the outcome of the hypothesis testing query for each parameter point and is guided using simulated annealing. The first algorithm uses the sequential probability ratio test (SPRT) to solve the hypothesis testing problems, whereas the second algorithm uses an approach based on Bayesian statistical model checking (BSMC). The SPRT-based parameter synthesis algorithm was used to validate that a given model of glucose-insulin metabolism has the capability of representing diabetic behavior by synthesizing values of three parameters that ensure that the glucose-insulin subsystem spends at least 20 minutes in a diabetic scenario. The BSMC-based algorithm was used to discover the values of parameters in a physiological model of the acute inflammatory response that guarantee a set of desired clinical outcomes. These two applications demonstrate how our algorithms use formal verification, statistical hypothesis testing and mathematical optimization to automatically synthesize parameters of complex probabilistic models in order to meet user-specified behavioral propertie

    Automated parameter estimation for biological models using Bayesian statistical model checking

    Get PDF
    Background: Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Domain experts usually estimate the values of these parameters by fitting the model to experimental data. Model fitting is usually expressed as an optimization problem that requires minimizing a cost-function which measures some notion of distance between the model and the data. This optimization problem is often solved by combining local and global search methods that tend to perform well for the specific application domain. When some prior information about parameters is available, methods such as Bayesian inference are commonly used for parameter learning. Choosing the appropriate parameter search technique requires detailed domain knowledge and insight into the underlying system. Results: Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. Conclusions: We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models

    New Insights into History Matching via Sequential Monte Carlo

    Get PDF
    The aim of the history matching method is to locate non-implausible regions of the parameter space of complex deterministic or stochastic models by matching model outputs with data. It does this via a series of waves where at each wave an emulator is fitted to a small number of training samples. An implausibility measure is defined which takes into account the closeness of simulated and observed outputs as well as emulator uncertainty. As the waves progress, the emulator becomes more accurate so that training samples are more concentrated on promising regions of the space and poorer parts of the space are rejected with more confidence. Whilst history matching has proved to be useful, existing implementations are not fully automated and some ad-hoc choices are made during the process, which involves user intervention and is time consuming. This occurs especially when the non-implausible region becomes small and it is difficult to sample this space uniformly to generate new training points. In this article we develop a sequential Monte Carlo (SMC) algorithm for implementation which is semi-automated. Our novel SMC approach reveals that the history matching method yields a non-implausible distribution that can be multi-modal, highly irregular and very difficult to sample uniformly. Our SMC approach offers a much more reliable sampling of the non-implausible space, which requires additional computation compared to other approaches used in the literature

    Computational methods for protein structure prediction and next-generation sequencing data analysis

    Get PDF
    With the wide application of next-generation sequencing technologies, the number of protein sequences is increasing exponentially. However, only a tiny portion of proteins have experimentally verified structures. The huge protein sequence-structure gap could be reduced by computational methods including template-based modeling and template-free modeling. Chapter 2 describes a stochastic point cloud sampling method for multi-template protein model generation. The stochastic sampling and simulated annealing protocol in the method has the capability to improve the global quality and reduce atom clashes in protein models. Two popular approaches for improving protein structure prediction include enlarging the sampling space of template-based modeling and integrating template-based modeling with template-free modeling when no good templates or only partial templates can be found for a target protein. Chapters 3 and 4 introduce a large-scale conformation sampling and evaluation system for protein structure prediction which integrates the two methods. Next-generation sequencing of RNAs (RNA-Seq) generates hundreds of millions of short reads. Analyzing these reads is increasingly being used to foster novel discovery in biomedical research. Chapter 5 describes a bioinformatics pipeline for RNA-Seq data analysis, which converts gigabytes of raw RNA-Seq data into kilobytes of valuable biological knowledge through a five-step data mining and knowledge discovery process

    Evolving cell models for systems and synthetic biology

    Get PDF
    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm’s results as well as of the resulting evolved cell models
    • …
    corecore