61,930 research outputs found

    Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability

    Full text link
    Heterogeneous computing, which combines devices with different architectures, is rising in popularity, and promises increased performance combined with reduced energy consumption. OpenCL has been proposed as a standard for programing such systems, and offers functional portability. It does, however, suffer from poor performance portability, code tuned for one device must be re-tuned to achieve good performance on another device. In this paper, we use machine learning-based auto-tuning to address this problem. Benchmarks are run on a random subset of the entire tuning parameter configuration space, and the results are used to build an artificial neural network based model. The model can then be used to find interesting parts of the parameter space for further search. We evaluate our method with different benchmarks, on several devices, including an Intel i7 3770 CPU, an Nvidia K40 GPU and an AMD Radeon HD 7970 GPU. Our model achieves a mean relative error as low as 6.1%, and is able to find configurations as little as 1.3% worse than the global minimum.Comment: This is a pre-print version an article to be published in the Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). For personal use onl

    BestConfig: Tapping the Performance Potential of Systems via Automatic Configuration Tuning

    Full text link
    An ever increasing number of configuration parameters are provided to system users. But many users have used one configuration setting across different workloads, leaving untapped the performance potential of systems. A good configuration setting can greatly improve the performance of a deployed system under certain workloads. But with tens or hundreds of parameters, it becomes a highly costly task to decide which configuration setting leads to the best performance. While such task requires the strong expertise in both the system and the application, users commonly lack such expertise. To help users tap the performance potential of systems, we present BestConfig, a system for automatically finding a best configuration setting within a resource limit for a deployed system under a given application workload. BestConfig is designed with an extensible architecture to automate the configuration tuning for general systems. To tune system configurations within a resource limit, we propose the divide-and-diverge sampling method and the recursive bound-and-search algorithm. BestConfig can improve the throughput of Tomcat by 75%, that of Cassandra by 63%, that of MySQL by 430%, and reduce the running time of Hive join job by about 50% and that of Spark join job by about 80%, solely by configuration adjustment

    ACTS in Need: Automatic Configuration Tuning with Scalability Guarantees

    Full text link
    To support the variety of Big Data use cases, many Big Data related systems expose a large number of user-specifiable configuration parameters. Highlighted in our experiments, a MySQL deployment with well-tuned configuration parameters achieves a peak throughput as 12 times much as one with the default setting. However, finding the best setting for the tens or hundreds of configuration parameters is mission impossible for ordinary users. Worse still, many Big Data applications require the support of multiple systems co-deployed in the same cluster. As these co-deployed systems can interact to affect the overall performance, they must be tuned together. Automatic configuration tuning with scalability guarantees (ACTS) is in need to help system users. Solutions to ACTS must scale to various systems, workloads, deployments, parameters and resource limits. Proposing and implementing an ACTS solution, we demonstrate that ACTS can benefit users not only in improving system performance and resource utilization, but also in saving costs and enabling fairer benchmarking

    Is One Hyperparameter Optimizer Enough?

    Full text link
    Hyperparameter tuning is the black art of automatically finding a good combination of control parameters for a data miner. While widely applied in empirical Software Engineering, there has not been much discussion on which hyperparameter tuner is best for software analytics. To address this gap in the literature, this paper applied a range of hyperparameter optimizers (grid search, random search, differential evolution, and Bayesian optimization) to defect prediction problem. Surprisingly, no hyperparameter optimizer was observed to be `best' and, for one of the two evaluation measures studied here (F-measure), hyperparameter optimization, in 50\% cases, was no better than using default configurations. We conclude that hyperparameter optimization is more nuanced than previously believed. While such optimization can certainly lead to large improvements in the performance of classifiers used in software analytics, it remains to be seen which specific optimizers should be applied to a new dataset.Comment: 7 pages, 2 columns, accepted for SWAN1

    Scalable Compression of Deep Neural Networks

    Full text link
    Deep neural networks generally involve some layers with mil- lions of parameters, making them difficult to be deployed and updated on devices with limited resources such as mobile phones and other smart embedded systems. In this paper, we propose a scalable representation of the network parameters, so that different applications can select the most suitable bit rate of the network based on their own storage constraints. Moreover, when a device needs to upgrade to a high-rate network, the existing low-rate network can be reused, and only some incremental data are needed to be downloaded. We first hierarchically quantize the weights of a pre-trained deep neural network to enforce weight sharing. Next, we adaptively select the bits assigned to each layer given the total bit budget. After that, we retrain the network to fine-tune the quantized centroids. Experimental results show that our method can achieve scalable compression with graceful degradation in the performance.Comment: 5 pages, 4 figures, ACM Multimedia 201

    Automatic LQR Tuning Based on Gaussian Process Global Optimization

    Full text link
    This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four-dimensional tuning problems highlight the method's potential for automatic controller tuning on robotic platforms.Comment: 8 pages, 5 figures, to appear in IEEE 2016 International Conference on Robotics and Automation. Video demonstration of the experiments available at https://am.is.tuebingen.mpg.de/publications/marco_icra_201

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    k-Same-Siamese-GAN: k-Same Algorithm with Generative Adversarial Network for Facial Image De-identification with Hyperparameter Tuning and Mixed Precision Training

    Full text link
    For a data holder, such as a hospital or a government entity, who has a privately held collection of personal data, in which the revealing and/or processing of the personal identifiable data is restricted and prohibited by law. Then, "how can we ensure the data holder does conceal the identity of each individual in the imagery of personal data while still preserving certain useful aspects of the data after de-identification?" becomes a challenge issue. In this work, we propose an approach towards high-resolution facial image de-identification, called k-Same-Siamese-GAN, which leverages the k-Same-Anonymity mechanism, the Generative Adversarial Network, and the hyperparameter tuning methods. Moreover, to speed up model training and reduce memory consumption, the mixed precision training technique is also applied to make kSS-GAN provide guarantees regarding privacy protection on close-form identities and be trained much more efficiently as well. Finally, to validate its applicability, the proposed work has been applied to actual datasets - RafD and CelebA for performance testing. Besides protecting privacy of high-resolution facial images, the proposed system is also justified for its ability in automating parameter tuning and breaking through the limitation of the number of adjustable parameters
    corecore