6,403 research outputs found

    A Quantum-Inspired Evolutionary Algorithm Based on P systems for a Class of Combinatorial Optimization

    Get PDF
    This paper introduces an evolutionary algorithm which uses the concepts and principles of the quantum-inspired evolutionary approach and the hierarchical arrangement of the compartments of a P system. The P system framework is also used to formally specify this evolutionary algorithm. Extensive experiments are conducted on a well-known combinatorial optimization problem, the knapsack problem, to test the effectiveness of the approach. These experimental results show that this evolutionary algorithm performs better than quantum-inspired evolutionary algorithms, for certain arrangements of the compartments of the P system structure utilized

    A Membrane-Inspired Evolutionary Algorithm with a Population P System and its Application to Distribution System Recon guration

    Get PDF
    This paper develops a membrane-inspired evolutionary algorithm, PSMA, which is designed by using a population P system and a quantum-inspired evolutionary algorithm (QIEA). We use a population P system with three cells to organize three types of QIEAs, where communications between cells are performed at the level of genes, instead of the level of individuals reported in the existing membrane algorithms in the literature. Knapsack problems are applied to discuss the parameter setting and to test the effectiveness of PSMA. Experimental results show that PSMA is superior to four representative QIEAs and our previous work with respect to the quality of solutions and the elapsed time. We also use PSMA to solve the optimal distribution system reconfiguration problem in power systems for minimizing the power loss.Junta de Andalucía P08-TIC-04200Ministerio de Ciencia e Innovación TIN-2009-1319

    A generative modeling approach for benchmarking and training shallow quantum circuits

    Get PDF
    Hybrid quantum-classical algorithms provide ways to use noisy intermediate-scale quantum computers for practical applications. Expanding the portfolio of such techniques, we propose a quantum circuit learning algorithm that can be used to assist the characterization of quantum devices and to train shallow circuits for generative tasks. The procedure leverages quantum hardware capabilities to its fullest extent by using native gates and their qubit connectivity. We demonstrate that our approach can learn an optimal preparation of the Greenberger-Horne-Zeilinger states, also known as "cat states". We further demonstrate that our approach can efficiently prepare approximate representations of coherent thermal states, wave functions that encode Boltzmann probabilities in their amplitudes. Finally, complementing proposals to characterize the power or usefulness of near-term quantum devices, such as IBM's quantum volume, we provide a new hardware-independent metric called the qBAS score. It is based on the performance yield in a specific sampling task on one of the canonical machine learning data sets known as Bars and Stripes. We show how entanglement is a key ingredient in encoding the patterns of this data set; an ideal benchmark for testing hardware starting at four qubits and up. We provide experimental results and evaluation of this metric to probe the trade off between several architectural circuit designs and circuit depths on an ion-trap quantum computer.Comment: 16 pages, 9 figures. Minor revisions. As published in npj Quantum Informatio

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1
    corecore