1,536 research outputs found

    Solving ill-posed inverse problems using iterative deep neural networks

    Full text link
    We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. The method results in a gradient-like iterative scheme, where the "gradient" component is learned using a convolutional network that includes the gradients of the data discrepancy and regularizer as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against FBP and TV reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the TV reconstruction while being significantly faster, giving reconstructions of 512 x 512 volumes in about 0.4 seconds using a single GPU

    Compressed Sensing Based Reconstruction Algorithm for X-ray Dose Reduction in Synchrotron Source Micro Computed Tomography

    Get PDF
    Synchrotron computed tomography requires a large number of angular projections to reconstruct tomographic images with high resolution for detailed and accurate diagnosis. However, this exposes the specimen to a large amount of x-ray radiation. Furthermore, this increases scan time and, consequently, the likelihood of involuntary specimen movements. One approach for decreasing the total scan time and radiation dose is to reduce the number of projection views needed to reconstruct the images. However, the aliasing artifacts appearing in the image due to the reduced number of projection data, visibly degrade the image quality. According to the compressed sensing theory, a signal can be accurately reconstructed from highly undersampled data by solving an optimization problem, provided that the signal can be sparsely represented in a predefined transform domain. Therefore, this thesis is mainly concerned with designing compressed sensing-based reconstruction algorithms to suppress aliasing artifacts while preserving spatial resolution in the resulting reconstructed image. First, the reduced-view synchrotron computed tomography reconstruction is formulated as a total variation regularized compressed sensing problem. The Douglas-Rachford Splitting and the randomized Kaczmarz methods are utilized to solve the optimization problem of the compressed sensing formulation. In contrast with the first part, where consistent simulated projection data are generated for image reconstruction, the reduced-view inconsistent real ex-vivo synchrotron absorption contrast micro computed tomography bone data are used in the second part. A gradient regularized compressed sensing problem is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The wavelet image denoising algorithm is used as the post-processing algorithm to attenuate the unwanted staircase artifact generated by the reconstruction algorithm. Finally, a noisy and highly reduced-view inconsistent real in-vivo synchrotron phase-contrast computed tomography bone data are used for image reconstruction. A combination of prior image constrained compressed sensing framework, and the wavelet regularization is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The prior image constrained compressed sensing framework takes advantage of the prior image to promote the sparsity of the target image. It may lead to an unwanted staircase artifact when applied to noisy and texture images, so the wavelet regularization is used to attenuate the unwanted staircase artifact generated by the prior image constrained compressed sensing reconstruction algorithm. The visual and quantitative performance assessments with the reduced-view simulated and real computed tomography data from canine prostate tissue, rat forelimb, and femoral cortical bone samples, show that the proposed algorithms have fewer artifacts and reconstruction errors than other conventional reconstruction algorithms at the same x-ray dose

    Projected Newton Method for noise constrained Tikhonov regularization

    Full text link
    Tikhonov regularization is a popular approach to obtain a meaningful solution for ill-conditioned linear least squares problems. A relatively simple way of choosing a good regularization parameter is given by Morozov's discrepancy principle. However, most approaches require the solution of the Tikhonov problem for many different values of the regularization parameter, which is computationally demanding for large scale problems. We propose a new and efficient algorithm which simultaneously solves the Tikhonov problem and finds the corresponding regularization parameter such that the discrepancy principle is satisfied. We achieve this by formulating the problem as a nonlinear system of equations and solving this system using a line search method. We obtain a good search direction by projecting the problem onto a low dimensional Krylov subspace and computing the Newton direction for the projected problem. This projected Newton direction, which is significantly less computationally expensive to calculate than the true Newton direction, is then combined with a backtracking line search to obtain a globally convergent algorithm, which we refer to as the Projected Newton method. We prove convergence of the algorithm and illustrate the improved performance over current state-of-the-art solvers with some numerical experiments

    ํ•ด๋ถ€ํ•™์  ์œ ๋„ PET ์žฌ๊ตฌ์„ฑ: ๋งค๋„๋Ÿฝ์ง€ ์•Š์€ ์‚ฌ์ „ ํ•จ์ˆ˜๋ถ€ํ„ฐ ๋”ฅ๋Ÿฌ๋‹ ์ ‘๊ทผ๊นŒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ, 2021. 2. ์ด์žฌ์„ฑ.Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsherโ€™s method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on the l1 norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the original l2 and proposed l1 Bowsher priors were conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposed l1 Bowsher prior methods than the original Bowsher prior. The original l2 Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposed l1 Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced by l1 norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Moreover, based on the formulation of l1 Bowsher prior, the unrolled network containing the conventional maximum-likelihood expectation-maximization (ML-EM) module was also proposed. The convolutional layers successfully learned the distribution of anatomically-guided PET images and the EM module corrected the intermediate outputs by comparing them with sinograms. The proposed unrolled network showed better performance than ordinary U-Net, where the regional uptake is less biased and deviated. Therefore, these methods will help improve the PET image quality based on the anatomical side information.์–‘์ „์ž๋ฐฉ์ถœ๋‹จ์ธต์ดฌ์˜ / ์ž๊ธฐ๊ณต๋ช…์˜์ƒ (PET/MRI) ๋™์‹œ ํš๋“ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ MR ์˜์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ•ด๋ถ€ํ•™์  ์‚ฌ์ „ ํ•จ์ˆ˜๋กœ ์ •๊ทœํ™” ๋œ PET ์˜์ƒ ์žฌ๊ตฌ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์‹ฌ๋„์žˆ๋Š” ํ‰๊ฐ€๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค. ํ•ด๋ถ€ํ•™ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •๊ทœํ™” ๋œ PET ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ์„ ์œ„ํ•ด ์ œ์•ˆ ๋œ ๋‹ค์–‘ํ•œ ์‚ฌ์ „ ์ค‘ 2์ฐจ ํ‰ํ™œํ™” ์‚ฌ์ „ํ•จ์ˆ˜์— ๊ธฐ๋ฐ˜ํ•œ Bowsher์˜ ๋ฐฉ๋ฒ•์€ ๋•Œ๋•Œ๋กœ ์„ธ๋ถ€ ๊ตฌ์กฐ์˜ ๊ณผ๋„ํ•œ ํ‰ํ™œํ™”๋กœ ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์›๋ž˜ Bowsher ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด l1 norm์— ๊ธฐ๋ฐ˜ํ•œ Bowsher ์‚ฌ์ „ ํ•จ์ˆ˜์™€ ๋ฐ˜๋ณต์ ์ธ ์žฌ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ์šฐ๋ฆฌ๋Š” ์ด ๋งค๋„๋Ÿฝ์ง€ ์•Š์€ ์‚ฌ์ „ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ ๋ฐ˜๋ณต์  ์ด๋ฏธ์ง€ ์žฌ๊ตฌ์„ฑ์— ๋Œ€ํ•ด ๋‹ซํžŒ ํ•ด๋ฅผ ๋„์ถœํ–ˆ๋‹ค. ์›๋ž˜ l2์™€ ์ œ์•ˆ ๋œ l1 Bowsher ์‚ฌ์ „ ํ•จ์ˆ˜ ๊ฐ„์˜ ๋น„๊ต ์—ฐ๊ตฌ๋Š” ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ๋ฐ์ดํ„ฐ์—์„œ ๋น„์ •์ƒ์ ์ธ PET ํก์ˆ˜๋ฅผ ๊ฐ€์ง„ ์ž‘์€ ๋ณ‘๋ณ€์€ ์›๋ž˜ Bowsher ์ด์ „๋ณด๋‹ค ์ œ์•ˆ ๋œ l1 Bowsher ์‚ฌ์ „ ๋ฐฉ๋ฒ•์œผ๋กœ ๋” ์ž˜ ๊ฐ์ง€๋˜์—ˆ๋‹ค. ์›๋ž˜์˜ l2 Bowsher๋Š” ํ•ด๋ถ€ํ•™์  ์˜์ƒ์—์„œ ๋ณ‘๋ณ€๊ณผ ์ฃผ๋ณ€ ์กฐ์ง ์‚ฌ์ด์— ๋ช…ํ™•ํ•œ ๋ถ„๋ฆฌ๊ฐ€ ์—†์„ ๋•Œ ์ž‘์€ ๋ณ‘๋ณ€์—์„œ์˜ PET ๊ฐ•๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ œ์•ˆ ๋œ l1 Bowsher ์‚ฌ์ „ ๋ฐฉ๋ฒ•์€ ํŠนํžˆ ๋ฐ˜๋ณต์  ์žฌ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฒ•์—์„œ l1 ๋…ธ๋ฆ„์— ์˜ํ•ด ์œ ๋„๋œ ํฌ์†Œ์„ฑ์— ๊ธฐ์ธํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ข…์–‘๊ณผ ์ฃผ๋ณ€ ์กฐ์ง ์‚ฌ์ด์— ๋” ๋‚˜์€ ๋Œ€๋น„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ PET๊ณผ MRI์˜ ํ•ด๋ถ€ํ•™์  ๊ฒฝ๊ณ„๊ฐ€ ์ผ์น˜ํ•˜๋Š” ์˜์—ญ์—์„œ PET ๊ฐ•๋„ ์ถ”์ •์— ๋Œ€ํ•œ ํŽธํ–ฅ์ด ๋” ๋‚ฎ๊ณ  ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ข…์†์„ฑ์ด ์ ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, l1Bowsher ์‚ฌ์ „ ํ•จ์ˆ˜์˜ ๋‹ซํžŒ ํ•ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธฐ์กด์˜ ML-EM (maximum-likelihood expectation-maximization) ๋ชจ๋“ˆ์„ ํฌํ•จํ•˜๋Š” ํŽผ์ณ์ง„ ๋„คํŠธ์›Œํฌ๋„ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ปจ๋ณผ๋ฃจ์…˜ ๋ ˆ์ด์–ด๋Š” ํ•ด๋ถ€ํ•™์ ์œผ๋กœ ์œ ๋„ ์žฌ๊ตฌ์„ฑ๋œ PET ์ด๋ฏธ์ง€์˜ ๋ถ„ํฌ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ํ•™์Šตํ–ˆ์œผ๋ฉฐ, EM ๋ชจ๋“ˆ์€ ์ค‘๊ฐ„ ์ถœ๋ ฅ๋“ค์„ ์‚ฌ์ด๋…ธ๊ทธ๋žจ๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€๊ฐ€ ์ž˜ ๋“ค์–ด๋งž๊ฒŒ ์ˆ˜์ •ํ–ˆ๋‹ค. ์ œ์•ˆ๋œ ํŽผ์ณ์ง„ ๋„คํŠธ์›Œํฌ๋Š” ์ง€์—ญ์˜ ํก์ˆ˜์„ ๋Ÿ‰์ด ๋œ ํŽธํ–ฅ๋˜๊ณ  ํŽธ์ฐจ๊ฐ€ ์ ์–ด, ์ผ๋ฐ˜ U-Net๋ณด๋‹ค ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ํ•ด๋ถ€ํ•™์  ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ PET ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์œ ์šฉํ•  ๊ฒƒ์ด๋‹ค.Chapter 1. Introduction 1 1.1. Backgrounds 1 1.1.1. Positron Emission Tomography 1 1.1.2. Maximum a Posterior Reconstruction 1 1.1.3. Anatomical Prior 2 1.1.4. Proposed l_1 Bowsher Prior 3 1.1.5. Deep Learning for MR-less Application 4 1.2. Purpose of the Research 4 Chapter 2. Anatomically-guided PET Reconstruction Using Bowsher Prior 6 2.1. Backgrounds 6 2.1.1. PET Data Model 6 2.1.2. Original Bowsher Prior 7 2.2. Methods and Materials 8 2.2.1. Proposed l_1 Bowsher Prior 8 2.2.2. Iterative Reweighting 13 2.2.3. Computer Simulations 15 2.2.4. Human Data 16 2.2.5. Image Analysis 17 2.3. Results 19 2.3.1. Simulation with Brain Phantom 19 2.3.2.Human Data 20 2.4. Discussions 25 Chapter 3. Deep Learning Approach for Anatomically-guided PET Reconstruction 31 3.1. Backgrounds 31 3.2. Methods and Materials 33 3.2.1. Douglas-Rachford Splitting 33 3.2.2. Network Architecture 34 3.2.3. Dataset and Training Details 35 3.2.4. Image Analysis 36 3.3. Results 37 3.4. Discussions 38 Chapter 4. Conclusions 40 Bibliography 41 Abstract in Korean (๊ตญ๋ฌธ ์ดˆ๋ก) 52Docto

    Iterative CT reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Get PDF
    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and offโ€normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections. --Abstract, page iii
    • โ€ฆ
    corecore